organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1315-o1316

Bis(tetra­ethyl­ammonium) bis­­(hydrogen L-tartrate) L-tartaric acid monohydrate

aDepartment of Physics, Anna University, Chennai 600 025, India, bCrystal Growth and Thin Film Laboratory, School of Physics, Bharathidasan University, Tiruchirappalli 620 024, India, and cInstitute of Physics, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
*Correspondence e-mail: krgkrishnan@yahoo.com

(Received 10 March 2011; accepted 24 April 2011; online 7 May 2011)

In the title compound, 2C8H20N+·2C4H5O6·C4H6O6·H2O, the presence of the two tetra­ethyl­ammonium cations is balanced by two hydrogen L-tartrate anions. Also present in the asymmetric unit are a mol­ecule of L-tartaric acid and a water mol­ecule. The various components are linked by O—H⋯O hydrogen bonds. In the crystal, two-dimensional networks are formed via O—H⋯O hydrogen bonds and C—H⋯O inter­actions involving the water mol­ecule, the hydrogen L-tartrate anions and the L-tartaric acid mol­ecules. These layers, which stack along [001], are separated by tetra­ethyl­ammonium cations. The latter are also involved in C—H⋯O inter­actions with the anions and the L-tartaric acid and water mol­ecules participating in the two-dimensional network.

Related literature

For potential industrial applications of non-linear optical (NLO) materials, see: Dega-Szafran et al. (2008[Dega-Szafran, Z., Dutkiewicz, G., Kosturkiewicz, Z. & Szafran, M. (2008). J. Mol. Struct. 889, 286-296.]); Bosshard et al. (1995[Bosshard, Ch., Sutter, K., Preâtre, Ph., Hulliger, J., Floérsheimer, M., Kaatz, P. & Guénter, P. (1995). Organic Nonlinear Optical Materials, Advances in Nonlinear Optics, Vol. 1. Amsterdam: Gordon and Breach.]). For an example of a structure showing bulk quadratic NLO effects, see: Coe et al. (2005[Coe, B. J., Hall, J. J., Harris, J. A., Brunschwig, B. S., Coles, S. J. & Hursthouse, M. B. (2005). Acta Cryst. E61, o464-o467.]). For the crystal structure of tetra­ethyl­ammonium hydrogen L-tartrate dihydrate, see: Rahman et al. (2008[Rahman, M. B. A., Jumbri, K., Sirat, K., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, o2343.]).

[Scheme 1]

Experimental

Crystal data
  • 2C8H20N+·2C4H5O6·C4H6O6·H2O

  • Mr = 726.76

  • Monoclinic, P 21

  • a = 7.5725 (4) Å

  • b = 27.7907 (13) Å

  • c = 8.7620 (6) Å

  • β = 99.884 (5)°

  • V = 1816.55 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 173 K

  • 0.45 × 0.32 × 0.25 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • 20250 measured reflections

  • 3502 independent reflections

  • 3116 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.064

  • S = 1.03

  • 3502 reflections

  • 469 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O2 0.89 (5) 2.56 (4) 2.995 (3) 111 (3)
O1W—H1WB⋯O5i 0.89 (5) 2.19 (5) 3.015 (3) 155 (4)
O3—H3O⋯O1W 0.84 2.04 2.868 (3) 167
O4—H4O⋯O11 0.84 1.99 2.790 (2) 160
O6—H6O⋯O2ii 0.84 1.65 2.485 (2) 175
O9—H9O⋯O1Wii 0.84 2.25 3.077 (3) 169
O10—H10O⋯O5 0.84 2.05 2.848 (2) 158
O14—H14O⋯O7iii 0.84 1.73 2.552 (2) 164
O15—H15O⋯O1 0.84 2.05 2.869 (2) 166
O16—H16O⋯O12iii 0.84 2.27 3.054 (3) 156
O18—H18O⋯O1ii 0.84 1.77 2.588 (2) 165
C3—H3⋯O15 1.00 2.55 3.503 (3) 158
C7—H7⋯O13iv 1.00 2.52 3.396 (3) 146
C13—H13A⋯O1Wv 0.99 2.51 3.419 (4) 152
C16—H16B⋯O3vi 0.98 2.46 3.378 (3) 155
C19—H19A⋯O3vi 0.99 2.38 3.275 (3) 150
C19—H19B⋯O9vi 0.99 2.37 3.294 (3) 155
C23—H23A⋯O17vii 0.99 2.47 3.420 (3) 161
C25—H25A⋯O13 0.99 2.46 3.419 (3) 164
C26—H26A⋯O9viii 0.98 2.56 3.482 (4) 157
C27—H27B⋯O18i 0.99 2.49 3.180 (3) 126
Symmetry codes: (i) x+1, y, z; (ii) x-1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+1]; (iv) [-x+1, y-{\script{1\over 2}}, -z+1]; (v) x-1, y, z+1; (vi) x, y, z+1; (vii) x+1, y, z-1; (viii) [-x+1, y+{\script{1\over 2}}, -z].

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2009[Stoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON .

Supporting information


Comment top

Our interest in the determination of the structure of the title compound is due to recent advances in organic non-linear optical (NLO) materials on account of their widespread potential industrial applications (Dega-Szafran et al., 2008; Bosshard et al., 1995). The majority of promising compounds constitute dipolar donor-π-acceptor molecules and these must be arranged non-centrosymmetrically to afford macroscopic structures capable of showing bulk quadratic NLO effects, such as frequency doubling [second-harmonic generation, SHG] (Coe et al., 2005). In particular, molecule-based NLO materials offer ultrafast response times, lower dielectric constants, better processability characteristics and enhanced nonresonant NLO responses relative to the traditional inorganic crystals. Previous work has shown that an inherent relationship exists between the structure of title material and its observed properties, although the SHG output was found to be rather weak when compared to KDP or urea.

The molecular structure of the title compound is illustrated in Fig. 1. The asymmetric unit is composed of two tetraethylammonium cations, two hydrogen L-tartrate anions, a molecule of L-tartaric acid and a water molecule. The various moieties are linked by O—H···O hydrogen bonds (Table 1).

In the crystal two-dimensional networks (Fig. 2) are formed via O—H···O hydrogen bonds and C—H···O interactions (Table 1) involving the water molecule, the hydrogen L-tartrate anions and the L-tartaric acid molecules. These layers stack along [001] are separated by tetraethylammonium cations, which are also involved in C—H···O interactions with the anions and the L-tartaric acid and water molecules (Fig. 3 and Table 1). This arrangement is similar to that in the crystal structure of Tetra-ethylammonium hydrogen L-tartrate dihydrate, which has been reported on previously (Rahman et al., 2008).

Related literature top

For potential industrial applications of non-linear optical (NLO) materials, see: Dega-Szafran et al. (2008); Bosshard et al. (1995). For an example of a structure showing bulk quadratic NLO effects, see: Coe et al. (2005). For the crystal structure of tetraethylammonium hydrogen L-tartrate dihydrate, see: Rahman et al. (2008).

Experimental top

The title compound was synthesized using tetraethyl ammonium and L-tartaric acid in an equimolar ratio. The measured quantity of L-tartaric was dissolved in double distilled water until a saturated solution was obtained. Tetraethylammonium hydroxide (20% water) was then added slowly drop wise to the aqueous solution of L-tartaric acid. The mixture was stirred well at RT until a homogeneous solution was obtained. It was then stirred for 4 hrs at 350 K (oil bath) and then cooled to RT. The cooled solution was then filtered and the filtrate covered using a thick parafilm sheet, in order to control the evaporation rate at RT in a constant temperature bath. Good quality single crystals of title compound were obtained after 1 month.

Refinement top

In the final cycles of refinement, in the absence of significant anomalous scattering effects, 3324 Friedel pairs were merged and Δf " set to zero. The absolute configuration is referred to that of L-tartaric acid. The water H-atoms were located in difference electron-density maps and were refined with O—H distance restraints of 0.84 (2) Å, and Uiso(H) = 1.5 × Ueq(O). The OH and C-bound H-atoms were included in calculated positions and treated as riding atoms: O—H = 0.84 Å, C—H = 1.0, 0.99 and 0.98Å for CH, CH2, and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C or O), where k = 1.5 for OH and CH3 H-atoms, and k = 1.2 for all other H-atoms.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED32 (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the c axis of the crystal packing of the title compound, with the O—H···O hydrogen bonds shown as dashed cyan lines (see Table 1 for details; C-bound H-atoms and the Tetra-ethylammonium cations have been omitted for clarity).
[Figure 3] Fig. 3. A view along the a axis of the crystal packing of the title compound, showing both the O—H···O hydrogen bonds and the C—H···O interactions as dashed cyan lines (see Table 1 for details; C-bound H-atoms not involved in the C—H···O interactions have been omitted for clarity).
Bis(tetraethylammonium) bis(hydrogen L-tartrate) L-tartaric acid monohydrate top
Crystal data top
2C8H20N+·2C4H5O6·C4H6O6·H2OF(000) = 784
Mr = 726.76Dx = 1.329 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 16128 reflections
a = 7.5725 (4) Åθ = 1.5–25.7°
b = 27.7907 (13) ŵ = 0.11 mm1
c = 8.7620 (6) ÅT = 173 K
β = 99.884 (5)°Rod, colourless
V = 1816.55 (18) Å30.45 × 0.32 × 0.25 mm
Z = 2
Data collection top
Stoe IPDS 2
diffractometer
3116 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.072
Graphite monochromatorθmax = 25.7°, θmin = 1.5°
ϕ and ω scansh = 99
20250 measured reflectionsk = 3333
3502 independent reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0336P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3502 reflectionsΔρmax = 0.17 e Å3
469 parametersΔρmin = 0.20 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0045 (10)
Crystal data top
2C8H20N+·2C4H5O6·C4H6O6·H2OV = 1816.55 (18) Å3
Mr = 726.76Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.5725 (4) ŵ = 0.11 mm1
b = 27.7907 (13) ÅT = 173 K
c = 8.7620 (6) Å0.45 × 0.32 × 0.25 mm
β = 99.884 (5)°
Data collection top
Stoe IPDS 2
diffractometer
3116 reflections with I > 2σ(I)
20250 measured reflectionsRint = 0.072
3502 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.17 e Å3
3502 reflectionsΔρmin = 0.20 e Å3
469 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. The water H-atoms were located in difference electron-density maps and refined with O—H distance restraints of 0.84 (2) Å, and Uiso(H) = 1.5 × Ueq(O). The OH and C-bound H-atoms were included in calculated positions and treated as riding atoms: O—H = 0.84 Å, C—H = 1.0, 0.99 and 0.98Å for CH, CH2, and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(C or O), where k = 1.5 for OH and CH3 H-atoms, and k = 1.2 for all other H-atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.8300 (2)0.28144 (6)0.5505 (2)0.0269 (4)
O20.9206 (2)0.23806 (7)0.3631 (2)0.0337 (5)
O30.6051 (2)0.19685 (6)0.27276 (19)0.0251 (4)
H3O0.70270.18180.28380.038*
O40.6211 (2)0.17495 (6)0.5971 (2)0.0255 (4)
H4O0.58790.15020.54530.038*
O50.2590 (2)0.16831 (6)0.4724 (2)0.0267 (4)
O60.2518 (2)0.24709 (6)0.4224 (2)0.0314 (4)
H6O0.14060.24240.40230.047*
C10.8051 (3)0.25215 (8)0.4390 (3)0.0199 (5)
C20.6153 (3)0.23299 (9)0.3861 (3)0.0194 (5)
H20.54070.26060.33840.023*
C30.5318 (3)0.21533 (8)0.5243 (3)0.0188 (5)
H30.54410.24190.60220.023*
C40.3328 (3)0.20709 (9)0.4694 (3)0.0199 (5)
O70.0108 (2)0.03787 (6)0.4425 (2)0.0231 (4)
O80.1122 (2)0.02964 (6)0.3374 (2)0.0342 (5)
O90.1768 (2)0.05712 (6)0.2309 (2)0.0256 (4)
H9O0.09160.07460.24750.038*
O100.2592 (2)0.07004 (6)0.5647 (2)0.0267 (4)
H10O0.28030.09630.52420.040*
O110.5811 (3)0.08248 (6)0.4720 (3)0.0391 (5)
O120.5832 (2)0.00705 (6)0.3876 (3)0.0342 (5)
H12O0.68740.01440.37510.051*
C50.0186 (3)0.00157 (8)0.3764 (3)0.0182 (5)
C60.1979 (3)0.01833 (8)0.3365 (3)0.0187 (5)
H60.25160.00920.28700.022*
C70.3276 (3)0.03191 (8)0.4858 (3)0.0204 (5)
H70.34070.00320.55560.025*
C80.5108 (3)0.04356 (9)0.4477 (3)0.0239 (6)
O130.5634 (2)0.41652 (7)0.4106 (2)0.0291 (4)
O140.7719 (2)0.39729 (6)0.6164 (2)0.0266 (4)
H14O0.83140.41880.58090.040*
O150.5743 (2)0.32771 (6)0.70813 (19)0.0222 (4)
H15O0.65990.31350.67790.033*
O160.4137 (3)0.41234 (7)0.7886 (2)0.0358 (5)
H16O0.41900.44180.76830.054*
O170.1584 (2)0.34469 (7)0.80706 (19)0.0307 (4)
O180.1062 (2)0.33623 (6)0.54942 (19)0.0244 (4)
H18O0.02350.31800.56720.037*
C90.6136 (3)0.39366 (8)0.5289 (3)0.0203 (5)
C100.4884 (3)0.35829 (8)0.5892 (3)0.0189 (5)
H100.42950.33790.50090.023*
C110.3428 (3)0.38693 (8)0.6524 (3)0.0199 (5)
H110.29100.41090.57190.024*
C120.1928 (3)0.35356 (8)0.6810 (3)0.0178 (5)
N10.1498 (3)0.18045 (7)0.9192 (2)0.0216 (4)
C130.0283 (4)0.20263 (11)1.0211 (3)0.0311 (6)
H13A0.02980.17631.07040.037*
H13B0.10340.22101.10490.037*
C140.1157 (4)0.23552 (13)0.9396 (4)0.0462 (8)
H14C0.18620.24821.01460.069*
H14B0.19440.21750.85890.069*
H14A0.06030.26230.89230.069*
C150.2489 (4)0.21890 (9)0.8449 (3)0.0262 (6)
H15A0.32260.20300.77650.031*
H15B0.15970.23930.77880.031*
C160.3694 (4)0.25100 (10)0.9570 (3)0.0343 (6)
H16C0.43190.27360.89910.052*
H16B0.45740.23121.02450.052*
H16A0.29690.26891.02020.052*
C170.0424 (4)0.15163 (10)0.7866 (3)0.0304 (6)
H17A0.04010.17390.72090.036*
H17B0.12650.13860.72210.036*
C180.0661 (4)0.11051 (11)0.8345 (4)0.0457 (8)
H18C0.13270.09490.74190.069*
H18B0.15050.12280.89820.069*
H18A0.01440.08710.89440.069*
C190.2818 (4)0.14840 (10)1.0239 (3)0.0301 (6)
H19A0.34070.16791.11290.036*
H19B0.21340.12261.06550.036*
C200.4256 (4)0.12536 (12)0.9483 (4)0.0461 (8)
H20A0.50180.15050.91530.069*
H20B0.36950.10670.85790.069*
H20C0.49870.10401.02260.069*
N20.9558 (3)0.42249 (8)0.1066 (2)0.0252 (5)
C210.8261 (4)0.38890 (10)0.0071 (3)0.0318 (6)
H21A0.74900.40820.07300.038*
H21B0.89580.36640.04700.038*
C220.7068 (5)0.35979 (12)0.0949 (4)0.0492 (8)
H22C0.62190.34090.02140.074*
H22B0.64070.38160.15260.074*
H22A0.78090.33800.16730.074*
C231.0666 (4)0.44630 (11)0.0008 (3)0.0335 (6)
H23A1.12150.42080.05620.040*
H23B0.98520.46510.07930.040*
C241.2140 (5)0.47937 (12)0.0767 (5)0.0510 (9)
H24C1.27340.49430.00220.076*
H24B1.30170.46070.14840.076*
H24A1.16220.50440.13420.076*
C250.8563 (4)0.45954 (9)0.1868 (3)0.0282 (6)
H25A0.79070.44260.25910.034*
H25B0.94550.48080.24940.034*
C260.7250 (4)0.49045 (10)0.0805 (4)0.0374 (7)
H26C0.67020.51380.14210.056*
H26B0.63150.47000.02220.056*
H26A0.78810.50760.00830.056*
C271.0750 (4)0.39489 (11)0.2343 (3)0.0377 (7)
H27A1.16130.41760.29360.045*
H27B0.99950.38180.30620.045*
C281.1785 (5)0.35398 (12)0.1782 (3)0.0440 (8)
H28C1.25000.33780.26730.066*
H28B1.25800.36660.11060.066*
H28A1.09450.33090.12040.066*
O1W0.9034 (3)0.13191 (8)0.3037 (3)0.0361 (5)
H1WA0.873 (5)0.1078 (16)0.348 (5)0.060 (12)*
H1WB0.985 (6)0.1475 (16)0.370 (5)0.069 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0211 (9)0.0305 (9)0.0308 (10)0.0086 (8)0.0089 (8)0.0131 (8)
O20.0154 (9)0.0414 (11)0.0452 (12)0.0024 (8)0.0077 (8)0.0189 (9)
O30.0180 (9)0.0331 (10)0.0232 (9)0.0021 (7)0.0009 (7)0.0088 (8)
O40.0278 (10)0.0189 (8)0.0260 (9)0.0017 (8)0.0057 (8)0.0017 (7)
O50.0242 (10)0.0206 (9)0.0354 (10)0.0068 (8)0.0060 (8)0.0020 (8)
O60.0118 (9)0.0243 (9)0.0581 (13)0.0007 (8)0.0065 (9)0.0040 (9)
C10.0165 (12)0.0195 (11)0.0235 (12)0.0017 (10)0.0029 (10)0.0003 (10)
C20.0140 (12)0.0211 (12)0.0222 (12)0.0026 (10)0.0004 (10)0.0013 (10)
C30.0174 (12)0.0149 (11)0.0238 (12)0.0002 (10)0.0025 (10)0.0017 (10)
C40.0205 (12)0.0186 (12)0.0219 (12)0.0012 (11)0.0074 (10)0.0040 (10)
O70.0187 (9)0.0225 (9)0.0298 (9)0.0009 (7)0.0090 (7)0.0041 (7)
O80.0159 (9)0.0255 (9)0.0626 (14)0.0045 (8)0.0109 (9)0.0130 (9)
O90.0228 (10)0.0293 (9)0.0260 (9)0.0013 (8)0.0082 (8)0.0094 (7)
O100.0301 (10)0.0242 (9)0.0279 (9)0.0003 (8)0.0115 (8)0.0056 (8)
O110.0245 (10)0.0228 (10)0.0701 (15)0.0060 (8)0.0082 (10)0.0118 (9)
O120.0177 (10)0.0198 (9)0.0682 (14)0.0026 (8)0.0163 (9)0.0094 (9)
C50.0158 (12)0.0180 (12)0.0207 (12)0.0014 (10)0.0030 (9)0.0023 (10)
C60.0169 (13)0.0173 (11)0.0229 (12)0.0022 (10)0.0065 (10)0.0003 (10)
C70.0191 (13)0.0185 (11)0.0234 (13)0.0022 (9)0.0027 (10)0.0011 (9)
C80.0158 (12)0.0194 (13)0.0347 (15)0.0002 (10)0.0009 (11)0.0013 (11)
O130.0290 (10)0.0348 (10)0.0243 (10)0.0056 (8)0.0066 (8)0.0061 (8)
O140.0192 (9)0.0259 (9)0.0342 (10)0.0075 (7)0.0032 (8)0.0052 (8)
O150.0215 (9)0.0196 (8)0.0266 (9)0.0038 (7)0.0076 (7)0.0033 (7)
O160.0255 (10)0.0365 (10)0.0443 (11)0.0035 (9)0.0033 (9)0.0258 (9)
O170.0320 (10)0.0435 (11)0.0180 (9)0.0012 (9)0.0083 (7)0.0029 (8)
O180.0211 (9)0.0311 (9)0.0218 (9)0.0121 (7)0.0063 (7)0.0029 (7)
C90.0201 (13)0.0194 (11)0.0221 (13)0.0008 (10)0.0056 (10)0.0045 (10)
C100.0175 (12)0.0181 (11)0.0209 (12)0.0016 (10)0.0026 (10)0.0042 (9)
C110.0205 (13)0.0163 (11)0.0224 (12)0.0006 (10)0.0024 (10)0.0031 (9)
C120.0155 (12)0.0197 (11)0.0182 (12)0.0048 (10)0.0031 (9)0.0012 (9)
N10.0229 (11)0.0232 (10)0.0184 (10)0.0039 (9)0.0031 (8)0.0020 (8)
C130.0299 (14)0.0409 (15)0.0245 (13)0.0037 (13)0.0102 (11)0.0016 (12)
C140.0382 (18)0.0535 (19)0.0481 (19)0.0074 (16)0.0106 (15)0.0084 (16)
C150.0286 (14)0.0263 (13)0.0241 (13)0.0029 (11)0.0056 (11)0.0057 (10)
C160.0345 (16)0.0290 (14)0.0396 (16)0.0059 (12)0.0062 (13)0.0088 (12)
C170.0288 (15)0.0314 (13)0.0280 (14)0.0014 (12)0.0036 (11)0.0045 (11)
C180.0387 (19)0.0378 (17)0.055 (2)0.0119 (14)0.0069 (16)0.0025 (15)
C190.0285 (15)0.0287 (13)0.0297 (14)0.0048 (12)0.0043 (11)0.0093 (11)
C200.0393 (18)0.0340 (16)0.062 (2)0.0103 (14)0.0003 (16)0.0008 (15)
N20.0307 (12)0.0308 (11)0.0137 (9)0.0042 (10)0.0030 (9)0.0012 (9)
C210.0364 (16)0.0384 (15)0.0208 (13)0.0009 (13)0.0051 (12)0.0062 (12)
C220.061 (2)0.0441 (17)0.0474 (19)0.0139 (16)0.0234 (17)0.0142 (15)
C230.0292 (16)0.0456 (16)0.0279 (14)0.0083 (13)0.0110 (12)0.0082 (12)
C240.042 (2)0.0465 (18)0.069 (2)0.0022 (16)0.0227 (18)0.0028 (17)
C250.0346 (16)0.0313 (14)0.0204 (13)0.0024 (12)0.0096 (11)0.0024 (11)
C260.0419 (18)0.0365 (15)0.0369 (16)0.0082 (13)0.0154 (14)0.0008 (13)
C270.0509 (19)0.0422 (15)0.0169 (13)0.0139 (14)0.0031 (12)0.0046 (12)
C280.054 (2)0.0522 (19)0.0235 (14)0.0226 (17)0.0008 (13)0.0018 (14)
O1W0.0376 (13)0.0253 (10)0.0444 (13)0.0045 (9)0.0041 (10)0.0029 (10)
Geometric parameters (Å, º) top
O1—C11.261 (3)C14—H14B0.9800
O2—C11.249 (3)C14—H14A0.9800
O3—C21.405 (3)C15—C161.512 (4)
O3—H3O0.8400C15—H15A0.9900
O4—C31.406 (3)C15—H15B0.9900
O4—H4O0.8400C16—H16C0.9800
O5—C41.216 (3)C16—H16B0.9800
O6—C41.302 (3)C16—H16A0.9800
O6—H6O0.8400C17—C181.508 (4)
C1—C21.528 (3)C17—H17A0.9900
C2—C31.539 (3)C17—H17B0.9900
C2—H21.0000C18—H18C0.9800
C3—C41.519 (3)C18—H18B0.9800
C3—H31.0000C18—H18A0.9800
O7—C51.246 (3)C19—C201.511 (4)
O8—C51.261 (3)C19—H19A0.9900
O9—C61.411 (3)C19—H19B0.9900
O9—H9O0.8400C20—H20A0.9800
O10—C71.412 (3)C20—H20B0.9800
O10—H10O0.8400C20—H20C0.9800
O11—C81.208 (3)N2—C231.516 (3)
O12—C81.306 (3)N2—C251.517 (3)
O12—H12O0.8400N2—C211.517 (3)
C5—C61.531 (3)N2—C271.519 (3)
C6—C71.541 (3)C21—C221.517 (4)
C6—H61.0000C21—H21A0.9900
C7—C81.517 (4)C21—H21B0.9900
C7—H71.0000C22—H22C0.9800
O13—C91.219 (3)C22—H22B0.9800
O14—C91.311 (3)C22—H22A0.9800
O14—H14O0.8400C23—C241.513 (5)
O15—C101.413 (3)C23—H23A0.9900
O15—H15O0.8400C23—H23B0.9900
O16—C111.411 (3)C24—H24C0.9800
O16—H16O0.8400C24—H24B0.9800
O17—C121.204 (3)C24—H24A0.9800
O18—C121.316 (3)C25—C261.508 (4)
O18—H18O0.8400C25—H25A0.9900
C9—C101.522 (3)C25—H25B0.9900
C10—C111.538 (3)C26—H26C0.9800
C10—H101.0000C26—H26B0.9800
C11—C121.520 (3)C26—H26A0.9800
C11—H111.0000C27—C281.510 (4)
N1—C151.515 (3)C27—H27A0.9900
N1—C131.519 (3)C27—H27B0.9900
N1—C191.523 (3)C28—H28C0.9800
N1—C171.526 (3)C28—H28B0.9800
C13—C141.506 (4)C28—H28A0.9800
C13—H13A0.9900O1W—H1WA0.83 (4)
C13—H13B0.9900O1W—H1WB0.88 (5)
C14—H14C0.9800
C2—O3—H3O109.5H15A—C15—H15B107.5
C3—O4—H4O109.5C15—C16—H16C109.5
C4—O6—H6O109.5C15—C16—H16B109.5
O2—C1—O1126.1 (2)H16C—C16—H16B109.5
O2—C1—C2115.9 (2)C15—C16—H16A109.5
O1—C1—C2117.9 (2)H16C—C16—H16A109.5
O3—C2—C1113.48 (19)H16B—C16—H16A109.5
O3—C2—C3110.34 (19)C18—C17—N1115.5 (2)
C1—C2—C3111.38 (19)C18—C17—H17A108.4
O3—C2—H2107.1N1—C17—H17A108.4
C1—C2—H2107.1C18—C17—H17B108.4
C3—C2—H2107.1N1—C17—H17B108.4
O4—C3—C4113.41 (19)H17A—C17—H17B107.5
O4—C3—C2112.41 (19)C17—C18—H18C109.5
C4—C3—C2108.57 (19)C17—C18—H18B109.5
O4—C3—H3107.4H18C—C18—H18B109.5
C4—C3—H3107.4C17—C18—H18A109.5
C2—C3—H3107.4H18C—C18—H18A109.5
O5—C4—O6124.8 (2)H18B—C18—H18A109.5
O5—C4—C3124.2 (2)C20—C19—N1115.5 (2)
O6—C4—C3111.1 (2)C20—C19—H19A108.4
C6—O9—H9O109.5N1—C19—H19A108.4
C7—O10—H10O109.5C20—C19—H19B108.4
C8—O12—H12O109.5N1—C19—H19B108.4
O7—C5—O8124.9 (2)H19A—C19—H19B107.5
O7—C5—C6119.2 (2)C19—C20—H20A109.5
O8—C5—C6115.8 (2)C19—C20—H20B109.5
O9—C6—C5112.13 (19)H20A—C20—H20B109.5
O9—C6—C7110.67 (19)C19—C20—H20C109.5
C5—C6—C7109.97 (19)H20A—C20—H20C109.5
O9—C6—H6108.0H20B—C20—H20C109.5
C5—C6—H6108.0C23—N2—C25111.3 (2)
C7—C6—H6108.0C23—N2—C21106.50 (19)
O10—C7—C8111.96 (19)C25—N2—C21111.1 (2)
O10—C7—C6111.45 (19)C23—N2—C27110.8 (2)
C8—C7—C6109.8 (2)C25—N2—C27106.34 (19)
O10—C7—H7107.8C21—N2—C27110.9 (2)
C8—C7—H7107.8C22—C21—N2114.8 (2)
C6—C7—H7107.8C22—C21—H21A108.6
O11—C8—O12124.3 (2)N2—C21—H21A108.6
O11—C8—C7123.0 (2)C22—C21—H21B108.6
O12—C8—C7112.7 (2)N2—C21—H21B108.6
C9—O14—H14O109.5H21A—C21—H21B107.5
C10—O15—H15O109.5C21—C22—H22C109.5
C11—O16—H16O109.5C21—C22—H22B109.5
C12—O18—H18O109.5H22C—C22—H22B109.5
O13—C9—O14125.2 (2)C21—C22—H22A109.5
O13—C9—C10120.7 (2)H22C—C22—H22A109.5
O14—C9—C10114.1 (2)H22B—C22—H22A109.5
O15—C10—C9114.16 (19)C24—C23—N2115.5 (2)
O15—C10—C11108.28 (18)C24—C23—H23A108.4
C9—C10—C11108.58 (18)N2—C23—H23A108.4
O15—C10—H10108.6C24—C23—H23B108.4
C9—C10—H10108.6N2—C23—H23B108.4
C11—C10—H10108.6H23A—C23—H23B107.5
O16—C11—C12110.6 (2)C23—C24—H24C109.5
O16—C11—C10111.75 (19)C23—C24—H24B109.5
C12—C11—C10110.23 (18)H24C—C24—H24B109.5
O16—C11—H11108.0C23—C24—H24A109.5
C12—C11—H11108.0H24C—C24—H24A109.5
C10—C11—H11108.0H24B—C24—H24A109.5
O17—C12—O18125.1 (2)C26—C25—N2115.3 (2)
O17—C12—C11124.2 (2)C26—C25—H25A108.4
O18—C12—C11110.68 (19)N2—C25—H25A108.4
C15—N1—C13111.18 (19)C26—C25—H25B108.4
C15—N1—C19110.43 (19)N2—C25—H25B108.4
C13—N1—C19106.50 (19)H25A—C25—H25B107.5
C15—N1—C17106.36 (18)C25—C26—H26C109.5
C13—N1—C17111.3 (2)C25—C26—H26B109.5
C19—N1—C17111.15 (19)H26C—C26—H26B109.5
C14—C13—N1115.5 (2)C25—C26—H26A109.5
C14—C13—H13A108.4H26C—C26—H26A109.5
N1—C13—H13A108.4H26B—C26—H26A109.5
C14—C13—H13B108.4C28—C27—N2114.6 (2)
N1—C13—H13B108.4C28—C27—H27A108.6
H13A—C13—H13B107.5N2—C27—H27A108.6
C13—C14—H14C109.5C28—C27—H27B108.6
C13—C14—H14B109.5N2—C27—H27B108.6
H14C—C14—H14B109.5H27A—C27—H27B107.6
C13—C14—H14A109.5C27—C28—H28C109.5
H14C—C14—H14A109.5C27—C28—H28B109.5
H14B—C14—H14A109.5H28C—C28—H28B109.5
C16—C15—N1115.1 (2)C27—C28—H28A109.5
C16—C15—H15A108.5H28C—C28—H28A109.5
N1—C15—H15A108.5H28B—C28—H28A109.5
C16—C15—H15B108.5H1WA—O1W—H1WB108 (4)
N1—C15—H15B108.5
O2—C1—C2—O38.5 (3)O15—C10—C11—C1267.9 (2)
O1—C1—C2—O3173.5 (2)C9—C10—C11—C12167.62 (19)
O2—C1—C2—C3133.7 (2)O16—C11—C12—O1710.4 (3)
O1—C1—C2—C348.3 (3)C10—C11—C12—O17113.7 (3)
O3—C2—C3—O461.1 (2)O16—C11—C12—O18169.10 (19)
C1—C2—C3—O465.8 (2)C10—C11—C12—O1866.8 (2)
O3—C2—C3—C465.2 (2)C15—N1—C13—C1460.4 (3)
C1—C2—C3—C4167.88 (18)C19—N1—C13—C14179.2 (2)
O4—C3—C4—O57.3 (3)C17—N1—C13—C1457.9 (3)
C2—C3—C4—O5118.4 (2)C13—N1—C15—C1660.4 (3)
O4—C3—C4—O6171.3 (2)C19—N1—C15—C1657.6 (3)
C2—C3—C4—O663.0 (2)C17—N1—C15—C16178.3 (2)
O7—C5—C6—O9165.8 (2)C15—N1—C17—C18179.2 (2)
O8—C5—C6—O913.8 (3)C13—N1—C17—C1859.5 (3)
O7—C5—C6—C770.6 (3)C19—N1—C17—C1859.0 (3)
O8—C5—C6—C7109.8 (2)C15—N1—C19—C2054.8 (3)
O9—C6—C7—O1063.3 (2)C13—N1—C19—C20175.6 (2)
C5—C6—C7—O1061.1 (2)C17—N1—C19—C2063.0 (3)
O9—C6—C7—C861.4 (2)C23—N2—C21—C22177.6 (3)
C5—C6—C7—C8174.21 (18)C25—N2—C21—C2261.1 (3)
O10—C7—C8—O115.5 (4)C27—N2—C21—C2257.0 (3)
C6—C7—C8—O11118.9 (3)C25—N2—C23—C2462.4 (3)
O10—C7—C8—O12174.0 (2)C21—N2—C23—C24176.4 (2)
C6—C7—C8—O1261.6 (3)C27—N2—C23—C2455.7 (3)
O13—C9—C10—O15168.0 (2)C23—N2—C25—C2660.9 (3)
O14—C9—C10—O1513.4 (3)C21—N2—C25—C2657.6 (3)
O13—C9—C10—C1171.1 (3)C27—N2—C25—C26178.4 (2)
O14—C9—C10—C11107.5 (2)C23—N2—C27—C2862.3 (3)
O15—C10—C11—O1655.6 (2)C25—N2—C27—C28176.6 (3)
C9—C10—C11—O1668.9 (2)C21—N2—C27—C2855.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O20.89 (5)2.56 (4)2.995 (3)111 (3)
O1W—H1WB···O5i0.89 (5)2.19 (5)3.015 (3)155 (4)
O3—H3O···O1W0.842.042.868 (3)167
O3—H3O···O20.842.292.645 (2)106
O4—H4O···O50.842.512.778 (2)100
O4—H4O···O110.841.992.790 (2)160
O6—H6O···O2ii0.841.652.485 (2)175
O9—H9O···O1Wii0.842.253.077 (3)169
O9—H9O···O80.842.232.635 (2)110
O10—H10O···O50.842.052.848 (2)158
O10—H10O···O110.842.432.720 (3)101
O14—H14O···O7iii0.841.732.552 (2)164
O15—H15O···O10.842.052.869 (2)166
O16—H16O···O12iii0.842.273.054 (3)156
O18—H18O···O1ii0.841.772.588 (2)165
C2—H2···O61.002.452.852 (3)103
C3—H3···O11.002.542.890 (3)100
C3—H3···O151.002.553.503 (3)158
C7—H7···O13iv1.002.523.396 (3)146
C10—H10···O181.002.562.920 (3)101
C13—H13A···O1Wv0.992.513.419 (4)152
C16—H16B···O3vi0.982.463.378 (3)155
C19—H19A···O3vi0.992.383.275 (3)150
C19—H19B···O9vi0.992.373.294 (3)155
C23—H23A···O17vii0.992.473.420 (3)161
C25—H25A···O130.992.463.419 (3)164
C26—H26A···O9viii0.982.563.482 (4)157
C27—H27B···O18i0.992.493.180 (3)126
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y+1/2, z+1; (iv) x+1, y1/2, z+1; (v) x1, y, z+1; (vi) x, y, z+1; (vii) x+1, y, z1; (viii) x+1, y+1/2, z.

Experimental details

Crystal data
Chemical formula2C8H20N+·2C4H5O6·C4H6O6·H2O
Mr726.76
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)7.5725 (4), 27.7907 (13), 8.7620 (6)
β (°) 99.884 (5)
V3)1816.55 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.45 × 0.32 × 0.25
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
20250, 3502, 3116
Rint0.072
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.064, 1.03
No. of reflections3502
No. of parameters469
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: X-AREA (Stoe & Cie, 2009), X-RED32 (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O20.89 (5)2.56 (4)2.995 (3)111 (3)
O1W—H1WB···O5i0.89 (5)2.19 (5)3.015 (3)155 (4)
O3—H3O···O1W0.842.042.868 (3)167
O4—H4O···O110.841.992.790 (2)160
O6—H6O···O2ii0.841.652.485 (2)175
O9—H9O···O1Wii0.842.253.077 (3)169
O10—H10O···O50.842.052.848 (2)158
O14—H14O···O7iii0.841.732.552 (2)164
O15—H15O···O10.842.052.869 (2)166
O16—H16O···O12iii0.842.273.054 (3)156
O18—H18O···O1ii0.841.772.588 (2)165
C3—H3···O151.002.553.503 (3)158
C7—H7···O13iv1.002.523.396 (3)146
C13—H13A···O1Wv0.992.513.419 (4)152
C16—H16B···O3vi0.982.463.378 (3)155
C19—H19A···O3vi0.992.383.275 (3)150
C19—H19B···O9vi0.992.373.294 (3)155
C23—H23A···O17vii0.992.473.420 (3)161
C25—H25A···O130.992.463.419 (3)164
C26—H26A···O9viii0.982.563.482 (4)157
C27—H27B···O18i0.992.493.180 (3)126
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y+1/2, z+1; (iv) x+1, y1/2, z+1; (v) x1, y, z+1; (vi) x, y, z+1; (vii) x+1, y, z1; (viii) x+1, y+1/2, z.
 

Acknowledgements

HSE thanks the staff of the XRD Application LAB., CSEM, Neuchâtel, for access to the X-ray diffraction equipment.

References

First citationBosshard, Ch., Sutter, K., Preâtre, Ph., Hulliger, J., Floérsheimer, M., Kaatz, P. & Guénter, P. (1995). Organic Nonlinear Optical Materials, Advances in Nonlinear Optics, Vol. 1. Amsterdam: Gordon and Breach.  Google Scholar
First citationCoe, B. J., Hall, J. J., Harris, J. A., Brunschwig, B. S., Coles, S. J. & Hursthouse, M. B. (2005). Acta Cryst. E61, o464–o467.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDega-Szafran, Z., Dutkiewicz, G., Kosturkiewicz, Z. & Szafran, M. (2008). J. Mol. Struct. 889, 286–296.  CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRahman, M. B. A., Jumbri, K., Sirat, K., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, o2343.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1315-o1316
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds