organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-tert-Butyl-3-mesitylpropanamide

aDepartment of Organic Chemistry, Baku State University, Baku, Azerbaijan, and bDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta - Chile
*Correspondence e-mail: ivanbritob@yahoo.com

(Received 18 April 2011; accepted 26 April 2011; online 7 May 2011)

In the title compound, C16H25NO, the N-tert-butyl­propanamide fragment is essentially planar, with the exception of two C atoms of the tert-butyl group (r.m.s. deviation = 0.005 Å), forming a dihedral angle of 84.09 (10)° with the plane of the mesityl fragment (r.m.s. deviation = 0.002 Å). The crystal packing is stabilized by an inter­molecular N—H⋯O hydrogen bond, which links the mol­ecules into chains with graph-set notation C(4) running parallel to the c axis.

Related literature

For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H25NO

  • Mr = 247.37

  • Monoclinic, P 21 /c

  • a = 12.8851 (11) Å

  • b = 13.3441 (11) Å

  • c = 9.4741 (8) Å

  • β = 106.540 (2)°

  • V = 1561.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.987, Tmax = 0.987

  • 11870 measured reflections

  • 3870 independent reflections

  • 1738 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.173

  • S = 1.00

  • 3870 reflections

  • 169 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.83 2.17 2.979 (2) 165
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and PLATON (Spek, 2009)[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Fig. 1 shows the structure of title compound. Bond lengths and angles are unexceptional. The dihedral angle between the mesityl fragment and the C7/C6/C5/O1/N1/C4/C3 plane is 84.09 (10)°. Methyl groups of the benzene ring are into the same plane (r.m.s. deviation = 0.002 Å). In the crystal, molecules are linked by N— H···O interactions into chains with graph-set notation C(4) along [001], Figure 2, Table 1 (Bernstein et al., 1995).

Related literature top

For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A mixture of 0.001 mol of 1-chloro-3-(2,4,6-trimethylphenyl)propan-2-one and 0.001 mol of tert-butylamine was stirred in water in presence of sodium hydroxide (0.003 mol) for 35–40 minutes. The crystals were recrystallized from ethanol solution (Yield 86%, melting point 143°C).1H NMRspectrum, DMSO-d6, δ, p.p.m..: 1.25 (s, 9H, 3CH3), 2.15 (s, 2H, CH2CO),2.25 (s, 9H, 3CH3), 2.75 (t, 2H, CH2Ar), 6.75 (s, 2H, 2CHAr),7.45 (s, 1H, NHCO). 13C NMR spectrum, DMSO-d6, δ, p.p.m..: 19 (2CH3), 21 (CH3), 23(CH2CO), 25 [(CH3)3], 37 (CH2Ar),50 (Ci), 129 (CHAr), 136 (Ci), 137 (Ci),162 (CONH). IR spectrum, ν (cm-1): 3360,3170, 3005, 2928, 2878, 1645,1615, 1470, 1430, 715, 605.

Refinement top

All H-atoms were placed in calculated positions [C—H = 0.93 to 0.97 Å, Uiso(H) =1.2 to 1.5 Ueq(C) and N—H = 0.83 Å, Uiso(H)=1.5 Ueq(N)] and were included in the refinement in the riding model approximation. Due to weak diffracting ability of the crystal the ratio observed/unique reflections is low (45%).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as circles of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure showing the formation of a C(4) chain along [001]. Hydrogen bond shown as dashed lines. Symmetry code: (a) x, 1/2 - y, -1/2 + z.
N-tert-Butyl-3-mesitylpropanamide top
Crystal data top
C16H25NOF(000) = 544
Mr = 247.37Dx = 1.052 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1996 reflections
a = 12.8851 (11) Åθ = 2.3–28.0°
b = 13.3441 (11) ŵ = 0.06 mm1
c = 9.4741 (8) ÅT = 296 K
β = 106.540 (2)°Prism, colourless
V = 1561.6 (2) Å30.20 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3870 independent reflections
Radiation source: fine-focus sealed tube1738 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ and ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1717
Tmin = 0.987, Tmax = 0.987k = 1517
11870 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: difference Fourier map
wR(F2) = 0.173H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0732P)2 + 0.0483P]
where P = (Fo2 + 2Fc2)/3
3870 reflections(Δ/σ)max = 0.001
169 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C16H25NOV = 1561.6 (2) Å3
Mr = 247.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.8851 (11) ŵ = 0.06 mm1
b = 13.3441 (11) ÅT = 296 K
c = 9.4741 (8) Å0.20 × 0.20 × 0.20 mm
β = 106.540 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3870 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1738 reflections with I > 2σ(I)
Tmin = 0.987, Tmax = 0.987Rint = 0.052
11870 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.00Δρmax = 0.15 e Å3
3870 reflectionsΔρmin = 0.14 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13712 (13)0.29736 (13)0.94818 (15)0.0737 (5)
N10.09333 (13)0.20507 (13)0.74037 (17)0.0506 (5)
H1N0.11020.19350.66350.076*
C10.0057 (2)0.1074 (2)0.8929 (3)0.0898 (9)
H1A0.06170.05800.90390.135*
H1B0.06060.07500.89400.135*
H1C0.02630.15450.97270.135*
C20.0933 (2)0.2444 (2)0.7318 (3)0.0853 (8)
H2A0.06680.29420.80650.128*
H2B0.15970.21680.74170.128*
H2C0.10620.27460.63640.128*
C30.0456 (2)0.0878 (2)0.6233 (3)0.0851 (8)
H3A0.00750.03570.63550.128*
H3B0.05290.12180.53160.128*
H3C0.11400.05920.62310.128*
C40.01024 (17)0.16181 (16)0.7488 (2)0.0521 (6)
C50.15762 (17)0.26650 (16)0.8371 (2)0.0510 (5)
C60.25971 (18)0.29603 (19)0.8001 (2)0.0676 (7)
H6A0.24050.32130.70000.081*
H6B0.30400.23680.80390.081*
C70.32616 (18)0.37485 (17)0.9021 (2)0.0607 (6)
H7A0.28260.43470.89770.073*
H7B0.34540.35001.00250.073*
C80.42772 (17)0.40167 (16)0.8626 (2)0.0505 (5)
C90.5242 (2)0.35047 (15)0.9257 (2)0.0570 (6)
C100.61689 (19)0.37656 (17)0.8878 (2)0.0611 (6)
H100.68100.34260.93160.073*
C110.61718 (18)0.45079 (17)0.7879 (3)0.0587 (6)
C120.52139 (19)0.49934 (17)0.7257 (2)0.0630 (6)
H120.51990.54950.65700.076*
C130.42684 (17)0.47697 (17)0.7607 (2)0.0572 (6)
C140.3253 (2)0.5357 (2)0.6890 (3)0.0936 (9)
H14A0.34100.58580.62520.140*
H14B0.29980.56760.76360.140*
H14C0.27060.49120.63260.140*
C150.7201 (2)0.4793 (2)0.7516 (3)0.0929 (9)
H15A0.70260.51860.66310.139*
H15B0.75760.41970.73740.139*
H15C0.76550.51770.83110.139*
C160.5308 (2)0.26788 (19)1.0379 (3)0.0885 (9)
H16A0.60260.24031.06640.133*
H16B0.47970.21620.99540.133*
H16C0.51440.29491.12290.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0738 (12)0.1073 (13)0.0501 (8)0.0259 (10)0.0340 (8)0.0230 (9)
N10.0494 (11)0.0637 (11)0.0448 (9)0.0096 (9)0.0234 (8)0.0049 (9)
C10.088 (2)0.106 (2)0.0798 (17)0.0271 (17)0.0309 (15)0.0263 (16)
C20.0554 (16)0.092 (2)0.112 (2)0.0023 (14)0.0289 (15)0.0023 (16)
C30.0772 (18)0.098 (2)0.0874 (18)0.0387 (16)0.0342 (15)0.0283 (16)
C40.0465 (13)0.0615 (13)0.0528 (12)0.0089 (11)0.0211 (10)0.0006 (11)
C50.0506 (13)0.0637 (14)0.0426 (11)0.0100 (11)0.0193 (10)0.0045 (11)
C60.0587 (15)0.0892 (17)0.0620 (13)0.0250 (13)0.0287 (12)0.0247 (13)
C70.0588 (15)0.0677 (14)0.0581 (13)0.0112 (12)0.0204 (11)0.0143 (12)
C80.0481 (13)0.0538 (12)0.0503 (11)0.0108 (11)0.0151 (10)0.0124 (11)
C90.0636 (16)0.0493 (13)0.0551 (12)0.0051 (12)0.0120 (11)0.0082 (11)
C100.0482 (14)0.0597 (14)0.0708 (15)0.0019 (11)0.0097 (12)0.0091 (13)
C110.0501 (14)0.0606 (14)0.0681 (14)0.0077 (12)0.0211 (11)0.0114 (12)
C120.0674 (17)0.0595 (14)0.0639 (14)0.0038 (13)0.0216 (12)0.0052 (12)
C130.0487 (13)0.0610 (14)0.0592 (13)0.0004 (11)0.0113 (11)0.0035 (12)
C140.0691 (19)0.103 (2)0.101 (2)0.0138 (16)0.0129 (16)0.0256 (18)
C150.0692 (18)0.105 (2)0.116 (2)0.0129 (16)0.0455 (16)0.0076 (18)
C160.095 (2)0.0770 (18)0.0887 (18)0.0019 (16)0.0175 (16)0.0204 (15)
Geometric parameters (Å, º) top
O1—C51.226 (2)C7—H7B0.9700
N1—C51.329 (2)C8—C131.391 (3)
N1—C41.477 (2)C8—C91.395 (3)
N1—H1N0.8310C9—C101.386 (3)
C1—C41.508 (3)C9—C161.517 (3)
C1—H1A0.9600C10—C111.371 (3)
C1—H1B0.9600C10—H100.9300
C1—H1C0.9600C11—C121.370 (3)
C2—C41.513 (3)C11—C151.510 (3)
C2—H2A0.9600C12—C131.383 (3)
C2—H2B0.9600C12—H120.9300
C2—H2C0.9600C13—C141.511 (3)
C3—C41.512 (3)C14—H14A0.9600
C3—H3A0.9600C14—H14B0.9600
C3—H3B0.9600C14—H14C0.9600
C3—H3C0.9600C15—H15A0.9600
C5—C61.507 (3)C15—H15B0.9600
C6—C71.517 (3)C15—H15C0.9600
C6—H6A0.9700C16—H16A0.9600
C6—H6B0.9700C16—H16B0.9600
C7—C81.503 (3)C16—H16C0.9600
C7—H7A0.9700
C5—N1—C4126.81 (16)C8—C7—H7B109.1
C5—N1—H1N116.8C6—C7—H7B109.1
C4—N1—H1N116.1H7A—C7—H7B107.9
C4—C1—H1A109.5C13—C8—C9118.8 (2)
C4—C1—H1B109.5C13—C8—C7120.6 (2)
H1A—C1—H1B109.5C9—C8—C7120.6 (2)
C4—C1—H1C109.5C10—C9—C8119.6 (2)
H1A—C1—H1C109.5C10—C9—C16118.9 (2)
H1B—C1—H1C109.5C8—C9—C16121.4 (2)
C4—C2—H2A109.5C11—C10—C9122.2 (2)
C4—C2—H2B109.5C11—C10—H10118.9
H2A—C2—H2B109.5C9—C10—H10118.9
C4—C2—H2C109.5C12—C11—C10117.4 (2)
H2A—C2—H2C109.5C12—C11—C15121.7 (2)
H2B—C2—H2C109.5C10—C11—C15121.0 (2)
C4—C3—H3A109.5C11—C12—C13122.8 (2)
C4—C3—H3B109.5C11—C12—H12118.6
H3A—C3—H3B109.5C13—C12—H12118.6
C4—C3—H3C109.5C12—C13—C8119.2 (2)
H3A—C3—H3C109.5C12—C13—C14119.3 (2)
H3B—C3—H3C109.5C8—C13—C14121.5 (2)
N1—C4—C1110.16 (18)C13—C14—H14A109.5
N1—C4—C3106.71 (16)C13—C14—H14B109.5
C1—C4—C3109.3 (2)H14A—C14—H14B109.5
N1—C4—C2109.41 (18)C13—C14—H14C109.5
C1—C4—C2110.9 (2)H14A—C14—H14C109.5
C3—C4—C2110.2 (2)H14B—C14—H14C109.5
O1—C5—N1123.68 (19)C11—C15—H15A109.5
O1—C5—C6121.82 (19)C11—C15—H15B109.5
N1—C5—C6114.49 (17)H15A—C15—H15B109.5
C5—C6—C7113.87 (17)C11—C15—H15C109.5
C5—C6—H6A108.8H15A—C15—H15C109.5
C7—C6—H6A108.8H15B—C15—H15C109.5
C5—C6—H6B108.8C9—C16—H16A109.5
C7—C6—H6B108.8C9—C16—H16B109.5
H6A—C6—H6B107.7H16A—C16—H16B109.5
C8—C7—C6112.32 (17)C9—C16—H16C109.5
C8—C7—H7A109.1H16A—C16—H16C109.5
C6—C7—H7A109.1H16B—C16—H16C109.5
C5—N1—C4—C154.9 (3)C7—C8—C9—C161.2 (3)
C5—N1—C4—C3173.5 (2)C8—C9—C10—C110.9 (3)
C5—N1—C4—C267.3 (3)C16—C9—C10—C11179.6 (2)
C4—N1—C5—O11.4 (3)C9—C10—C11—C120.1 (3)
C4—N1—C5—C6178.5 (2)C9—C10—C11—C15178.5 (2)
O1—C5—C6—C76.5 (3)C10—C11—C12—C130.6 (3)
N1—C5—C6—C7173.65 (19)C15—C11—C12—C13177.8 (2)
C5—C6—C7—C8179.5 (2)C11—C12—C13—C80.4 (3)
C6—C7—C8—C1388.1 (2)C11—C12—C13—C14178.8 (2)
C6—C7—C8—C990.9 (2)C9—C8—C13—C120.5 (3)
C13—C8—C9—C101.1 (3)C7—C8—C13—C12179.47 (19)
C7—C8—C9—C10179.89 (18)C9—C8—C13—C14179.6 (2)
C13—C8—C9—C16179.8 (2)C7—C8—C13—C141.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.832.172.979 (2)165
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC16H25NO
Mr247.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)12.8851 (11), 13.3441 (11), 9.4741 (8)
β (°) 106.540 (2)
V3)1561.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.987, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
11870, 3870, 1738
Rint0.052
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.173, 1.00
No. of reflections3870
No. of parameters169
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.14

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.832.172.979 (2)165
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

The authors are grateful to Baku State University for supporting this study. IB thanks the Spanish Research Council (CSIC) for the provision of a free-of-charge license to the Cambridge Structural Database.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT. . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds