metal-organic compounds
Poly[μ3-chlorido-μ2-chloridodichlorido(μ-dimethyl sulfoxide-κ2O:S)(dimethyl sulfoxide-κO)(μ-pyrimidine-κ2N:N′)ruthenium(III)sodium]
aDepartment of Chemistry, Bard College, Annandale-on-Hudson, NY 12504, USA, and bDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
*Correspondence e-mail: canderso@bard.edu
The title complex, [NaRuCl4(C4H4N2)(C2H6OS)2]n, is the sodium salt of monoanionic octahedral [RuIIICl4(pyrimidine)(DMSO)]− in which the sulfur-bound dimethyl sulfoxide (DMSO) and pyrimidine ligand are oriented trans to one another on the RuIII atom. The average of the four Ru—Cl bond lengths is 2.355 (15) Å, and the Ru—S and Ru—N bond lengths are 2.2853 (3) and 2.1165 (11) Å, respectively. The complex forms a chain, with a six-coordinate sodium ion bridging the ruthenium(III) units. The sodium cation is coordinated by cis-chloride ligands on ruthenium [Na—Cl = 2.9576 (7) and 2.6988 (7) Å], chloride and DMSO ligands from the ruthenium complexes related by inversion [Na—Cl and Na—O = 2.8888 (7) and 2.2623 (12) Å, respectively], a nitrogen ligand from the pyrimidine of the tetrachloridoruthenium(III) complex related by the twofold rotation axis [Na—N = 2.5224 (14) Å] and an oxygen-bound DMSO [Na—O = 2.3165 (12) Å].
Related literature
For general background to ruthenium complexes as anti-cancer agents, see: Kostova (2006); Antonarakis & Emadi (2010); Silva (2010). For the synthesis of related complexes and precursors, see: Alessio et al. (1991, 1993); Jaswal et al. (1990). For related structures with the tetrachloro ruthenium (III) motif and electron-withdrawing ligand, see: Alessio et al. (1995); Anderson & Beauchamp (1995). For related multi-nuclear species, see: Herman et al. (2008); Iengo et al. (1999). For a very closely related structure with pyrazine in place of pyrimidine, showing a very similar network bonding, see: Anderson et al. (2007).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811017211/om2427sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811017211/om2427Isup2.hkl
The title complex was prepared by mixing a solution of [Na][RuCl4(DMSO)2] in acetone/DMSO (10:1) with an acetone solution of pyrimidine in fivefold excess. The resulting solution was mixed for several hours and then placed at 5 °C for several days. Large block-like crystals appeared; one was taken for X-ray diffraction studies. The others were used for spectroscopic characterization. For similar spectroscopic results see Anderson et al., (2007). Selected IR (cm-1): 1596 (pyrimidine), 1085 s (DMSO-S), 431 m (Ru-S). Selected 1H NMR: (D2O/p.p.m.): -13.9 (br, DMSO-S), 5.15 (pyrimidine H); -0.85 (br, pyrimidine H).
All non-hydrogen atoms were refined anisotropically. Hydrogen atoms on carbon were included in calculated positions and refined using a riding model at C–H = 0.95 or 0.98 Å and Uiso(H) = 1.2 or 1.5 × Ueq(C) of the aryl and methyl C-atoms, respectively. The extinction parameter (EXTI) refined to zero and was removed from the refinement.
Data collection: APEX2 (Bruker 2007); cell
SAINT (Bruker 2007); data reduction: SAINT (Bruker 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[NaRuCl4(C4H4N2)(C2H6OS)2] | F(000) = 996 |
Mr = 502.21 | Dx = 1.842 Mg m−3 |
Monoclinic, P2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yc | Cell parameters from 9970 reflections |
a = 12.5052 (6) Å | θ = 2.5–30.4° |
b = 10.9917 (5) Å | µ = 1.71 mm−1 |
c = 13.1837 (6) Å | T = 125 K |
β = 91.680 (1)° | Block, orange |
V = 1811.37 (15) Å3 | 0.25 × 0.23 × 0.10 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 5227 independent reflections |
Radiation source: fine-focus sealed tube | 4922 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
ϕ and ω scans | θmax = 30.5°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | h = −17→17 |
Tmin = 0.675, Tmax = 0.848 | k = −15→15 |
25088 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.018 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.045 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0191P)2 + 1.3448P] where P = (Fo2 + 2Fc2)/3 |
5227 reflections | (Δ/σ)max = 0.003 |
185 parameters | Δρmax = 0.61 e Å−3 |
0 restraints | Δρmin = −0.87 e Å−3 |
[NaRuCl4(C4H4N2)(C2H6OS)2] | V = 1811.37 (15) Å3 |
Mr = 502.21 | Z = 4 |
Monoclinic, P2/c | Mo Kα radiation |
a = 12.5052 (6) Å | µ = 1.71 mm−1 |
b = 10.9917 (5) Å | T = 125 K |
c = 13.1837 (6) Å | 0.25 × 0.23 × 0.10 mm |
β = 91.680 (1)° |
Bruker APEXII CCD diffractometer | 5227 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2007) | 4922 reflections with I > 2σ(I) |
Tmin = 0.675, Tmax = 0.848 | Rint = 0.018 |
25088 measured reflections |
R[F2 > 2σ(F2)] = 0.018 | 0 restraints |
wR(F2) = 0.045 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.61 e Å−3 |
5227 reflections | Δρmin = −0.87 e Å−3 |
185 parameters |
Experimental. A suitable crystal was mounted in a nylon loop with Paratone-N cryoprotectant oil and data was collected on a Bruker APEX II CCD platform diffractometer. The structure was solved using direct methods and standard difference map techniques, and was refined by full-matrix least-squares procedures on F2 with SHELXTL Version 6.14 (Sheldrick, 2008). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ru1 | 0.710023 (8) | 0.198037 (9) | 0.478554 (8) | 0.01123 (3) | |
Cl1 | 0.85124 (3) | 0.11358 (3) | 0.38991 (3) | 0.01888 (7) | |
Cl2 | 0.58872 (3) | 0.05284 (3) | 0.41162 (2) | 0.01429 (6) | |
Cl3 | 0.56492 (3) | 0.28961 (3) | 0.56229 (3) | 0.01702 (7) | |
Cl4 | 0.81971 (3) | 0.35246 (3) | 0.54845 (3) | 0.01820 (7) | |
S1 | 0.75569 (3) | 0.07509 (3) | 0.61274 (2) | 0.01419 (6) | |
S2 | 0.15245 (3) | 0.26924 (4) | 0.56476 (3) | 0.02733 (9) | |
Na1 | 0.39260 (5) | 0.17477 (5) | 0.47975 (4) | 0.01674 (11) | |
O1 | 0.72781 (9) | −0.05555 (9) | 0.60442 (8) | 0.0226 (2) | |
O2 | 0.27052 (9) | 0.29182 (10) | 0.56554 (9) | 0.0234 (2) | |
N1 | 0.67216 (9) | 0.30751 (10) | 0.35040 (9) | 0.0143 (2) | |
N2 | 0.63506 (11) | 0.31171 (11) | 0.17229 (9) | 0.0190 (2) | |
C1 | 0.65932 (11) | 0.42887 (13) | 0.35492 (11) | 0.0172 (3) | |
H1B | 0.6663 | 0.4691 | 0.4185 | 0.021* | |
C2 | 0.63608 (12) | 0.49591 (13) | 0.26817 (12) | 0.0209 (3) | |
H2B | 0.6289 | 0.5819 | 0.2706 | 0.025* | |
C3 | 0.62363 (12) | 0.43273 (13) | 0.17765 (11) | 0.0207 (3) | |
H3A | 0.6064 | 0.4767 | 0.1173 | 0.025* | |
C4 | 0.66019 (11) | 0.25468 (13) | 0.25867 (10) | 0.0167 (3) | |
H4A | 0.6706 | 0.1692 | 0.2554 | 0.020* | |
C5 | 0.70393 (15) | 0.12935 (16) | 0.72786 (12) | 0.0282 (3) | |
H5A | 0.7338 | 0.0815 | 0.7846 | 0.042* | |
H5B | 0.6258 | 0.1216 | 0.7256 | 0.042* | |
H5C | 0.7235 | 0.2150 | 0.7371 | 0.042* | |
C6 | 0.89514 (13) | 0.07824 (16) | 0.64379 (13) | 0.0270 (3) | |
H6A | 0.9099 | 0.0267 | 0.7032 | 0.041* | |
H6B | 0.9172 | 0.1620 | 0.6591 | 0.041* | |
H6C | 0.9351 | 0.0478 | 0.5862 | 0.041* | |
C7 | 0.10238 (14) | 0.30545 (16) | 0.44103 (14) | 0.0286 (3) | |
H7A | 0.1303 | 0.2470 | 0.3923 | 0.043* | |
H7B | 0.1252 | 0.3877 | 0.4229 | 0.043* | |
H7C | 0.0241 | 0.3016 | 0.4396 | 0.043* | |
C8 | 0.09779 (13) | 0.39468 (17) | 0.63121 (13) | 0.0280 (3) | |
H8A | 0.1257 | 0.3946 | 0.7015 | 0.042* | |
H8B | 0.0196 | 0.3877 | 0.6307 | 0.042* | |
H8C | 0.1179 | 0.4707 | 0.5980 | 0.042* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ru1 | 0.01237 (5) | 0.01042 (5) | 0.01084 (5) | −0.00154 (3) | −0.00045 (3) | −0.00023 (3) |
Cl1 | 0.01630 (15) | 0.02092 (16) | 0.01953 (15) | 0.00148 (12) | 0.00268 (11) | −0.00202 (12) |
Cl2 | 0.01616 (14) | 0.01303 (13) | 0.01361 (13) | −0.00274 (11) | −0.00093 (10) | −0.00138 (11) |
Cl3 | 0.01559 (14) | 0.01744 (15) | 0.01805 (15) | −0.00118 (11) | 0.00076 (11) | −0.00633 (11) |
Cl4 | 0.01779 (15) | 0.01504 (14) | 0.02153 (16) | −0.00515 (11) | −0.00358 (12) | −0.00077 (12) |
S1 | 0.01623 (15) | 0.01305 (14) | 0.01310 (14) | −0.00307 (11) | −0.00283 (11) | 0.00139 (11) |
S2 | 0.02289 (19) | 0.02494 (19) | 0.0341 (2) | −0.00204 (15) | −0.00019 (15) | 0.00201 (16) |
Na1 | 0.0173 (3) | 0.0158 (3) | 0.0170 (3) | −0.0015 (2) | −0.0024 (2) | −0.0016 (2) |
O1 | 0.0303 (6) | 0.0128 (5) | 0.0239 (5) | −0.0053 (4) | −0.0103 (4) | 0.0034 (4) |
O2 | 0.0188 (5) | 0.0248 (6) | 0.0265 (6) | 0.0019 (4) | −0.0004 (4) | −0.0036 (4) |
N1 | 0.0159 (5) | 0.0127 (5) | 0.0141 (5) | −0.0003 (4) | −0.0005 (4) | 0.0009 (4) |
N2 | 0.0240 (6) | 0.0179 (6) | 0.0152 (6) | 0.0009 (5) | −0.0002 (5) | 0.0027 (4) |
C1 | 0.0183 (6) | 0.0142 (6) | 0.0188 (6) | −0.0015 (5) | −0.0015 (5) | −0.0007 (5) |
C2 | 0.0245 (7) | 0.0137 (6) | 0.0242 (7) | −0.0001 (5) | −0.0026 (6) | 0.0036 (5) |
C3 | 0.0246 (7) | 0.0178 (7) | 0.0195 (7) | 0.0012 (5) | −0.0019 (5) | 0.0062 (5) |
C4 | 0.0217 (7) | 0.0139 (6) | 0.0144 (6) | 0.0000 (5) | 0.0007 (5) | 0.0007 (5) |
C5 | 0.0424 (10) | 0.0282 (8) | 0.0140 (7) | 0.0057 (7) | 0.0034 (6) | 0.0030 (6) |
C6 | 0.0187 (7) | 0.0309 (8) | 0.0309 (8) | −0.0042 (6) | −0.0096 (6) | 0.0104 (7) |
C7 | 0.0231 (8) | 0.0313 (9) | 0.0312 (9) | −0.0011 (6) | −0.0048 (6) | −0.0054 (7) |
C8 | 0.0190 (7) | 0.0344 (9) | 0.0308 (8) | −0.0002 (6) | 0.0039 (6) | −0.0024 (7) |
Ru1—N1 | 2.1165 (11) | N2—C4 | 1.3294 (18) |
Ru1—S1 | 2.2853 (3) | N2—C3 | 1.3400 (19) |
Ru1—Cl1 | 2.3381 (4) | N2—Na1ii | 2.5224 (14) |
Ru1—Cl4 | 2.3532 (3) | C1—C2 | 1.384 (2) |
Ru1—Cl2 | 2.3555 (3) | C1—H1B | 0.9500 |
Ru1—Cl3 | 2.3753 (3) | C2—C3 | 1.386 (2) |
Cl2—Na1i | 2.8888 (7) | C2—H2B | 0.9500 |
Cl2—Na1 | 2.9576 (7) | C3—H3A | 0.9500 |
Cl3—Na1 | 2.6988 (7) | C4—H4A | 0.9500 |
S1—O1 | 1.4811 (11) | C5—H5A | 0.9800 |
S1—C5 | 1.7708 (16) | C5—H5B | 0.9800 |
S1—C6 | 1.7798 (16) | C5—H5C | 0.9800 |
S2—O2 | 1.4969 (12) | C6—H6A | 0.9800 |
S2—C7 | 1.7753 (18) | C6—H6B | 0.9800 |
S2—C8 | 1.7806 (18) | C6—H6C | 0.9800 |
Na1—O1i | 2.2623 (12) | C7—H7A | 0.9800 |
Na1—O2 | 2.3165 (12) | C7—H7B | 0.9800 |
Na1—N2ii | 2.5224 (14) | C7—H7C | 0.9800 |
Na1—Cl2i | 2.8888 (7) | C8—H8A | 0.9800 |
O1—Na1i | 2.2623 (12) | C8—H8B | 0.9800 |
N1—C1 | 1.3451 (17) | C8—H8C | 0.9800 |
N1—C4 | 1.3459 (18) | ||
N1—Ru1—S1 | 177.55 (3) | S2—O2—Na1 | 124.66 (7) |
N1—Ru1—Cl1 | 88.93 (3) | C1—N1—C4 | 117.21 (12) |
S1—Ru1—Cl1 | 88.676 (13) | C1—N1—Ru1 | 123.55 (10) |
N1—Ru1—Cl4 | 90.96 (3) | C4—N1—Ru1 | 119.24 (9) |
S1—Ru1—Cl4 | 89.645 (12) | C4—N2—C3 | 116.47 (13) |
Cl1—Ru1—Cl4 | 92.407 (13) | C4—N2—Na1ii | 115.02 (9) |
N1—Ru1—Cl2 | 87.68 (3) | C3—N2—Na1ii | 128.45 (10) |
S1—Ru1—Cl2 | 91.887 (12) | N1—C1—C2 | 120.92 (13) |
Cl1—Ru1—Cl2 | 91.791 (13) | N1—C1—H1B | 119.5 |
Cl4—Ru1—Cl2 | 175.564 (12) | C2—C1—H1B | 119.5 |
N1—Ru1—Cl3 | 88.51 (3) | C1—C2—C3 | 117.41 (13) |
S1—Ru1—Cl3 | 93.885 (13) | C1—C2—H2B | 121.3 |
Cl1—Ru1—Cl3 | 177.438 (13) | C3—C2—H2B | 121.3 |
Cl4—Ru1—Cl3 | 87.525 (12) | N2—C3—C2 | 122.24 (13) |
Cl2—Ru1—Cl3 | 88.217 (12) | N2—C3—H3A | 118.9 |
Ru1—Cl2—Na1i | 111.055 (16) | C2—C3—H3A | 118.9 |
Ru1—Cl2—Na1 | 96.306 (15) | N2—C4—N1 | 125.70 (13) |
Na1i—Cl2—Na1 | 107.313 (17) | N2—C4—H4A | 117.1 |
Ru1—Cl3—Na1 | 103.076 (17) | N1—C4—H4A | 117.1 |
O1—S1—C5 | 107.39 (8) | S1—C5—H5A | 109.5 |
O1—S1—C6 | 105.24 (7) | S1—C5—H5B | 109.5 |
C5—S1—C6 | 100.18 (9) | H5A—C5—H5B | 109.5 |
O1—S1—Ru1 | 117.58 (4) | S1—C5—H5C | 109.5 |
C5—S1—Ru1 | 112.02 (6) | H5A—C5—H5C | 109.5 |
C6—S1—Ru1 | 112.80 (6) | H5B—C5—H5C | 109.5 |
O2—S2—C7 | 106.88 (8) | S1—C6—H6A | 109.5 |
O2—S2—C8 | 105.14 (7) | S1—C6—H6B | 109.5 |
C7—S2—C8 | 98.53 (8) | H6A—C6—H6B | 109.5 |
O1i—Na1—O2 | 97.03 (5) | S1—C6—H6C | 109.5 |
O1i—Na1—N2ii | 83.22 (4) | H6A—C6—H6C | 109.5 |
O2—Na1—N2ii | 88.83 (5) | H6B—C6—H6C | 109.5 |
O1i—Na1—Cl3 | 168.75 (4) | S2—C7—H7A | 109.5 |
O2—Na1—Cl3 | 94.20 (3) | S2—C7—H7B | 109.5 |
N2ii—Na1—Cl3 | 97.50 (4) | H7A—C7—H7B | 109.5 |
O1i—Na1—Cl2i | 77.56 (3) | S2—C7—H7C | 109.5 |
O2—Na1—Cl2i | 106.49 (4) | H7A—C7—H7C | 109.5 |
N2ii—Na1—Cl2i | 156.63 (4) | H7B—C7—H7C | 109.5 |
Cl3—Na1—Cl2i | 98.81 (2) | S2—C8—H8A | 109.5 |
O1i—Na1—Cl2 | 97.73 (4) | S2—C8—H8B | 109.5 |
O2—Na1—Cl2 | 164.62 (4) | H8A—C8—H8B | 109.5 |
N2ii—Na1—Cl2 | 97.16 (4) | S2—C8—H8C | 109.5 |
Cl3—Na1—Cl2 | 71.032 (17) | H8A—C8—H8C | 109.5 |
Cl2i—Na1—Cl2 | 72.685 (17) | H8B—C8—H8C | 109.5 |
S1—O1—Na1i | 138.58 (7) | ||
N1—Ru1—Cl2—Na1i | 169.07 (4) | Na1i—Cl2—Na1—O2 | 89.29 (15) |
S1—Ru1—Cl2—Na1i | −8.520 (18) | Ru1—Cl2—Na1—N2ii | 87.18 (3) |
Cl1—Ru1—Cl2—Na1i | 80.213 (18) | Na1i—Cl2—Na1—N2ii | −158.42 (4) |
Cl4—Ru1—Cl2—Na1i | −118.67 (16) | Ru1—Cl2—Na1—Cl3 | −8.327 (15) |
Cl3—Ru1—Cl2—Na1i | −102.351 (18) | Na1i—Cl2—Na1—Cl3 | 106.070 (19) |
N1—Ru1—Cl2—Na1 | −79.63 (3) | Ru1—Cl2—Na1—Cl2i | −114.397 (16) |
S1—Ru1—Cl2—Na1 | 102.787 (16) | Na1i—Cl2—Na1—Cl2i | 0.0 |
Cl1—Ru1—Cl2—Na1 | −168.480 (16) | C5—S1—O1—Na1i | 102.49 (12) |
Cl4—Ru1—Cl2—Na1 | −7.36 (16) | C6—S1—O1—Na1i | −151.41 (11) |
Cl3—Ru1—Cl2—Na1 | 8.957 (16) | Ru1—S1—O1—Na1i | −24.88 (13) |
N1—Ru1—Cl3—Na1 | 77.70 (4) | C7—S2—O2—Na1 | −69.98 (10) |
S1—Ru1—Cl3—Na1 | −101.797 (18) | C8—S2—O2—Na1 | −174.02 (8) |
Cl1—Ru1—Cl3—Na1 | 80.2 (3) | O1i—Na1—O2—S2 | 6.47 (9) |
Cl4—Ru1—Cl3—Na1 | 168.727 (18) | N2ii—Na1—O2—S2 | 89.50 (8) |
Cl2—Ru1—Cl3—Na1 | −10.026 (18) | Cl3—Na1—O2—S2 | −173.06 (8) |
N1—Ru1—S1—O1 | −63.0 (8) | Cl2i—Na1—O2—S2 | −72.58 (8) |
Cl1—Ru1—S1—O1 | −74.84 (6) | Cl2—Na1—O2—S2 | −157.17 (10) |
Cl4—Ru1—S1—O1 | −167.26 (6) | S1—Ru1—N1—C1 | −140.4 (7) |
Cl2—Ru1—S1—O1 | 16.91 (6) | Cl1—Ru1—N1—C1 | −128.53 (11) |
Cl3—Ru1—S1—O1 | 105.25 (6) | Cl4—Ru1—N1—C1 | −36.14 (11) |
N1—Ru1—S1—C5 | 171.9 (8) | Cl2—Ru1—N1—C1 | 139.63 (11) |
Cl1—Ru1—S1—C5 | 160.06 (7) | Cl3—Ru1—N1—C1 | 51.36 (11) |
Cl4—Ru1—S1—C5 | 67.64 (7) | S1—Ru1—N1—C4 | 39.4 (8) |
Cl2—Ru1—S1—C5 | −108.20 (7) | Cl1—Ru1—N1—C4 | 51.30 (10) |
Cl3—Ru1—S1—C5 | −19.86 (7) | Cl4—Ru1—N1—C4 | 143.68 (10) |
N1—Ru1—S1—C6 | 59.8 (8) | Cl2—Ru1—N1—C4 | −40.54 (10) |
Cl1—Ru1—S1—C6 | 47.92 (7) | Cl3—Ru1—N1—C4 | −128.82 (10) |
Cl4—Ru1—S1—C6 | −44.49 (7) | C4—N1—C1—C2 | −0.8 (2) |
Cl2—Ru1—S1—C6 | 139.67 (7) | Ru1—N1—C1—C2 | 179.06 (11) |
Cl3—Ru1—S1—C6 | −131.99 (7) | N1—C1—C2—C3 | 1.8 (2) |
Ru1—Cl3—Na1—O1i | 6.4 (2) | C4—N2—C3—C2 | −0.6 (2) |
Ru1—Cl3—Na1—O2 | −175.98 (3) | Na1ii—N2—C3—C2 | 176.46 (11) |
Ru1—Cl3—Na1—N2ii | −86.60 (3) | C1—C2—C3—N2 | −1.1 (2) |
Ru1—Cl3—Na1—Cl2i | 76.60 (2) | C3—N2—C4—N1 | 1.9 (2) |
Ru1—Cl3—Na1—Cl2 | 8.427 (15) | Na1ii—N2—C4—N1 | −175.64 (11) |
Ru1—Cl2—Na1—O1i | 171.27 (3) | C1—N1—C4—N2 | −1.2 (2) |
Na1i—Cl2—Na1—O1i | −74.33 (3) | Ru1—N1—C4—N2 | 178.99 (12) |
Ru1—Cl2—Na1—O2 | −25.10 (15) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [NaRuCl4(C4H4N2)(C2H6OS)2] |
Mr | 502.21 |
Crystal system, space group | Monoclinic, P2/c |
Temperature (K) | 125 |
a, b, c (Å) | 12.5052 (6), 10.9917 (5), 13.1837 (6) |
β (°) | 91.680 (1) |
V (Å3) | 1811.37 (15) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.71 |
Crystal size (mm) | 0.25 × 0.23 × 0.10 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2007) |
Tmin, Tmax | 0.675, 0.848 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 25088, 5227, 4922 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.715 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.018, 0.045, 1.07 |
No. of reflections | 5227 |
No. of parameters | 185 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.61, −0.87 |
Computer programs: APEX2 (Bruker 2007), SAINT (Bruker 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
This work was supported by Bard College. X-ray facilities were provided by the US National Science Foundation (grant No. 0521237 to JMT).
References
Alessio, E., Balducci, G., Calligaris, M., Costa, G., Attia, W. M. & Mestroni, G. (1991). Inorg. Chem. 30, 609–618. CSD CrossRef CAS Web of Science Google Scholar
Alessio, E., Balducci, G., Lutman, A., Mestroni, G., Calligaris, M. & Attia, W. M. (1993). Inorg. Chim. Acta, 203, 205–217. CSD CrossRef CAS Web of Science Google Scholar
Alessio, E., Bolle, M., Milan, B., Mestroni, G., Faleschini, P., Geremia, S. & Calligaris, M. (1995). Inorg. Chem. 34, 4716–4721. CrossRef CAS Google Scholar
Anderson, C. & Beauchamp, A. (1995). Inorg. Chim. Acta, 233, 33–41. CrossRef CAS Google Scholar
Anderson, C. M., Herman, A. & Rochon, F. D. (2007). Polyhedron, 26, 3661–3668. Web of Science CSD CrossRef CAS Google Scholar
Antonarakis, E. S. & Emadi, A. (2010). Cancer Chemother. Pharmacol. 66, 1–9. Web of Science CrossRef CAS PubMed Google Scholar
Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Herman, A., Tanski, J. M., Tibbetts, M. & Anderson, C. M. (2008). Inorg. Chem. 47, 274–280. Web of Science CrossRef PubMed CAS Google Scholar
Iengo, E., Mestroni, G., Geremia, S., Calligaris, M. & Alessio, E. (1999). J. Chem. Soc. Dalton Trans. pp. 3361–3371. Web of Science CSD CrossRef Google Scholar
Jaswal, J. S., Rettig, S. J. & James, B. R. (1990). Can. J. Chem. 68, 1808–1817. CrossRef CAS Web of Science Google Scholar
Kostova, I. (2006). Curr. Med. Chem. 13, 1085–1107. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Silva, D. (2010). Anti-Cancer Agents Med. Chem. 10, 312–323. CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Ruthenium complexes are thought to be good candidates for the next generation of metal-based anti-cancer agents following the very successful platinum complexes whose most famous example is cisplatin; platinum complexes struggle with general toxicity, drug resistance, and lack of water solubility (Kostova, 2006; Antonarakis & Emadi, 2010; Silva, 2010). For synthesis of ruthenium precursors see: Alessio et al. (1991) and Jaswal et al. (1990).
The title complex exhibits a nearly octahedral coordination geometry at ruthenium, and the dimethyl sulfoxide (DMSO) coordinated sodium cation is associated with the complex via cis-chloride ligands (Fig. 1). The sulfur-bound DMSO and pyrimidine ligands are trans, with Ru1—S1 and Ru1—N1 bond distances of 2.2853 (3)Å and 2.117 (1) Å, respectively, and an average Ru1—Cl distance of 2.35 (2) Å. The Ru1—Cl, Ru1—S1 and Ru1—N1 distances are very similar to those found in three related RuCl4(DMSO)-1 structures containing the aromatic nitrogen donor ligand pyrazine, [Na][RuCl4(pyrazine)(DMSO)] (Anderson et al., 2007), Na2[trans,cis,trans-RuIIICl4(DMSO)(µ-pyrazine)]2PtIICl2, and (tetraphenylphospohium)2[trans,trans,trans-RuIIICl4(DMSO)(µ-pyrazine)]2PtIICl2 (Herman et al., 2008). The Ru—Cl bond distances are also similar to other Ru(III) tetrachloro complexes containing electron withdrawing ligands such as CO (Alessio et al., 1995) or nitroimidazole (Anderson & Beauchamp, 1995). The dimeric species Na2[trans,trans-RuIIICl4(DMSO)]2(µ-pyrmidine)] (Iengo et al., 1999) and the monomeric species Na[trans-RuIIICl4(DMSO)(imidazole)] (Alessio et al., 1993) show a similar coordination around the ruthenium centers.
The six-coordinate, distorted octahedral sodium cation acts to bridge the ruthenium complex into an infinite one-dimensional chain (Fig. 2). On each Ru center, cis-chloride ligands coordinate to sodium with Na1—Cl2 and Na1—Cl3 distances of 2.9576 (7)Å and 2.6988 (7) Å, respectively. A centrosymmetric dimer is formed by additional sodium coordination to Cl2i and the DMSO oxygen O1i of the neighboring ruthenium complex, with Na1—Cl2i distance of 2.8888 (7)Å and Na1—O1i distance of 2.262 (1) Å. The dimer is linked into an infinite one-dimensional chain by further coordination of the sodium ion to nitrogen N2ii of the pyrimidine lignd of the ruthenium complex related by the twofold rotation axis with a Na1—N2ii bond distance of 2.522 (1) Å. The final coordination site of the octahedral sodium ion is occupied by a molecule of DMSO, with Na1—O2 length 2.317 (1) Å. This infinite one-dimensional chain with the sodium cation acting as a bridge is similar to the related structure [Na][RuCl4(pyrazine)(DMSO)] (Anderson et al., 2007), the difference being the slight twist observed in the pyrimidine complex due to the meta nitrogen donor atoms as opposed to a more linear case for the pyrazine complex with the para nitrogen donor atoms.