metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m756-m757

Poly[μ3-chlorido-μ2-chloridodi­chlorido(μ-di­methyl sulfoxide-κ2O:S)(di­methyl sulfoxide-κO)(μ-pyrimidine-κ2N:N′)­ruthenium(III)sodium]

aDepartment of Chemistry, Bard College, Annandale-on-Hudson, NY 12504, USA, and bDepartment of Chemistry, Vassar College, Poughkeepsie, NY 12604, USA
*Correspondence e-mail: canderso@bard.edu

(Received 1 May 2011; accepted 6 May 2011; online 14 May 2011)

The title complex, [NaRuCl4(C4H4N2)(C2H6OS)2]n, is the sodium salt of monoanionic octa­hedral [RuIIICl4(pyrimidine)(DMSO)] in which the sulfur-bound dimethyl sulfoxide (DMSO) and pyrimidine ligand are oriented trans to one another on the RuIII atom. The average of the four Ru—Cl bond lengths is 2.355 (15) Å, and the Ru—S and Ru—N bond lengths are 2.2853 (3) and 2.1165 (11) Å, respectively. The complex forms a chain, with a six-coordinate sodium ion bridging the ruthenium(III) units. The sodium cation is coordinated by cis-chloride ligands on ruthenium [Na—Cl = 2.9576 (7) and 2.6988 (7) Å], chloride and DMSO ligands from the ruthenium complexes related by inversion [Na—Cl and Na—O = 2.8888 (7) and 2.2623 (12) Å, respectively], a nitro­gen ligand from the pyrimidine of the tetrachlorido­ruthenium(III) complex related by the twofold rotation axis [Na—N = 2.5224 (14) Å] and an oxygen-bound DMSO [Na—O = 2.3165 (12) Å].

Related literature

For general background to ruthenium complexes as anti-cancer agents, see: Kostova (2006[Kostova, I. (2006). Curr. Med. Chem. 13, 1085-1107.]); Antonarakis & Emadi (2010[Antonarakis, E. S. & Emadi, A. (2010). Cancer Chemother. Pharmacol. 66, 1-9.]); Silva (2010[Silva, D. (2010). Anti-Cancer Agents Med. Chem. 10, 312-323.]). For the synthesis of related complexes and precursors, see: Alessio et al. (1991[Alessio, E., Balducci, G., Calligaris, M., Costa, G., Attia, W. M. & Mestroni, G. (1991). Inorg. Chem. 30, 609-618.], 1993[Alessio, E., Balducci, G., Lutman, A., Mestroni, G., Calligaris, M. & Attia, W. M. (1993). Inorg. Chim. Acta, 203, 205-217.]); Jaswal et al. (1990[Jaswal, J. S., Rettig, S. J. & James, B. R. (1990). Can. J. Chem. 68, 1808-1817.]). For related structures with the tetra­chloro ruthenium (III) motif and electron-withdrawing ligand, see: Alessio et al. (1995[Alessio, E., Bolle, M., Milan, B., Mestroni, G., Faleschini, P., Geremia, S. & Calligaris, M. (1995). Inorg. Chem. 34, 4716-4721.]); Anderson & Beauchamp (1995[Anderson, C. & Beauchamp, A. (1995). Inorg. Chim. Acta, 233, 33-41.]). For related multi-nuclear species, see: Herman et al. (2008[Herman, A., Tanski, J. M., Tibbetts, M. & Anderson, C. M. (2008). Inorg. Chem. 47, 274-280.]); Iengo et al. (1999[Iengo, E., Mestroni, G., Geremia, S., Calligaris, M. & Alessio, E. (1999). J. Chem. Soc. Dalton Trans. pp. 3361-3371.]). For a very closely related structure with pyrazine in place of pyrimidine, showing a very similar network bonding, see: Anderson et al. (2007[Anderson, C. M., Herman, A. & Rochon, F. D. (2007). Polyhedron, 26, 3661-3668.]).

[Scheme 1]

Experimental

Crystal data
  • [NaRuCl4(C4H4N2)(C2H6OS)2]

  • Mr = 502.21

  • Monoclinic, P 2/c

  • a = 12.5052 (6) Å

  • b = 10.9917 (5) Å

  • c = 13.1837 (6) Å

  • β = 91.680 (1)°

  • V = 1811.37 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.71 mm−1

  • T = 125 K

  • 0.25 × 0.23 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.675, Tmax = 0.848

  • 25088 measured reflections

  • 5227 independent reflections

  • 4922 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.045

  • S = 1.07

  • 5227 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.87 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ruthenium complexes are thought to be good candidates for the next generation of metal-based anti-cancer agents following the very successful platinum complexes whose most famous example is cisplatin; platinum complexes struggle with general toxicity, drug resistance, and lack of water solubility (Kostova, 2006; Antonarakis & Emadi, 2010; Silva, 2010). For synthesis of ruthenium precursors see: Alessio et al. (1991) and Jaswal et al. (1990).

The title complex exhibits a nearly octahedral coordination geometry at ruthenium, and the dimethyl sulfoxide (DMSO) coordinated sodium cation is associated with the complex via cis-chloride ligands (Fig. 1). The sulfur-bound DMSO and pyrimidine ligands are trans, with Ru1—S1 and Ru1—N1 bond distances of 2.2853 (3)Å and 2.117 (1) Å, respectively, and an average Ru1—Cl distance of 2.35 (2) Å. The Ru1—Cl, Ru1—S1 and Ru1—N1 distances are very similar to those found in three related RuCl4(DMSO)-1 structures containing the aromatic nitrogen donor ligand pyrazine, [Na][RuCl4(pyrazine)(DMSO)] (Anderson et al., 2007), Na2[trans,cis,trans-RuIIICl4(DMSO)(µ-pyrazine)]2PtIICl2, and (tetraphenylphospohium)2[trans,trans,trans-RuIIICl4(DMSO)(µ-pyrazine)]2PtIICl2 (Herman et al., 2008). The Ru—Cl bond distances are also similar to other Ru(III) tetrachloro complexes containing electron withdrawing ligands such as CO (Alessio et al., 1995) or nitroimidazole (Anderson & Beauchamp, 1995). The dimeric species Na2[trans,trans-RuIIICl4(DMSO)]2(µ-pyrmidine)] (Iengo et al., 1999) and the monomeric species Na[trans-RuIIICl4(DMSO)(imidazole)] (Alessio et al., 1993) show a similar coordination around the ruthenium centers.

The six-coordinate, distorted octahedral sodium cation acts to bridge the ruthenium complex into an infinite one-dimensional chain (Fig. 2). On each Ru center, cis-chloride ligands coordinate to sodium with Na1—Cl2 and Na1—Cl3 distances of 2.9576 (7)Å and 2.6988 (7) Å, respectively. A centrosymmetric dimer is formed by additional sodium coordination to Cl2i and the DMSO oxygen O1i of the neighboring ruthenium complex, with Na1—Cl2i distance of 2.8888 (7)Å and Na1—O1i distance of 2.262 (1) Å. The dimer is linked into an infinite one-dimensional chain by further coordination of the sodium ion to nitrogen N2ii of the pyrimidine lignd of the ruthenium complex related by the twofold rotation axis with a Na1—N2ii bond distance of 2.522 (1) Å. The final coordination site of the octahedral sodium ion is occupied by a molecule of DMSO, with Na1—O2 length 2.317 (1) Å. This infinite one-dimensional chain with the sodium cation acting as a bridge is similar to the related structure [Na][RuCl4(pyrazine)(DMSO)] (Anderson et al., 2007), the difference being the slight twist observed in the pyrimidine complex due to the meta nitrogen donor atoms as opposed to a more linear case for the pyrazine complex with the para nitrogen donor atoms.

Related literature top

For general background to ruthenium complexes as anti-cancer agents, see: Kostova (2006); Antonarakis & Emadi (2010); Silva (2010). For the synthesis of related complexes and precursors, see: Alessio et al. (1991, 1993); Jaswal et al. (1990). For related structures with the tetrachloro ruthenium (III) motif and electron-withdrawing ligand, see: Alessio et al. (1995); Anderson & Beauchamp (1995). For related multi-nuclear species, see: Herman et al. (2008); Iengo et al. (1999). For a very closely related structure with pyrazine in place of pyrimidine, showing a very similar network bonding, see: Anderson et al. (2007).

Experimental top

The title complex was prepared by mixing a solution of [Na][RuCl4(DMSO)2] in acetone/DMSO (10:1) with an acetone solution of pyrimidine in fivefold excess. The resulting solution was mixed for several hours and then placed at 5 °C for several days. Large block-like crystals appeared; one was taken for X-ray diffraction studies. The others were used for spectroscopic characterization. For similar spectroscopic results see Anderson et al., (2007). Selected IR (cm-1): 1596 (pyrimidine), 1085 s (DMSO-S), 431 m (Ru-S). Selected 1H NMR: (D2O/p.p.m.): -13.9 (br, DMSO-S), 5.15 (pyrimidine H); -0.85 (br, pyrimidine H).

Refinement top

All non-hydrogen atoms were refined anisotropically. Hydrogen atoms on carbon were included in calculated positions and refined using a riding model at C–H = 0.95 or 0.98 Å and Uiso(H) = 1.2 or 1.5 × Ueq(C) of the aryl and methyl C-atoms, respectively. The extinction parameter (EXTI) refined to zero and was removed from the refinement.

Computing details top

Data collection: APEX2 (Bruker 2007); cell refinement: SAINT (Bruker 2007); data reduction: SAINT (Bruker 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, with displacement ellipsoids shown at the 50% probability level.
[Figure 2] Fig. 2. A view of the one-dimensional chain with displacement ellipsoids shown at the 50% probability level. Hydrogen atoms have been removed for clarity. [Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) -x + 1, y, -z + 1/2; (iii) x, -y, z + 1/2].
Poly[µ3-chlorido-µ2-chloridodichlorido(µ-dimethyl sulfoxide-κ2O:S)(dimethyl sulfoxide-κO)(µ-pyrimidine- κ2N:N')ruthenium(III)sodium] top
Crystal data top
[NaRuCl4(C4H4N2)(C2H6OS)2]F(000) = 996
Mr = 502.21Dx = 1.842 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 9970 reflections
a = 12.5052 (6) Åθ = 2.5–30.4°
b = 10.9917 (5) ŵ = 1.71 mm1
c = 13.1837 (6) ÅT = 125 K
β = 91.680 (1)°Block, orange
V = 1811.37 (15) Å30.25 × 0.23 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
5227 independent reflections
Radiation source: fine-focus sealed tube4922 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 30.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1717
Tmin = 0.675, Tmax = 0.848k = 1515
25088 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.045H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0191P)2 + 1.3448P]
where P = (Fo2 + 2Fc2)/3
5227 reflections(Δ/σ)max = 0.003
185 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.87 e Å3
Crystal data top
[NaRuCl4(C4H4N2)(C2H6OS)2]V = 1811.37 (15) Å3
Mr = 502.21Z = 4
Monoclinic, P2/cMo Kα radiation
a = 12.5052 (6) ŵ = 1.71 mm1
b = 10.9917 (5) ÅT = 125 K
c = 13.1837 (6) Å0.25 × 0.23 × 0.10 mm
β = 91.680 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5227 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4922 reflections with I > 2σ(I)
Tmin = 0.675, Tmax = 0.848Rint = 0.018
25088 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.045H-atom parameters constrained
S = 1.07Δρmax = 0.61 e Å3
5227 reflectionsΔρmin = 0.87 e Å3
185 parameters
Special details top

Experimental. A suitable crystal was mounted in a nylon loop with Paratone-N cryoprotectant oil and data was collected on a Bruker APEX II CCD platform diffractometer. The structure was solved using direct methods and standard difference map techniques, and was refined by full-matrix least-squares procedures on F2 with SHELXTL Version 6.14 (Sheldrick, 2008).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.710023 (8)0.198037 (9)0.478554 (8)0.01123 (3)
Cl10.85124 (3)0.11358 (3)0.38991 (3)0.01888 (7)
Cl20.58872 (3)0.05284 (3)0.41162 (2)0.01429 (6)
Cl30.56492 (3)0.28961 (3)0.56229 (3)0.01702 (7)
Cl40.81971 (3)0.35246 (3)0.54845 (3)0.01820 (7)
S10.75569 (3)0.07509 (3)0.61274 (2)0.01419 (6)
S20.15245 (3)0.26924 (4)0.56476 (3)0.02733 (9)
Na10.39260 (5)0.17477 (5)0.47975 (4)0.01674 (11)
O10.72781 (9)0.05555 (9)0.60442 (8)0.0226 (2)
O20.27052 (9)0.29182 (10)0.56554 (9)0.0234 (2)
N10.67216 (9)0.30751 (10)0.35040 (9)0.0143 (2)
N20.63506 (11)0.31171 (11)0.17229 (9)0.0190 (2)
C10.65932 (11)0.42887 (13)0.35492 (11)0.0172 (3)
H1B0.66630.46910.41850.021*
C20.63608 (12)0.49591 (13)0.26817 (12)0.0209 (3)
H2B0.62890.58190.27060.025*
C30.62363 (12)0.43273 (13)0.17765 (11)0.0207 (3)
H3A0.60640.47670.11730.025*
C40.66019 (11)0.25468 (13)0.25867 (10)0.0167 (3)
H4A0.67060.16920.25540.020*
C50.70393 (15)0.12935 (16)0.72786 (12)0.0282 (3)
H5A0.73380.08150.78460.042*
H5B0.62580.12160.72560.042*
H5C0.72350.21500.73710.042*
C60.89514 (13)0.07824 (16)0.64379 (13)0.0270 (3)
H6A0.90990.02670.70320.041*
H6B0.91720.16200.65910.041*
H6C0.93510.04780.58620.041*
C70.10238 (14)0.30545 (16)0.44103 (14)0.0286 (3)
H7A0.13030.24700.39230.043*
H7B0.12520.38770.42290.043*
H7C0.02410.30160.43960.043*
C80.09779 (13)0.39468 (17)0.63121 (13)0.0280 (3)
H8A0.12570.39460.70150.042*
H8B0.01960.38770.63070.042*
H8C0.11790.47070.59800.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01237 (5)0.01042 (5)0.01084 (5)0.00154 (3)0.00045 (3)0.00023 (3)
Cl10.01630 (15)0.02092 (16)0.01953 (15)0.00148 (12)0.00268 (11)0.00202 (12)
Cl20.01616 (14)0.01303 (13)0.01361 (13)0.00274 (11)0.00093 (10)0.00138 (11)
Cl30.01559 (14)0.01744 (15)0.01805 (15)0.00118 (11)0.00076 (11)0.00633 (11)
Cl40.01779 (15)0.01504 (14)0.02153 (16)0.00515 (11)0.00358 (12)0.00077 (12)
S10.01623 (15)0.01305 (14)0.01310 (14)0.00307 (11)0.00283 (11)0.00139 (11)
S20.02289 (19)0.02494 (19)0.0341 (2)0.00204 (15)0.00019 (15)0.00201 (16)
Na10.0173 (3)0.0158 (3)0.0170 (3)0.0015 (2)0.0024 (2)0.0016 (2)
O10.0303 (6)0.0128 (5)0.0239 (5)0.0053 (4)0.0103 (4)0.0034 (4)
O20.0188 (5)0.0248 (6)0.0265 (6)0.0019 (4)0.0004 (4)0.0036 (4)
N10.0159 (5)0.0127 (5)0.0141 (5)0.0003 (4)0.0005 (4)0.0009 (4)
N20.0240 (6)0.0179 (6)0.0152 (6)0.0009 (5)0.0002 (5)0.0027 (4)
C10.0183 (6)0.0142 (6)0.0188 (6)0.0015 (5)0.0015 (5)0.0007 (5)
C20.0245 (7)0.0137 (6)0.0242 (7)0.0001 (5)0.0026 (6)0.0036 (5)
C30.0246 (7)0.0178 (7)0.0195 (7)0.0012 (5)0.0019 (5)0.0062 (5)
C40.0217 (7)0.0139 (6)0.0144 (6)0.0000 (5)0.0007 (5)0.0007 (5)
C50.0424 (10)0.0282 (8)0.0140 (7)0.0057 (7)0.0034 (6)0.0030 (6)
C60.0187 (7)0.0309 (8)0.0309 (8)0.0042 (6)0.0096 (6)0.0104 (7)
C70.0231 (8)0.0313 (9)0.0312 (9)0.0011 (6)0.0048 (6)0.0054 (7)
C80.0190 (7)0.0344 (9)0.0308 (8)0.0002 (6)0.0039 (6)0.0024 (7)
Geometric parameters (Å, º) top
Ru1—N12.1165 (11)N2—C41.3294 (18)
Ru1—S12.2853 (3)N2—C31.3400 (19)
Ru1—Cl12.3381 (4)N2—Na1ii2.5224 (14)
Ru1—Cl42.3532 (3)C1—C21.384 (2)
Ru1—Cl22.3555 (3)C1—H1B0.9500
Ru1—Cl32.3753 (3)C2—C31.386 (2)
Cl2—Na1i2.8888 (7)C2—H2B0.9500
Cl2—Na12.9576 (7)C3—H3A0.9500
Cl3—Na12.6988 (7)C4—H4A0.9500
S1—O11.4811 (11)C5—H5A0.9800
S1—C51.7708 (16)C5—H5B0.9800
S1—C61.7798 (16)C5—H5C0.9800
S2—O21.4969 (12)C6—H6A0.9800
S2—C71.7753 (18)C6—H6B0.9800
S2—C81.7806 (18)C6—H6C0.9800
Na1—O1i2.2623 (12)C7—H7A0.9800
Na1—O22.3165 (12)C7—H7B0.9800
Na1—N2ii2.5224 (14)C7—H7C0.9800
Na1—Cl2i2.8888 (7)C8—H8A0.9800
O1—Na1i2.2623 (12)C8—H8B0.9800
N1—C11.3451 (17)C8—H8C0.9800
N1—C41.3459 (18)
N1—Ru1—S1177.55 (3)S2—O2—Na1124.66 (7)
N1—Ru1—Cl188.93 (3)C1—N1—C4117.21 (12)
S1—Ru1—Cl188.676 (13)C1—N1—Ru1123.55 (10)
N1—Ru1—Cl490.96 (3)C4—N1—Ru1119.24 (9)
S1—Ru1—Cl489.645 (12)C4—N2—C3116.47 (13)
Cl1—Ru1—Cl492.407 (13)C4—N2—Na1ii115.02 (9)
N1—Ru1—Cl287.68 (3)C3—N2—Na1ii128.45 (10)
S1—Ru1—Cl291.887 (12)N1—C1—C2120.92 (13)
Cl1—Ru1—Cl291.791 (13)N1—C1—H1B119.5
Cl4—Ru1—Cl2175.564 (12)C2—C1—H1B119.5
N1—Ru1—Cl388.51 (3)C1—C2—C3117.41 (13)
S1—Ru1—Cl393.885 (13)C1—C2—H2B121.3
Cl1—Ru1—Cl3177.438 (13)C3—C2—H2B121.3
Cl4—Ru1—Cl387.525 (12)N2—C3—C2122.24 (13)
Cl2—Ru1—Cl388.217 (12)N2—C3—H3A118.9
Ru1—Cl2—Na1i111.055 (16)C2—C3—H3A118.9
Ru1—Cl2—Na196.306 (15)N2—C4—N1125.70 (13)
Na1i—Cl2—Na1107.313 (17)N2—C4—H4A117.1
Ru1—Cl3—Na1103.076 (17)N1—C4—H4A117.1
O1—S1—C5107.39 (8)S1—C5—H5A109.5
O1—S1—C6105.24 (7)S1—C5—H5B109.5
C5—S1—C6100.18 (9)H5A—C5—H5B109.5
O1—S1—Ru1117.58 (4)S1—C5—H5C109.5
C5—S1—Ru1112.02 (6)H5A—C5—H5C109.5
C6—S1—Ru1112.80 (6)H5B—C5—H5C109.5
O2—S2—C7106.88 (8)S1—C6—H6A109.5
O2—S2—C8105.14 (7)S1—C6—H6B109.5
C7—S2—C898.53 (8)H6A—C6—H6B109.5
O1i—Na1—O297.03 (5)S1—C6—H6C109.5
O1i—Na1—N2ii83.22 (4)H6A—C6—H6C109.5
O2—Na1—N2ii88.83 (5)H6B—C6—H6C109.5
O1i—Na1—Cl3168.75 (4)S2—C7—H7A109.5
O2—Na1—Cl394.20 (3)S2—C7—H7B109.5
N2ii—Na1—Cl397.50 (4)H7A—C7—H7B109.5
O1i—Na1—Cl2i77.56 (3)S2—C7—H7C109.5
O2—Na1—Cl2i106.49 (4)H7A—C7—H7C109.5
N2ii—Na1—Cl2i156.63 (4)H7B—C7—H7C109.5
Cl3—Na1—Cl2i98.81 (2)S2—C8—H8A109.5
O1i—Na1—Cl297.73 (4)S2—C8—H8B109.5
O2—Na1—Cl2164.62 (4)H8A—C8—H8B109.5
N2ii—Na1—Cl297.16 (4)S2—C8—H8C109.5
Cl3—Na1—Cl271.032 (17)H8A—C8—H8C109.5
Cl2i—Na1—Cl272.685 (17)H8B—C8—H8C109.5
S1—O1—Na1i138.58 (7)
N1—Ru1—Cl2—Na1i169.07 (4)Na1i—Cl2—Na1—O289.29 (15)
S1—Ru1—Cl2—Na1i8.520 (18)Ru1—Cl2—Na1—N2ii87.18 (3)
Cl1—Ru1—Cl2—Na1i80.213 (18)Na1i—Cl2—Na1—N2ii158.42 (4)
Cl4—Ru1—Cl2—Na1i118.67 (16)Ru1—Cl2—Na1—Cl38.327 (15)
Cl3—Ru1—Cl2—Na1i102.351 (18)Na1i—Cl2—Na1—Cl3106.070 (19)
N1—Ru1—Cl2—Na179.63 (3)Ru1—Cl2—Na1—Cl2i114.397 (16)
S1—Ru1—Cl2—Na1102.787 (16)Na1i—Cl2—Na1—Cl2i0.0
Cl1—Ru1—Cl2—Na1168.480 (16)C5—S1—O1—Na1i102.49 (12)
Cl4—Ru1—Cl2—Na17.36 (16)C6—S1—O1—Na1i151.41 (11)
Cl3—Ru1—Cl2—Na18.957 (16)Ru1—S1—O1—Na1i24.88 (13)
N1—Ru1—Cl3—Na177.70 (4)C7—S2—O2—Na169.98 (10)
S1—Ru1—Cl3—Na1101.797 (18)C8—S2—O2—Na1174.02 (8)
Cl1—Ru1—Cl3—Na180.2 (3)O1i—Na1—O2—S26.47 (9)
Cl4—Ru1—Cl3—Na1168.727 (18)N2ii—Na1—O2—S289.50 (8)
Cl2—Ru1—Cl3—Na110.026 (18)Cl3—Na1—O2—S2173.06 (8)
N1—Ru1—S1—O163.0 (8)Cl2i—Na1—O2—S272.58 (8)
Cl1—Ru1—S1—O174.84 (6)Cl2—Na1—O2—S2157.17 (10)
Cl4—Ru1—S1—O1167.26 (6)S1—Ru1—N1—C1140.4 (7)
Cl2—Ru1—S1—O116.91 (6)Cl1—Ru1—N1—C1128.53 (11)
Cl3—Ru1—S1—O1105.25 (6)Cl4—Ru1—N1—C136.14 (11)
N1—Ru1—S1—C5171.9 (8)Cl2—Ru1—N1—C1139.63 (11)
Cl1—Ru1—S1—C5160.06 (7)Cl3—Ru1—N1—C151.36 (11)
Cl4—Ru1—S1—C567.64 (7)S1—Ru1—N1—C439.4 (8)
Cl2—Ru1—S1—C5108.20 (7)Cl1—Ru1—N1—C451.30 (10)
Cl3—Ru1—S1—C519.86 (7)Cl4—Ru1—N1—C4143.68 (10)
N1—Ru1—S1—C659.8 (8)Cl2—Ru1—N1—C440.54 (10)
Cl1—Ru1—S1—C647.92 (7)Cl3—Ru1—N1—C4128.82 (10)
Cl4—Ru1—S1—C644.49 (7)C4—N1—C1—C20.8 (2)
Cl2—Ru1—S1—C6139.67 (7)Ru1—N1—C1—C2179.06 (11)
Cl3—Ru1—S1—C6131.99 (7)N1—C1—C2—C31.8 (2)
Ru1—Cl3—Na1—O1i6.4 (2)C4—N2—C3—C20.6 (2)
Ru1—Cl3—Na1—O2175.98 (3)Na1ii—N2—C3—C2176.46 (11)
Ru1—Cl3—Na1—N2ii86.60 (3)C1—C2—C3—N21.1 (2)
Ru1—Cl3—Na1—Cl2i76.60 (2)C3—N2—C4—N11.9 (2)
Ru1—Cl3—Na1—Cl28.427 (15)Na1ii—N2—C4—N1175.64 (11)
Ru1—Cl2—Na1—O1i171.27 (3)C1—N1—C4—N21.2 (2)
Na1i—Cl2—Na1—O1i74.33 (3)Ru1—N1—C4—N2178.99 (12)
Ru1—Cl2—Na1—O225.10 (15)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[NaRuCl4(C4H4N2)(C2H6OS)2]
Mr502.21
Crystal system, space groupMonoclinic, P2/c
Temperature (K)125
a, b, c (Å)12.5052 (6), 10.9917 (5), 13.1837 (6)
β (°) 91.680 (1)
V3)1811.37 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.71
Crystal size (mm)0.25 × 0.23 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.675, 0.848
No. of measured, independent and
observed [I > 2σ(I)] reflections
25088, 5227, 4922
Rint0.018
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.045, 1.07
No. of reflections5227
No. of parameters185
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.61, 0.87

Computer programs: APEX2 (Bruker 2007), SAINT (Bruker 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by Bard College. X-ray facilities were provided by the US National Science Foundation (grant No. 0521237 to JMT).

References

First citationAlessio, E., Balducci, G., Calligaris, M., Costa, G., Attia, W. M. & Mestroni, G. (1991). Inorg. Chem. 30, 609–618.  CSD CrossRef CAS Web of Science Google Scholar
First citationAlessio, E., Balducci, G., Lutman, A., Mestroni, G., Calligaris, M. & Attia, W. M. (1993). Inorg. Chim. Acta, 203, 205–217.  CSD CrossRef CAS Web of Science Google Scholar
First citationAlessio, E., Bolle, M., Milan, B., Mestroni, G., Faleschini, P., Geremia, S. & Calligaris, M. (1995). Inorg. Chem. 34, 4716–4721.  CrossRef CAS Google Scholar
First citationAnderson, C. & Beauchamp, A. (1995). Inorg. Chim. Acta, 233, 33–41.  CrossRef CAS Google Scholar
First citationAnderson, C. M., Herman, A. & Rochon, F. D. (2007). Polyhedron, 26, 3661–3668.  Web of Science CSD CrossRef CAS Google Scholar
First citationAntonarakis, E. S. & Emadi, A. (2010). Cancer Chemother. Pharmacol. 66, 1–9.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHerman, A., Tanski, J. M., Tibbetts, M. & Anderson, C. M. (2008). Inorg. Chem. 47, 274–280.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIengo, E., Mestroni, G., Geremia, S., Calligaris, M. & Alessio, E. (1999). J. Chem. Soc. Dalton Trans. pp. 3361–3371.  Web of Science CSD CrossRef Google Scholar
First citationJaswal, J. S., Rettig, S. J. & James, B. R. (1990). Can. J. Chem. 68, 1808–1817.  CrossRef CAS Web of Science Google Scholar
First citationKostova, I. (2006). Curr. Med. Chem. 13, 1085–1107.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, D. (2010). Anti-Cancer Agents Med. Chem. 10, 312–323.  CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m756-m757
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds