metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m766-m767

A trinuclear Fe–Fe–Ni complex formed by ligand reshuffling

aDepartment of Chemistry, Yeshiva University, 500 West 185th Street, New York, NY 10033, USA, and bDepartment of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
*Correspondence e-mail: jiang@yu.edu

(Received 13 April 2011; accepted 11 May 2011; online 20 May 2011)

The title complex, dicarbonyl-3κ2C-(μ3-3,6-dimethyl-3,6-diaza­octane-1,8-dithiol­ato-1:2:3κ7S:S,N,N′,S′:S,S′)(μ2-3,6-di­methyl-3,6-diaza­octane-1,8-dithiol­ato-1:2κ5S,N,N′,S′:S)-1,2-diiron(II)-3-nickel(0) [Fe2Ni(C8H18N2S2)2(CO)2], is the second example showing M(μ-SR)2Ni0(CO)2 coordination (M = any metal atom). Both FeII ions are five-coordinated in distorted trigonal–bipyramidal geometries by two N atoms and three S atoms. The Ni atom is four-coordinated in a distorted tetra­hedral geometry by two S atoms and two carbonyl ligands. One of the 3,6-dimethyl-3,6-diaza­octane-1,8-dithiol­ate ligands is disordered, the major component having a refined occupancy of 0.873 (2). The Fe⋯Fe distance is 3.0945 (3)Å and the Ni⋯Fe distance is 2.8505 (3) Å.

Related literature

For the structure of [FeII(dsdm)Ni0(CO)3]2 (dsdm = 3,6-dimethyl-3,6-diazaoctane-1,8-dithiolato), see: Bouwman et al. (1999[Bouwman, E., Henderson, R. K., Spek, A. L. & Reedijk, J. (1999). Eur. J. Inorg. Chem. pp. 217-219.]). For the structure of [NiII(N2S2′)Ni0(CO)2] (N2S2′ = 4,7-diazadecane-3,8-dione-1,10-dithiolato), see: Linck et al. (2003[Linck, R. C., Spahn, C. W., Rauchfuss, T. B. & Wilson, S. R. (2003). J. Am. Chem. Soc. 125, 8700-8701.]). For the structure of [FeII(dsdm)]2, see: Hu & Lippard (1974[Hu, W. & Lippard, S. J. (1974). J. Am. Chem. Soc. 96, 2366-2372.]). The synthesis of the starting materials [Et4N][FeII(CN)2(CO)3I] and [NiII(dsdm)] has been described by Jiang et al. (2009[Jiang, J., Maruani, M., Solaimanzadeh, J., Lo, W., Koch, S. A. & Millar, M. (2009). Inorg. Chem. 48, 6359-6361.]) and Turner et al. (1990[Turner, M. A., Driessen, W. L. & Reedijk, J. (1990). Inorg. Chem. 29, 3331-3335.]). For structures of Ni–Fe hydrogenase active sites, see: Fontecilla-Camps et al. (2007[Fontecilla-Camps, J. C., Volbeda, A., Cavazza, C. & Nicolet, Y. (2007). Chem. Rev. 107, 4273-4303.]). Structure checking was performed using PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2Ni(C8H18N2S2)2(CO)2]

  • Mr = 639.16

  • Triclinic, [P \overline 1]

  • a = 8.4051 (3) Å

  • b = 12.7146 (5) Å

  • c = 13.3451 (5) Å

  • α = 70.475 (1)°

  • β = 83.208 (1)°

  • γ = 79.309 (1)°

  • V = 1318.38 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.13 mm−1

  • T = 173 K

  • 0.35 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.774, Tmax = 0.808

  • 41649 measured reflections

  • 6596 independent reflections

  • 5863 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.056

  • S = 1.07

  • 6596 reflections

  • 301 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.84 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We studied the reaction between [NiII(dsdm)] (Turner et al., 1990) and (Et4N)[FeII(CN)2(CO)3I] (Jiang et al., 2009) in methanol solution in an attempt to synthesize a dithiolate bridged Ni-Fe complex [NiII(dsdm)FeII(CN)2(CO)2] to mimic the active site structure of Ni-Fe hydrogenase (Fontecilla-Camps et al., 2007), However, an insoluble material was obtained. Solid state infrared spectroscopy of the material has shown the presence of both CO and CN ligands. This material was then treated with LiHBEt3 in THF to give a black-colored solution. Surprisingly, [FeII(dsdm)]2Ni0(CO)2] (Fig. 1) was isolated upon diffusion of diethyl ether to the black colored solution.

Reshuffling of ligands on [NiII(dsdm)] is not unprecedented. Bouwman has shown that a tetranuclear complex [FeII(dsdm)Ni0(CO)3]2 is isolated by the reaction between [NiII(dsdm)] and K[HFe0(CO)4] in refluxing ethanol (Bouwman et al., 1999). Nickel is reduced by the low oxidation iron species in solution. In our system, a similar reshuffling occured, and nickel was reduced by hydride in THF solution.

This molecule crystallizes in the triclinic space group P-1 with one molecule per asymmetric unit. Part of the molecule is disordered. This disorder can be described as an approximate mirror operation about a plane along N4, N3, S4 and Fe2. The ratio between the two components of this disorder was refined freely, and converged at 0.873 (2). Bond lengths and angles between atoms of the major components of the disorders are determined with significantly higher accuracy than for those between the corresponding atoms of the minor components.

Nevertheless, the structure of [FeII(dsdm)]2Ni0(CO)2] shows several interesting features. It is only the second example of a M(µ-SR)2Ni(CO)2 coordination other than (Et4N)2[NiII(S2N2')Ni0(CO)2] (S2N2' = µ2-4,7-diazadecane-3,8-dione-1,10-dithiolato-N,N',S,S,S',S') made by Rauchfuss (Linck et al., 2003).

The trinuclear Fe-Fe-Ni complex is not symmetric. The Ni(CO)2 unit is bridged by two sulfur atoms from one [FeII(dsdm)] unit. One such sulfur atom forms an additional bond to the adjacent iron. All four sulfur atoms in this molecule are different in their metal-coordination nature. S3 only coordinates to Fe2; S4 bridges between Fe1 and Fe2; S1 bridges between Fe1 and Ni3; S2 bridges among Fe1, Fe2 and Ni3. Even though both [FeII(dsdm)] units are distorted trigonal bipyramidal, their geometries are significantly different. The structure of the non-Ni bridging [Fe(dsdm)] unit is similar to the tetramer, [FeII(dsdm)Ni0(CO)3]2, reported (Bouwman et al., 1999) and the parent [FeII(dsdm)]2 dimer reported by Lippard (Hu and Lippard, 1974). In the non-Ni-bridging [FeII(dsdm)] unit, the axial bonds are much longer than the equatorial bonds, i.e., Fe2-N3 (2.381 (2)Å) > Fe2-N4 (2.160 (2)Å), and Fe2-S4 (2.4511 (4)Å) > Fe2-S3 (2.3122 (4)Å) and Fe2-S2 (2.3919 (4)Å). However, the Ni-bridging [Fe(dsdm)] shows more distorted trigonal bipyramidal geometry. Significantly, the difference between the axial Fe1-N1 (2.241 (2)Å) and the equatorial Fe1-N2 (2.204 (2)Å) is not as substantial.

The Fe-Fe distance is 3.0945 (3)Å, which is similar to that in the tetranuclear FeII(dsdm)Ni0(CO)3]2 and shorter than that in the [FeII(dsdm)]2 dimer. The Ni-Fe distance is 2.8505 (3)Å, which is similar to the Ni-Ni distance in (Et4N)2[Ni(S2N2')Ni(CO)2].

Related literature top

For the structure of [FeII(dsdm)Ni0(CO)3]2, see: Bouwman et al. (1999). For the structure of [NiII(N2S2')Ni0(CO)2], see: Linck et al. (2003). For the structure of [FeII(dsdm)]2, see: Hu & Lippard (1974). The synthesis of the starting materials [Et4N][FeII(CN)2(CO)3I] and [NiII(dsdm)] has been described by Jiang et al. (2009) and Turner et al. (1990). For structures of Ni-Fe hydrogenase active sites, see: Fontecilla-Camps et al. (2007). Structure checking was performed using PLATON (Spek; 2009).

Experimental top

Anhydrous methanol, THF, diethyl ether and LiHBEt3 (1M solution in THF) was purchased from Acros. [NiII(dsdm)] and (Et4N)[FeII(CN)2(CO)3I] were prepared according to published procedure (Turner et al., 1990, Jiang et al., 2009)

To 0.265 g (1.0 mmol) [NiII(dsdm)] dissolved in 10 ml methanol, a solution of 0.449 g (1.00 mmol) [Et4N][FeII(CN)2(CO)3I] in 5 ml methanol was added. The reaction mixture was kept stirring for 2 h and a brown-colored precipitate formed. The precipitate was collected by filtration, washed with 5 ml methanol 3 times and dried under vacuum to afford 0.300 g light-brown colored powder (IR (ATR): 1983, 2036, 2110 cm-1). The identity of this brown powder has not been determined. 0.400 ml LiHBEt3 (1M in THF) was added to 0.086 g of this brown powder suspended in 2 ml THF, and the powders dissolved and the color turned black. The mixture was kept stirring for 2 h, and 6 ml diethyl ether was carefully added. The product, [FeII(dsdm)]2Ni0(CO)2], (0.029 g) was isolated as black needles after 2 days. (IR (THF): 1873, 1906 cm-1)

Refinement top

All hydrogen atoms were included at geometrically calculated positions and refined using a riding model. Isotropic displacement parameters of hydrogen atoms were fixed to 1.2 times the Ueq value of the atoms they are linked to (1.5Ueq for methyl groups). The final structure was checked for missing symmetry using PLATON (Spek, 2009).

Disorder of the molecule was refined with the help of 2 restraints on the bond distances N3-C11B and S4-C14B. In addition, all minor-component atoms were constrained to have identical anisotropic displacement parameters to their respective major-component counterparts. All non-hydrogen atoms were refined anisotropically.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : Ellipsoid plot of [FeII(dsdm)FeII(dsdm)Ni0(CO)2] at 50% probability level. The minor disorder component is omitted for the sake of clarity.
dicarbonyl-3κ2C-(µ3-3,6-dimethyl- 3,6-diazaoctane-1,8-dithiolato- 1:2:3κ7S:S,N,N',S':S, S')(µ2-3,6-dimethyl-3,6-diazaoctane-1,8-dithiolato- 1:2κ5S,N,N',S':S)-1,2-diiron(II)- 3-nickel(0) top
Crystal data top
[Fe2Ni(C8H18N2S2)2(CO)2]Z = 2
Mr = 639.16F(000) = 664
Triclinic, P1Dx = 1.610 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4051 (3) ÅCell parameters from 300 reflections
b = 12.7146 (5) Åθ = 2.5–28.4°
c = 13.3451 (5) ŵ = 2.13 mm1
α = 70.475 (1)°T = 173 K
β = 83.208 (1)°Needle, black
γ = 79.309 (1)°0.35 × 0.10 × 0.10 mm
V = 1318.38 (9) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
6596 independent reflections
Radiation source: fine-focus sealed tube5863 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 28.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1111
Tmin = 0.774, Tmax = 0.808k = 1616
41649 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0257P)2 + 0.7211P]
where P = (Fo2 + 2Fc2)/3
6596 reflections(Δ/σ)max = 0.001
301 parametersΔρmax = 0.84 e Å3
2 restraintsΔρmin = 0.31 e Å3
Crystal data top
[Fe2Ni(C8H18N2S2)2(CO)2]γ = 79.309 (1)°
Mr = 639.16V = 1318.38 (9) Å3
Triclinic, P1Z = 2
a = 8.4051 (3) ÅMo Kα radiation
b = 12.7146 (5) ŵ = 2.13 mm1
c = 13.3451 (5) ÅT = 173 K
α = 70.475 (1)°0.35 × 0.10 × 0.10 mm
β = 83.208 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6596 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
5863 reflections with I > 2σ(I)
Tmin = 0.774, Tmax = 0.808Rint = 0.026
41649 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0222 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.07Δρmax = 0.84 e Å3
6596 reflectionsΔρmin = 0.31 e Å3
301 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.16309 (2)0.133392 (18)0.257975 (16)0.01240 (5)
Fe20.09584 (2)0.348721 (18)0.325379 (16)0.01218 (5)
Ni30.28724 (2)0.242434 (17)0.047760 (16)0.01672 (5)
S10.43299 (4)0.11355 (3)0.18653 (3)0.01652 (8)
S20.10001 (4)0.33301 (3)0.15138 (3)0.01364 (7)
S30.16068 (4)0.39578 (3)0.39741 (3)0.01589 (8)
S40.14979 (5)0.14843 (3)0.43141 (3)0.01533 (8)
C10.4545 (2)0.02863 (14)0.17643 (14)0.0227 (3)
H1A0.51040.02910.10870.027*
H1B0.52070.08100.23250.027*
C20.29216 (19)0.06906 (14)0.18532 (13)0.0200 (3)
H2A0.23770.02950.11990.024*
H2B0.31140.14900.19360.024*
C30.02134 (19)0.07559 (13)0.27173 (13)0.0176 (3)
H3A0.03320.09230.34220.021*
H3B0.03140.14170.24920.021*
C40.07916 (19)0.02363 (13)0.19473 (13)0.0170 (3)
H4A0.03340.03300.12260.020*
H4B0.18890.00820.19870.020*
C50.14768 (18)0.22706 (13)0.12884 (12)0.0158 (3)
H5A0.26370.22970.12830.019*
H5B0.09780.21680.06270.019*
C60.11543 (18)0.33834 (13)0.13483 (12)0.0158 (3)
H6A0.18010.35520.19440.019*
H6B0.14780.39850.07020.019*
C70.2542 (2)0.12185 (14)0.37795 (14)0.0229 (3)
H7A0.18060.11210.43600.034*
H7B0.35590.10040.38300.034*
H7C0.27130.19960.38100.034*
C80.18756 (18)0.12685 (14)0.31805 (12)0.0168 (3)
H8A0.29500.11780.30840.025*
H8B0.19180.19640.33260.025*
H8C0.14330.06480.37670.025*
C90.1930 (2)0.54613 (14)0.32196 (14)0.0213 (3)
H9A0.21530.55640.24930.026*
H9B0.28600.58400.35360.026*
C100.04347 (19)0.59781 (13)0.32169 (13)0.0193 (3)
H10A0.06470.67840.28480.023*
H10B0.02140.58690.39450.023*
C150.0975 (2)0.59951 (14)0.15256 (13)0.0237 (3)
H15A0.10440.67830.13400.036*
H15B0.00190.59110.12930.036*
H15C0.18780.56340.11850.036*
C170.2083 (2)0.18224 (14)0.03214 (13)0.0216 (3)
C180.4093 (2)0.34856 (16)0.02072 (14)0.0274 (4)
C11A0.2515 (4)0.5652 (2)0.3033 (3)0.0152 (6)0.873 (2)
H11A0.23060.63340.32320.018*0.873 (2)
H11B0.33380.57470.24490.018*0.873 (2)
C12A0.3122 (2)0.46365 (15)0.39850 (14)0.0166 (3)0.873 (2)
H12A0.41720.47230.41530.020*0.873 (2)
H12B0.23760.46220.46010.020*0.873 (2)
C13A0.3720 (2)0.26051 (15)0.47315 (14)0.0187 (4)0.873 (2)
H13A0.30390.27220.53360.022*0.873 (2)
H13B0.48350.25930.48640.022*0.873 (2)
C14A0.3555 (3)0.1464 (4)0.4646 (2)0.0190 (7)0.873 (2)
H14A0.37920.08760.53180.023*0.873 (2)
H14B0.43290.12960.41000.023*0.873 (2)
C16A0.4504 (2)0.35148 (16)0.28764 (14)0.0179 (4)0.873 (2)
H16A0.41540.40950.22340.027*0.873 (2)
H16B0.46290.27900.27760.027*0.873 (2)
H16C0.55230.36320.30450.027*0.873 (2)
C11B0.258 (3)0.544 (2)0.317 (3)0.0152 (6)0.127 (2)
H11C0.29670.61540.28010.018*0.127 (2)
H11D0.23270.54040.39070.018*0.127 (2)
C12B0.3875 (15)0.4560 (10)0.3141 (10)0.0166 (3)0.127 (2)
H12C0.48240.46420.34400.020*0.127 (2)
H12D0.41610.45560.24160.020*0.127 (2)
C13B0.4403 (15)0.2509 (10)0.3774 (10)0.0187 (4)0.127 (2)
H13C0.54100.25060.40640.022*0.127 (2)
H13D0.46490.24980.30490.022*0.127 (2)
C14B0.368 (2)0.145 (4)0.444 (3)0.0190 (7)0.127 (2)
H14C0.38460.13050.51840.023*0.127 (2)
H14D0.42850.08090.42430.023*0.127 (2)
C16B0.3161 (15)0.3535 (11)0.4984 (10)0.0179 (4)0.127 (2)
H16D0.42350.34310.52130.027*0.127 (2)
H16E0.26180.29230.54250.027*0.127 (2)
H16F0.25650.42360.50400.027*0.127 (2)
N10.18488 (15)0.05031 (11)0.27614 (10)0.0160 (3)
N20.08327 (15)0.12932 (11)0.21968 (10)0.0137 (2)
N30.10106 (16)0.54665 (11)0.26911 (10)0.0163 (3)
N40.32667 (15)0.35576 (11)0.37691 (10)0.0146 (2)
O10.16438 (17)0.14540 (12)0.08973 (11)0.0326 (3)
O20.4842 (2)0.41629 (15)0.06992 (14)0.0542 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01141 (10)0.01167 (10)0.01369 (10)0.00240 (7)0.00188 (7)0.00282 (8)
Fe20.01255 (10)0.01202 (10)0.01194 (10)0.00203 (8)0.00163 (7)0.00344 (8)
Ni30.01734 (10)0.01883 (11)0.01431 (10)0.00452 (8)0.00068 (7)0.00536 (8)
S10.01209 (16)0.01827 (18)0.01966 (18)0.00310 (13)0.00083 (13)0.00635 (15)
S20.01514 (17)0.01348 (17)0.01239 (16)0.00337 (13)0.00058 (12)0.00372 (13)
S30.01420 (17)0.01595 (18)0.01823 (18)0.00223 (13)0.00011 (13)0.00679 (14)
S40.01799 (17)0.01352 (17)0.01314 (16)0.00435 (13)0.00200 (13)0.00111 (13)
C10.0172 (8)0.0192 (8)0.0312 (9)0.0001 (6)0.0009 (6)0.0099 (7)
C20.0194 (8)0.0162 (8)0.0255 (8)0.0008 (6)0.0006 (6)0.0096 (6)
C30.0189 (7)0.0141 (7)0.0211 (8)0.0060 (6)0.0020 (6)0.0051 (6)
C40.0160 (7)0.0164 (7)0.0216 (8)0.0046 (6)0.0034 (6)0.0081 (6)
C50.0149 (7)0.0174 (7)0.0146 (7)0.0013 (6)0.0042 (5)0.0040 (6)
C60.0153 (7)0.0160 (7)0.0146 (7)0.0002 (5)0.0035 (5)0.0034 (6)
C70.0265 (8)0.0152 (8)0.0243 (8)0.0022 (6)0.0092 (7)0.0009 (6)
C80.0144 (7)0.0192 (8)0.0160 (7)0.0037 (6)0.0007 (5)0.0045 (6)
C90.0194 (8)0.0171 (8)0.0268 (8)0.0013 (6)0.0065 (6)0.0069 (7)
C100.0220 (8)0.0128 (7)0.0230 (8)0.0001 (6)0.0041 (6)0.0059 (6)
C150.0357 (10)0.0173 (8)0.0159 (7)0.0050 (7)0.0054 (7)0.0006 (6)
C170.0215 (8)0.0216 (8)0.0208 (8)0.0032 (6)0.0030 (6)0.0085 (7)
C180.0265 (9)0.0300 (10)0.0227 (8)0.0067 (7)0.0054 (7)0.0054 (7)
C11A0.0210 (8)0.0065 (16)0.0164 (14)0.0054 (9)0.0018 (7)0.0006 (12)
C12A0.0185 (8)0.0157 (8)0.0174 (8)0.0044 (6)0.0033 (6)0.0060 (7)
C13A0.0210 (9)0.0168 (9)0.0174 (8)0.0032 (7)0.0093 (7)0.0012 (7)
C14A0.0208 (9)0.0154 (8)0.0191 (18)0.0020 (8)0.0099 (9)0.0008 (13)
C16A0.0153 (8)0.0186 (9)0.0210 (9)0.0038 (7)0.0010 (6)0.0080 (7)
C11B0.0210 (8)0.0065 (16)0.0164 (14)0.0054 (9)0.0018 (7)0.0006 (12)
C12B0.0185 (8)0.0157 (8)0.0174 (8)0.0044 (6)0.0033 (6)0.0060 (7)
C13B0.0210 (9)0.0168 (9)0.0174 (8)0.0032 (7)0.0093 (7)0.0012 (7)
C14B0.0208 (9)0.0154 (8)0.0191 (18)0.0020 (8)0.0099 (9)0.0008 (13)
C16B0.0153 (8)0.0186 (9)0.0210 (9)0.0038 (7)0.0010 (6)0.0080 (7)
N10.0151 (6)0.0137 (6)0.0184 (6)0.0022 (5)0.0025 (5)0.0038 (5)
N20.0141 (6)0.0132 (6)0.0141 (6)0.0027 (5)0.0017 (5)0.0040 (5)
N30.0210 (6)0.0133 (6)0.0145 (6)0.0033 (5)0.0028 (5)0.0033 (5)
N40.0150 (6)0.0131 (6)0.0153 (6)0.0029 (5)0.0017 (5)0.0035 (5)
O10.0367 (7)0.0340 (7)0.0341 (7)0.0055 (6)0.0133 (6)0.0223 (6)
O20.0591 (11)0.0505 (10)0.0465 (10)0.0323 (9)0.0199 (8)0.0022 (8)
Geometric parameters (Å, º) top
Fe1—N22.2044 (12)C8—H8C0.9600
Fe1—N12.2408 (13)C9—C101.521 (2)
Fe1—S12.3570 (4)C9—H9A0.9700
Fe1—S42.3734 (4)C9—H9B0.9700
Fe1—S22.4519 (4)C10—N31.484 (2)
Fe1—Ni32.8505 (3)C10—H10A0.9700
Fe1—Fe23.0945 (3)C10—H10B0.9700
Fe2—N42.1601 (13)C15—N31.475 (2)
Fe2—S32.3122 (4)C15—H15A0.9600
Fe2—N32.3809 (13)C15—H15B0.9600
Fe2—S22.3919 (4)C15—H15C0.9600
Fe2—S42.4511 (4)C17—O11.148 (2)
Ni3—C171.7506 (17)C18—O21.138 (2)
Ni3—C181.7821 (18)C11A—N31.477 (3)
Ni3—S12.3193 (4)C11A—C12A1.535 (3)
Ni3—S22.3648 (4)C11A—H11A0.9700
S1—C11.8316 (17)C11A—H11B0.9700
S2—C61.8361 (15)C12A—N41.474 (2)
S3—C91.8240 (17)C12A—H12A0.9700
S4—C14A1.829 (3)C12A—H12B0.9700
S4—C14B1.851 (19)C13A—N41.472 (2)
C1—C21.523 (2)C13A—C14A1.525 (5)
C1—H1A0.9700C13A—H13A0.9700
C1—H1B0.9700C13A—H13B0.9700
C2—N11.481 (2)C14A—H14A0.9700
C2—H2A0.9700C14A—H14B0.9700
C2—H2B0.9700C16A—N41.494 (2)
C3—N11.481 (2)C16A—H16A0.9600
C3—C41.518 (2)C16A—H16B0.9600
C3—H3A0.9700C16A—H16C0.9600
C3—H3B0.9700C11B—C12B1.42 (3)
C4—N21.4823 (19)C11B—N31.523 (18)
C4—H4A0.9700C11B—H11C0.9700
C4—H4B0.9700C11B—H11D0.9700
C5—N21.4851 (19)C12B—N41.420 (12)
C5—C61.518 (2)C12B—H12C0.9700
C5—H5A0.9700C12B—H12D0.9700
C5—H5B0.9700C13B—N41.488 (13)
C6—H6A0.9700C13B—C14B1.54 (4)
C6—H6B0.9700C13B—H13C0.9700
C7—N11.476 (2)C13B—H13D0.9700
C7—H7A0.9600C14B—H14C0.9700
C7—H7B0.9600C14B—H14D0.9700
C7—H7C0.9600C16B—N41.604 (12)
C8—N21.4843 (19)C16B—H16D0.9600
C8—H8A0.9600C16B—H16E0.9600
C8—H8B0.9600C16B—H16F0.9600
N2—Fe1—N180.24 (5)H9A—C9—H9B108.1
N2—Fe1—S1139.76 (3)N3—C10—C9111.84 (13)
N1—Fe1—S184.02 (3)N3—C10—H10A109.2
N2—Fe1—S4108.57 (3)C9—C10—H10A109.2
N1—Fe1—S4107.46 (4)N3—C10—H10B109.2
S1—Fe1—S4111.447 (15)C9—C10—H10B109.2
N2—Fe1—S282.61 (3)H10A—C10—H10B107.9
N1—Fe1—S2150.54 (4)N3—C15—H15A109.5
S1—Fe1—S294.015 (15)N3—C15—H15B109.5
S4—Fe1—S2100.626 (14)H15A—C15—H15B109.5
N2—Fe1—Ni398.29 (3)N3—C15—H15C109.5
N1—Fe1—Ni3106.94 (3)H15A—C15—H15C109.5
S1—Fe1—Ni351.843 (11)H15B—C15—H15C109.5
S4—Fe1—Ni3139.189 (13)O1—C17—Ni3175.39 (16)
S2—Fe1—Ni352.316 (10)O2—C18—Ni3175.96 (19)
N2—Fe1—Fe299.68 (3)N3—C11A—C12A109.62 (19)
N1—Fe1—Fe2157.78 (3)N3—C11A—H11A109.7
S1—Fe1—Fe2108.341 (13)C12A—C11A—H11A109.7
S4—Fe1—Fe251.214 (11)N3—C11A—H11B109.7
S2—Fe1—Fe249.442 (10)C12A—C11A—H11B109.7
Ni3—Fe1—Fe295.102 (8)H11A—C11A—H11B108.2
N4—Fe2—S3128.04 (4)N4—C12A—C11A112.07 (19)
N4—Fe2—N377.79 (5)N4—C12A—H12A109.2
S3—Fe2—N384.35 (3)C11A—C12A—H12A109.2
N4—Fe2—S2115.98 (4)N4—C12A—H12B109.2
S3—Fe2—S2114.298 (15)C11A—C12A—H12B109.2
N3—Fe2—S296.66 (3)H12A—C12A—H12B107.9
N4—Fe2—S484.21 (4)N4—C13A—C14A113.18 (18)
S3—Fe2—S499.308 (15)N4—C13A—H13A108.9
N3—Fe2—S4159.44 (3)C14A—C13A—H13A108.9
S2—Fe2—S4100.131 (14)N4—C13A—H13B108.9
N4—Fe2—Fe1103.49 (3)C14A—C13A—H13B108.9
S3—Fe2—Fe1117.732 (13)H13A—C13A—H13B107.8
N3—Fe2—Fe1145.50 (3)C13A—C14A—S4110.2 (3)
S2—Fe2—Fe151.154 (10)C13A—C14A—H14A109.6
S4—Fe2—Fe149.007 (10)S4—C14A—H14A109.6
C17—Ni3—C18115.76 (8)C13A—C14A—H14B109.6
C17—Ni3—S1114.68 (6)S4—C14A—H14B109.6
C18—Ni3—S1107.23 (6)H14A—C14A—H14B108.1
C17—Ni3—S2117.38 (5)N4—C16A—H16A109.5
C18—Ni3—S2102.18 (6)N4—C16A—H16B109.5
S1—Ni3—S297.362 (15)N4—C16A—H16C109.5
C17—Ni3—Fe1104.28 (6)C12B—C11B—N3118 (2)
C18—Ni3—Fe1139.94 (6)C12B—C11B—H11C107.9
S1—Ni3—Fe153.046 (11)N3—C11B—H11C107.9
S2—Ni3—Fe155.140 (11)C12B—C11B—H11D107.9
C1—S1—Ni3109.86 (6)N3—C11B—H11D107.9
C1—S1—Fe1100.08 (5)H11C—C11B—H11D107.2
Ni3—S1—Fe175.111 (13)C11B—C12B—N4104.5 (15)
C6—S2—Ni3116.05 (5)C11B—C12B—H12C110.9
C6—S2—Fe2102.65 (5)N4—C12B—H12C110.9
Ni3—S2—Fe2134.701 (17)C11B—C12B—H12D110.9
C6—S2—Fe198.77 (5)N4—C12B—H12D110.9
Ni3—S2—Fe172.544 (12)H12C—C12B—H12D108.9
Fe2—S2—Fe179.404 (13)N4—C13B—C14B111.5 (14)
C9—S3—Fe298.25 (6)N4—C13B—H13C109.3
C14A—S4—C14B9.0 (10)C14B—C13B—H13C109.3
C14A—S4—Fe1108.34 (8)N4—C13B—H13D109.3
C14B—S4—Fe199.3 (10)C14B—C13B—H13D109.3
C14A—S4—Fe297.46 (16)H13C—C13B—H13D108.0
C14B—S4—Fe296.0 (13)C13B—C14B—S4116 (2)
Fe1—S4—Fe279.779 (13)C13B—C14B—H14C108.2
C2—C1—S1112.85 (11)S4—C14B—H14C108.2
C2—C1—H1A109.0C13B—C14B—H14D108.2
S1—C1—H1A109.0S4—C14B—H14D108.2
C2—C1—H1B109.0H14C—C14B—H14D107.3
S1—C1—H1B109.0N4—C16B—H16D109.5
H1A—C1—H1B107.8N4—C16B—H16E109.5
N1—C2—C1112.68 (13)H16D—C16B—H16E109.5
N1—C2—H2A109.1N4—C16B—H16F109.5
C1—C2—H2A109.1H16D—C16B—H16F109.5
N1—C2—H2B109.1H16E—C16B—H16F109.5
C1—C2—H2B109.1C7—N1—C3109.93 (13)
H2A—C2—H2B107.8C7—N1—C2110.37 (13)
N1—C3—C4110.94 (12)C3—N1—C2110.25 (12)
N1—C3—H3A109.5C7—N1—Fe1111.07 (10)
C4—C3—H3A109.5C3—N1—Fe1108.42 (9)
N1—C3—H3B109.5C2—N1—Fe1106.74 (9)
C4—C3—H3B109.5C4—N2—C8110.02 (12)
H3A—C3—H3B108.0C4—N2—C5109.08 (12)
N2—C4—C3111.19 (12)C8—N2—C5110.03 (12)
N2—C4—H4A109.4C4—N2—Fe1107.80 (9)
C3—C4—H4A109.4C8—N2—Fe1105.61 (9)
N2—C4—H4B109.4C5—N2—Fe1114.21 (9)
C3—C4—H4B109.4C15—N3—C11A108.35 (18)
H4A—C4—H4B108.0C15—N3—C10109.56 (13)
N2—C5—C6112.18 (12)C11A—N3—C10110.6 (2)
N2—C5—H5A109.2C15—N3—C11B115.6 (14)
C6—C5—H5A109.2C11A—N3—C11B10.1 (12)
N2—C5—H5B109.2C10—N3—C11B112.4 (14)
C6—C5—H5B109.2C15—N3—Fe2112.91 (10)
H5A—C5—H5B107.9C11A—N3—Fe2108.45 (12)
C5—C6—S2111.27 (10)C10—N3—Fe2107.01 (9)
C5—C6—H6A109.4C11B—N3—Fe298.7 (11)
S2—C6—H6A109.4C12B—N4—C13A136.8 (5)
C5—C6—H6B109.4C12B—N4—C12A51.1 (5)
S2—C6—H6B109.4C13A—N4—C12A110.12 (13)
H6A—C6—H6B108.0C12B—N4—C13B113.3 (7)
N1—C7—H7A109.5C13A—N4—C13B55.2 (5)
N1—C7—H7B109.5C12A—N4—C13B143.5 (5)
H7A—C7—H7B109.5C12B—N4—C16A60.8 (5)
N1—C7—H7C109.5C13A—N4—C16A109.72 (13)
H7A—C7—H7C109.5C12A—N4—C16A110.66 (13)
H7B—C7—H7C109.5C13B—N4—C16A57.7 (5)
N2—C8—H8A109.5C12B—N4—C16B106.9 (7)
N2—C8—H8B109.5C13A—N4—C16B50.8 (5)
H8A—C8—H8B109.5C12A—N4—C16B61.5 (5)
N2—C8—H8C109.5C13B—N4—C16B103.5 (7)
H8A—C8—H8C109.5C16A—N4—C16B139.9 (4)
H8B—C8—H8C109.5C12B—N4—Fe2111.3 (5)
C10—C9—S3110.20 (11)C13A—N4—Fe2111.61 (10)
C10—C9—H9A109.6C12A—N4—Fe2107.49 (10)
S3—C9—H9A109.6C13B—N4—Fe2109.0 (5)
C10—C9—H9B109.6C16A—N4—Fe2107.19 (10)
S3—C9—H9B109.6C16B—N4—Fe2112.6 (4)

Experimental details

Crystal data
Chemical formula[Fe2Ni(C8H18N2S2)2(CO)2]
Mr639.16
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)8.4051 (3), 12.7146 (5), 13.3451 (5)
α, β, γ (°)70.475 (1), 83.208 (1), 79.309 (1)
V3)1318.38 (9)
Z2
Radiation typeMo Kα
µ (mm1)2.13
Crystal size (mm)0.35 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.774, 0.808
No. of measured, independent and
observed [I > 2σ(I)] reflections
41649, 6596, 5863
Rint0.026
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.056, 1.07
No. of reflections6596
No. of parameters301
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 0.31

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), publCIF (Westrip, 2010).

 

Acknowledgements

This research was supported by Yeshiva University and the Petroleum Research Fund (UNI No. 49424).

References

First citationBouwman, E., Henderson, R. K., Spek, A. L. & Reedijk, J. (1999). Eur. J. Inorg. Chem. pp. 217–219.  CrossRef Google Scholar
First citationBruker (2003). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFontecilla-Camps, J. C., Volbeda, A., Cavazza, C. & Nicolet, Y. (2007). Chem. Rev. 107, 4273–4303.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHu, W. & Lippard, S. J. (1974). J. Am. Chem. Soc. 96, 2366–2372.  CrossRef CAS Google Scholar
First citationJiang, J., Maruani, M., Solaimanzadeh, J., Lo, W., Koch, S. A. & Millar, M. (2009). Inorg. Chem. 48, 6359–6361.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLinck, R. C., Spahn, C. W., Rauchfuss, T. B. & Wilson, S. R. (2003). J. Am. Chem. Soc. 125, 8700–8701.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. A., Driessen, W. L. & Reedijk, J. (1990). Inorg. Chem. 29, 3331–3335.  CSD CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m766-m767
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds