organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

21-(4-Methyl­phenyl­sulfon­yl)-4,7,13,16-tetra­oxa-1,10,21-tri­aza­bi­cyclo­[8.8.5]tri­cosane-19,23-dione: an N-tosyl­ated macrobicyclic dilactam

aUniversity of Oklahoma, Department of Chemistry and Biochemistry, 101 Stephenson Pkwy, Norman, OK 73019-5251, USA
*Correspondence e-mail: rwtaylor@ou.edu

(Received 29 April 2011; accepted 17 May 2011; online 28 May 2011)

The macrobicyclic title compound, C23H35N3O8S, contains two tertiary amide bridgehead N atoms and a toluene­sulfonamide N atom in the center of the five-atom bridging strand. The mol­ecule has a central cavity that is defined by the 18-membered ring identified by the N2O4 donor atom set and two 15-membered rings with N3O2 donor atom sets. The toluene­sulfonamide N atom adopts an exo orientation with respect to the central cavity, and the tosyl group is oriented on one side of the aza-bridging strand that connects the bridgehead N atoms.

Related literature

For general background to bicyclic dilactams as cation receptors, see: Hourdakis & Popov (1977[Hourdakis, A. & Popov, A. I. (1977). J. Solution Chem. 6, 299-307.]); Tümmler et al. (1977[Tümmler, B., Maass, G., Weber, E., Wehner, W. & Vögtle, F. (1977). J. Am. Chem. Soc. 99, 4683-4690.]); Buschmann, (1986[Buschmann, H.-J. (1986). Inorg. Chim. Acta, 120, 125-129.]); Pietraszkiewicz et al. (1992[Pietraszkiewicz, M., Gasiorowski, R., Brzózka, Z. & Wróblewski, W. (1992). J. Inclusion Phenom. Macrocyclic Chem. 14, 237-245.]); Wanichacheva et al. (2006a[Wanichacheva, N., Benco, J. S., Lambert, C. R. & McGimpsey, W. G. (2006a). Photochem. Photobiol. 82, 268-273.],b[Wanichacheva, N., Soto, E. R., Lambert, C. R. & McGimpsey, W. G. (2006b). Anal. Chem. 78, 7132-7137.]). For related structures, see: Fields et al. (1986[Fields, R. E., Heeg, M. J. & Taylor, R. W. (1986). Acta Cryst. C42, 114-116.]); Tarnowska et al. (2004[Tarnowska, A., Jarosz, M. & Jurczak, J. (2004). Synthesis, pp. 369-372.]). For the synthesis, see: Lehn & Montavon (1976[Lehn, J.-M. & Montavon, F. (1976). Helv. Chim. Acta, 59, 1566-1583.], 1978[Lehn, J.-M. & Montavon, F. (1978). Helv. Chim. Acta, 61, 67-82.]); Lehn et al. (1977[Lehn, J.-M., Simon, J. & Wagner, J. (1977). Nouv. J. Chim. 1, 77-84.]); Frère & Gramain (1982[Frère, Y. & Gramain, P. (1982). Makromol. Chem. 183, 2163-2172.]); Pietraszkiewicz et al. (1992[Pietraszkiewicz, M., Gasiorowski, R., Brzózka, Z. & Wróblewski, W. (1992). J. Inclusion Phenom. Macrocyclic Chem. 14, 237-245.]); Wanichacheva et al. (2006a[Wanichacheva, N., Benco, J. S., Lambert, C. R. & McGimpsey, W. G. (2006a). Photochem. Photobiol. 82, 268-273.],b[Wanichacheva, N., Soto, E. R., Lambert, C. R. & McGimpsey, W. G. (2006b). Anal. Chem. 78, 7132-7137.]).

[Scheme 1]

Experimental

Crystal data
  • C23H35N3O8S

  • Mr = 513.60

  • Monoclinic, P 21 /c

  • a = 12.807 (2) Å

  • b = 20.096 (3) Å

  • c = 10.3305 (17) Å

  • β = 112.949 (3)°

  • V = 2448.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 100 K

  • 0.45 × 0.34 × 0.02 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.921, Tmax = 0.996

  • 22174 measured reflections

  • 5330 independent reflections

  • 3651 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.152

  • S = 1.00

  • 5330 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −0.74 e Å−3

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound (I) was isolated as an intermediate in the synthesis of the corresponding azacryptand, 2.2.1NH (II, see Figure 1). An analogous bicyclic diamide, 2.2.1* (III), containing only oxygen donor atoms in the bridging strands, has been reported (Tarnowska, et al., 2004). Cryptands where one or more O atoms have been replaced by N atoms are of interest because of their selectivity for transition- and heavy-metal cations (Lehn & Montavon, 1978). In addition, the nitrogen atom may serve as a point of attachment for sensor chromophores (Wanichacheva, et al., 2006a) or cryptand-based polymer resins (Frère & Gramain, 1982). The bicyclic 2.2.1*NR dilactam with R = (CH2)9CH3 (Pietraszkiewicz et al., 1992) or R = –C(=O)(CH2)15SCH3 (Wanichacheva, et al., 2006b) has been used in the construction of ion selective electrodes.

Figure 2 shows that (I) consists of an 18-membered ring (donor atoms N1, O4, O7, N10, O13, O16) and two 15-membered rings with N3O2 donor atom sets (N1, O4, O7, N21, N10 and N1, O13, O16, N10, N21). With respect to the molecular cavity formed by these rings, donor atoms N1, O3, O13, O16 and N10 have an endodentate orientation, while N21, O7 and the carbonyl O atoms, O33 and O34, are exodentate. The oxygen donor atoms of the 18-membered ring (O4, O7, O13, O16) form a plane (average deviation = 0.314 Å) that is nearly perpendicular to the plane defined by nitrogen atoms N1, N10, N21 (dihedral angle = 83.7 (3)°). The toluenesulfonamide group is oriented over the face of one 15-membered ring (N1, O13, O16, N10, N21) and the plane of the benzene ring (C24—C29), average deviation = 0.0042 Å) is almost coplanar with the oxygen donor plane defined by O4, O7, O13, O16 (dihedral angle = 16.5 (3)°). The N1···N10 nonbonding distance is 5.299 (4)Å which is less than the value of 5.643 (4)Å found for 2.2.1* (Tarnowska et al., 2004). The aza bridging strand consists of three planar subunits: N1, C19, O33, C20, average deviation = 0.0021 Å; C20, N21, S1, C22, average deviation = 0.0255 Å; and C22, C23, O34, N10, average deviation = 0.0068 Å. The limited conformational freedom of this bridge may explain the shorter N1···N10 nonbonding distance compared to the more flexible 2.2.1* and the extensive splitting in the 1H-NMR spectrum due to the non-equivalence of the methylene protons.

Related literature top

For general background of bicyclic dilactams as cation receptors, see: Hourdakis & Popov (1977); Tümmler et al. (1977); Buschmann, (1986); Pietraszkiewicz et al. (1992);Wanichacheva et al. (2006a,b). For related structures, see: Fields et al. (1986); Tarnowska et al. (2004). For the synthesis, see: Lehn & Montavon (1976, 1978); Lehn et al. (1977); Frère & Gramain (1982); Pietraszkiewicz et al. (1992); Wanichacheva et al. (2006a,b).

Experimental top

The bicyclic diamide was obtained by the high-dilution condensation of 1,10-diaza-4,7,13,16-tetraoxacyclooctadecane with 2,2'-(N-tosyl)diacetyl chloride according to reported methods (Lehn & Montavon, 1976). The N-protected diacid chloride was prepared following literature procedures (Lehn, et al., 1977). The crude dilactam was purified by flash column chromatography on silica gel using a mixture of CHCl3 and acetone (4:1) as the eluent. Spectroscopic Analysis: 1H-NMR (CDCl3, 300 MHz) δ 2.38 (s, 3H), δ 2.57–2.64 (ddd, 2H), δ 2.90–3.00 (ddd, 2H), δ 3.49–3.65 (m, 10H), δ 3.67–3.80 (m, 8H), δ 4.36 (d, 4H), δ 4.53 (ddd, 2H), δ 7.25, 7.90 (q, 4H); ESI-MS: m/z = 536.2 (M + Na+) and 1049.5 (2M + Na+). Crystals suitable for X-ray crystallography were obtained by slow evaporation of a solution of the compound dissolved in toluene-methanol (1:1).

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.95Å for aromatic carbons, 0.98Å for methyl carbons, and 0.99Å for methylene carbons. Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(CMe).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structural formulae of the title compound (I) and related 2.2.1-type cryptands.
[Figure 2] Fig. 2. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
21-(4-Methylphenylsulfonyl)-4,7,13,16-tetraoxa-1,10,21- triazabicyclo[8.8.5]tricosane-19,23-dione top
Crystal data top
C23H35N3O8SF(000) = 1096
Mr = 513.60Dx = 1.393 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7056 reflections
a = 12.807 (2) Åθ = 2.4–26.8°
b = 20.096 (3) ŵ = 0.19 mm1
c = 10.3305 (17) ÅT = 100 K
β = 112.949 (3)°Plate, colorless
V = 2448.3 (7) Å30.45 × 0.34 × 0.02 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
5330 independent reflections
Radiation source: fine-focus sealed tube3651 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1616
Tmin = 0.921, Tmax = 0.996k = 2525
22174 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.090P)2 + ]
where P = (Fo2 + 2Fc2)/3
5330 reflections(Δ/σ)max = 0.001
316 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
C23H35N3O8SV = 2448.3 (7) Å3
Mr = 513.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.807 (2) ŵ = 0.19 mm1
b = 20.096 (3) ÅT = 100 K
c = 10.3305 (17) Å0.45 × 0.34 × 0.02 mm
β = 112.949 (3)°
Data collection top
Bruker APEX CCD
diffractometer
5330 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3651 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.996Rint = 0.078
22174 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.00Δρmax = 0.87 e Å3
5330 reflectionsΔρmin = 0.74 e Å3
316 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.09333 (5)0.25045 (3)0.83451 (6)0.01752 (16)
O311.09605 (15)0.22025 (8)0.71044 (17)0.0212 (4)
O321.08925 (14)0.20910 (8)0.94505 (17)0.0213 (4)
O330.79170 (15)0.24397 (8)0.79188 (18)0.0237 (4)
O341.03764 (15)0.42449 (8)0.72294 (18)0.0233 (4)
N10.77810 (17)0.31622 (9)0.9521 (2)0.0190 (4)
C20.6686 (2)0.28984 (12)0.9424 (3)0.0235 (6)
H2A0.63900.31980.99620.028*
H2B0.68230.24600.98970.028*
C30.5777 (2)0.28131 (12)0.7980 (3)0.0232 (6)
H3A0.59880.24480.74840.028*
H3B0.50540.26910.80570.028*
O40.56315 (14)0.34114 (8)0.72001 (18)0.0247 (4)
C50.4764 (2)0.33533 (14)0.5853 (3)0.0296 (6)
H5A0.40180.33500.59310.036*
H5B0.48500.29280.54190.036*
C60.4817 (2)0.39256 (15)0.4942 (3)0.0322 (7)
H6A0.40720.39710.41490.039*
H6B0.49610.43410.54990.039*
O70.56706 (15)0.38508 (10)0.43936 (19)0.0326 (5)
C80.6766 (2)0.40118 (12)0.5372 (3)0.0240 (6)
H8A0.70520.36550.60840.029*
H8B0.67450.44330.58590.029*
C90.7540 (2)0.40869 (12)0.4576 (3)0.0215 (5)
H9A0.76510.36470.42170.026*
H9B0.71770.43840.37590.026*
N100.86434 (17)0.43611 (9)0.5476 (2)0.0200 (4)
C110.8809 (2)0.50799 (11)0.5374 (3)0.0230 (6)
H11A0.87920.51800.44280.028*
H11B0.95700.52030.60700.028*
C120.7929 (2)0.55061 (12)0.5623 (3)0.0244 (6)
H12A0.81610.59780.56660.029*
H12B0.71980.54570.48080.029*
O130.77576 (15)0.53522 (8)0.68612 (17)0.0226 (4)
C140.8673 (2)0.55091 (12)0.8130 (3)0.0239 (6)
H14A0.88220.59940.81830.029*
H14B0.93670.52750.81770.029*
C150.8367 (2)0.52969 (11)0.9315 (3)0.0236 (6)
H15A0.88700.55171.01940.028*
H15B0.75740.54260.91250.028*
O160.84885 (15)0.45891 (8)0.94636 (17)0.0215 (4)
C170.8009 (2)0.43394 (11)1.0383 (3)0.0229 (5)
H17A0.71740.43810.99430.027*
H17B0.82860.46011.12650.027*
C180.8337 (2)0.36153 (11)1.0704 (3)0.0207 (5)
H18A0.91680.35741.10020.025*
H18B0.81460.34741.15040.025*
C190.8310 (2)0.29040 (11)0.8733 (2)0.0192 (5)
C200.9430 (2)0.32263 (11)0.8889 (2)0.0180 (5)
H20A0.93270.37140.87830.022*
H20B1.00050.31350.98420.022*
N210.98335 (17)0.29775 (9)0.7851 (2)0.0180 (4)
C220.9321 (2)0.32465 (11)0.6440 (2)0.0195 (5)
H22A0.85000.31440.60430.023*
H22B0.96640.30310.58380.023*
C230.9485 (2)0.40027 (12)0.6426 (2)0.0197 (5)
C241.2164 (2)0.29981 (11)0.9071 (3)0.0189 (5)
C251.2716 (2)0.30417 (12)1.0509 (3)0.0219 (5)
H251.24300.28141.11070.026*
C261.3687 (2)0.34197 (12)1.1071 (3)0.0251 (6)
H261.40710.34501.20630.030*
C271.4114 (2)0.37568 (12)1.0212 (3)0.0254 (6)
C281.3541 (2)0.37067 (12)0.8774 (3)0.0278 (6)
H281.38260.39360.81760.033*
C291.2567 (2)0.33334 (12)0.8185 (3)0.0238 (6)
H291.21800.33060.71930.029*
C301.5165 (2)0.41723 (14)1.0863 (3)0.0348 (7)
H30A1.53860.43491.01230.052*
H30B1.57800.38971.15070.052*
H30C1.50140.45421.13850.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0290 (3)0.0091 (3)0.0181 (3)0.0008 (2)0.0132 (3)0.0004 (2)
O310.0373 (10)0.0126 (8)0.0184 (9)0.0015 (7)0.0160 (8)0.0042 (7)
O320.0362 (10)0.0119 (8)0.0200 (9)0.0016 (7)0.0155 (8)0.0034 (7)
O330.0359 (10)0.0133 (8)0.0255 (10)0.0022 (7)0.0158 (8)0.0042 (7)
O340.0326 (10)0.0158 (9)0.0217 (9)0.0019 (7)0.0108 (8)0.0001 (7)
N10.0296 (11)0.0125 (9)0.0193 (11)0.0011 (8)0.0143 (9)0.0009 (8)
C20.0327 (14)0.0172 (12)0.0270 (14)0.0007 (10)0.0186 (12)0.0030 (10)
C30.0315 (14)0.0138 (12)0.0304 (14)0.0014 (10)0.0188 (12)0.0003 (10)
O40.0329 (10)0.0184 (9)0.0236 (9)0.0005 (7)0.0119 (8)0.0039 (7)
C50.0305 (14)0.0334 (15)0.0270 (15)0.0026 (12)0.0134 (12)0.0004 (12)
C60.0277 (14)0.0426 (17)0.0285 (15)0.0059 (12)0.0134 (12)0.0094 (13)
O70.0289 (10)0.0479 (13)0.0237 (10)0.0007 (9)0.0131 (8)0.0017 (9)
C80.0320 (14)0.0182 (12)0.0228 (14)0.0010 (10)0.0119 (11)0.0004 (10)
C90.0287 (13)0.0159 (12)0.0204 (13)0.0017 (10)0.0099 (11)0.0023 (10)
N100.0296 (11)0.0105 (9)0.0223 (11)0.0007 (8)0.0127 (9)0.0024 (8)
C110.0365 (15)0.0117 (11)0.0246 (14)0.0013 (10)0.0161 (12)0.0053 (10)
C120.0400 (15)0.0124 (11)0.0245 (14)0.0022 (10)0.0168 (12)0.0045 (10)
O130.0340 (10)0.0158 (8)0.0212 (9)0.0001 (7)0.0142 (8)0.0000 (7)
C140.0351 (15)0.0114 (11)0.0267 (14)0.0007 (10)0.0137 (12)0.0016 (10)
C150.0405 (15)0.0077 (11)0.0252 (14)0.0001 (10)0.0156 (12)0.0003 (9)
O160.0379 (10)0.0083 (8)0.0264 (10)0.0010 (7)0.0213 (8)0.0004 (7)
C170.0378 (15)0.0130 (11)0.0265 (14)0.0007 (10)0.0221 (12)0.0006 (10)
C180.0321 (14)0.0152 (11)0.0199 (13)0.0001 (10)0.0157 (11)0.0003 (9)
C190.0310 (14)0.0102 (11)0.0188 (13)0.0041 (9)0.0121 (11)0.0042 (9)
C200.0285 (13)0.0114 (11)0.0177 (12)0.0027 (9)0.0129 (10)0.0004 (9)
N210.0296 (11)0.0134 (9)0.0152 (10)0.0022 (8)0.0132 (9)0.0014 (8)
C220.0311 (13)0.0125 (11)0.0167 (12)0.0011 (9)0.0112 (11)0.0005 (9)
C230.0340 (14)0.0143 (11)0.0165 (12)0.0031 (10)0.0162 (11)0.0017 (9)
C240.0268 (13)0.0113 (11)0.0214 (13)0.0034 (9)0.0123 (11)0.0001 (9)
C250.0301 (14)0.0159 (12)0.0225 (13)0.0032 (10)0.0134 (11)0.0007 (10)
C260.0335 (14)0.0186 (12)0.0242 (14)0.0028 (11)0.0124 (12)0.0008 (10)
C270.0294 (14)0.0155 (12)0.0326 (15)0.0022 (10)0.0136 (12)0.0038 (11)
C280.0378 (15)0.0202 (13)0.0333 (16)0.0015 (11)0.0225 (13)0.0001 (11)
C290.0339 (14)0.0193 (12)0.0224 (13)0.0002 (10)0.0155 (12)0.0005 (10)
C300.0361 (16)0.0299 (15)0.0413 (18)0.0059 (12)0.0181 (14)0.0068 (13)
Geometric parameters (Å, º) top
S1—O321.4295 (16)C12—H12B0.9900
S1—O311.4308 (16)O13—C141.412 (3)
S1—N211.608 (2)C14—C151.486 (3)
S1—C241.763 (2)C14—H14A0.9900
O33—C191.226 (3)C14—H14B0.9900
O34—C231.220 (3)C15—O161.433 (3)
N1—C191.349 (3)C15—H15A0.9900
N1—C21.465 (3)C15—H15B0.9900
N1—C181.467 (3)O16—C171.408 (3)
C2—C31.502 (4)C17—C181.515 (3)
C2—H2A0.9900C17—H17A0.9900
C2—H2B0.9900C17—H17B0.9900
C3—O41.418 (3)C18—H18A0.9900
C3—H3A0.9900C18—H18B0.9900
C3—H3B0.9900C19—C201.523 (3)
O4—C51.406 (3)C20—N211.449 (3)
C5—C61.505 (4)C20—H20A0.9900
C5—H5A0.9900C20—H20B0.9900
C5—H5B0.9900N21—C221.450 (3)
C6—O71.421 (3)C22—C231.535 (3)
C6—H6A0.9900C22—H22A0.9900
C6—H6B0.9900C22—H22B0.9900
O7—C81.410 (3)C24—C251.377 (3)
C8—C91.523 (3)C24—C291.388 (3)
C8—H8A0.9900C25—C261.378 (4)
C8—H8B0.9900C25—H250.9500
C9—N101.463 (3)C26—C271.386 (4)
C9—H9A0.9900C26—H260.9500
C9—H9B0.9900C27—C281.380 (4)
N10—C231.349 (3)C27—C301.502 (4)
N10—C111.470 (3)C28—C291.377 (4)
C11—C121.516 (3)C28—H280.9500
C11—H11A0.9900C29—H290.9500
C11—H11B0.9900C30—H30A0.9800
C12—O131.414 (3)C30—H30B0.9800
C12—H12A0.9900C30—H30C0.9800
O32—S1—O31119.36 (10)C15—C14—H14B110.1
O32—S1—N21107.27 (10)H14A—C14—H14B108.4
O31—S1—N21106.89 (10)O16—C15—C14108.70 (19)
O32—S1—C24107.00 (11)O16—C15—H15A109.9
O31—S1—C24106.83 (11)C14—C15—H15A109.9
N21—S1—C24109.24 (11)O16—C15—H15B109.9
C19—N1—C2120.8 (2)C14—C15—H15B109.9
C19—N1—C18123.1 (2)H15A—C15—H15B108.3
C2—N1—C18114.95 (19)C17—O16—C15111.61 (17)
N1—C2—C3117.4 (2)O16—C17—C18109.52 (19)
N1—C2—H2A108.0O16—C17—H17A109.8
C3—C2—H2A108.0C18—C17—H17A109.8
N1—C2—H2B108.0O16—C17—H17B109.8
C3—C2—H2B108.0C18—C17—H17B109.8
H2A—C2—H2B107.2H17A—C17—H17B108.2
O4—C3—C2110.3 (2)N1—C18—C17114.2 (2)
O4—C3—H3A109.6N1—C18—H18A108.7
C2—C3—H3A109.6C17—C18—H18A108.7
O4—C3—H3B109.6N1—C18—H18B108.7
C2—C3—H3B109.6C17—C18—H18B108.7
H3A—C3—H3B108.1H18A—C18—H18B107.6
C5—O4—C3111.67 (19)O33—C19—N1122.5 (2)
O4—C5—C6110.2 (2)O33—C19—C20120.9 (2)
O4—C5—H5A109.6N1—C19—C20116.5 (2)
C6—C5—H5A109.6N21—C20—C19111.60 (19)
O4—C5—H5B109.6N21—C20—H20A109.3
C6—C5—H5B109.6C19—C20—H20A109.3
H5A—C5—H5B108.1N21—C20—H20B109.3
O7—C6—C5113.4 (2)C19—C20—H20B109.3
O7—C6—H6A108.9H20A—C20—H20B108.0
C5—C6—H6A108.9C20—N21—C22117.56 (18)
O7—C6—H6B108.9C20—N21—S1119.35 (16)
C5—C6—H6B108.9C22—N21—S1122.47 (16)
H6A—C6—H6B107.7N21—C22—C23111.63 (19)
C8—O7—C6113.3 (2)N21—C22—H22A109.3
O7—C8—C9108.1 (2)C23—C22—H22A109.3
O7—C8—H8A110.1N21—C22—H22B109.3
C9—C8—H8A110.1C23—C22—H22B109.3
O7—C8—H8B110.1H22A—C22—H22B108.0
C9—C8—H8B110.1O34—C23—N10123.5 (2)
H8A—C8—H8B108.4O34—C23—C22118.9 (2)
N10—C9—C8111.4 (2)N10—C23—C22117.5 (2)
N10—C9—H9A109.3C25—C24—C29120.9 (2)
C8—C9—H9A109.3C25—C24—S1119.50 (19)
N10—C9—H9B109.3C29—C24—S1119.57 (19)
C8—C9—H9B109.3C24—C25—C26119.3 (2)
H9A—C9—H9B108.0C24—C25—H25120.4
C23—N10—C9124.1 (2)C26—C25—H25120.4
C23—N10—C11118.7 (2)C25—C26—C27121.1 (2)
C9—N10—C11117.10 (19)C25—C26—H26119.5
N10—C11—C12113.9 (2)C27—C26—H26119.5
N10—C11—H11A108.8C28—C27—C26118.5 (2)
C12—C11—H11A108.8C28—C27—C30122.0 (2)
N10—C11—H11B108.8C26—C27—C30119.6 (2)
C12—C11—H11B108.8C29—C28—C27121.7 (2)
H11A—C11—H11B107.7C29—C28—H28119.2
O13—C12—C11114.7 (2)C27—C28—H28119.2
O13—C12—H12A108.6C28—C29—C24118.6 (2)
C11—C12—H12A108.6C28—C29—H29120.7
O13—C12—H12B108.6C24—C29—H29120.7
C11—C12—H12B108.6C27—C30—H30A109.5
H12A—C12—H12B107.6C27—C30—H30B109.5
C14—O13—C12115.17 (19)H30A—C30—H30B109.5
O13—C14—C15108.1 (2)C27—C30—H30C109.5
O13—C14—H14A110.1H30A—C30—H30C109.5
C15—C14—H14A110.1H30B—C30—H30C109.5
O13—C14—H14B110.1
C19—N1—C2—C349.0 (3)O32—S1—N21—C2036.3 (2)
C18—N1—C2—C3142.7 (2)O31—S1—N21—C20165.43 (17)
N1—C2—C3—O451.6 (3)C24—S1—N21—C2079.33 (19)
C2—C3—O4—C5178.5 (2)O32—S1—N21—C22152.89 (18)
C3—O4—C5—C6166.4 (2)O31—S1—N21—C2223.8 (2)
O4—C5—C6—O778.8 (3)C24—S1—N21—C2291.5 (2)
C5—C6—O7—C879.4 (3)C20—N21—C22—C2359.8 (3)
C6—O7—C8—C9165.6 (2)S1—N21—C22—C23111.2 (2)
O7—C8—C9—N10170.55 (19)C9—N10—C23—O34175.5 (2)
C8—C9—N10—C2379.0 (3)C11—N10—C23—O341.3 (4)
C8—C9—N10—C1197.8 (2)C9—N10—C23—C227.2 (3)
C23—N10—C11—C12121.6 (2)C11—N10—C23—C22176.0 (2)
C9—N10—C11—C1255.4 (3)N21—C22—C23—O3436.9 (3)
N10—C11—C12—O1350.6 (3)N21—C22—C23—N10145.7 (2)
C11—C12—O13—C1468.8 (3)O32—S1—C24—C2514.6 (2)
C12—O13—C14—C15178.22 (18)O31—S1—C24—C25143.47 (19)
O13—C14—C15—O1676.8 (2)N21—S1—C24—C25101.2 (2)
C14—C15—O16—C17168.7 (2)O32—S1—C24—C29164.98 (18)
C15—O16—C17—C18170.2 (2)O31—S1—C24—C2936.1 (2)
C19—N1—C18—C17103.2 (3)N21—S1—C24—C2979.2 (2)
C2—N1—C18—C1788.9 (2)C29—C24—C25—C260.5 (4)
O16—C17—C18—N170.9 (3)S1—C24—C25—C26178.99 (18)
C2—N1—C19—O330.6 (4)C24—C25—C26—C270.2 (4)
C18—N1—C19—O33166.6 (2)C25—C26—C27—C280.1 (4)
C2—N1—C19—C20178.53 (19)C25—C26—C27—C30179.1 (2)
C18—N1—C19—C2014.2 (3)C26—C27—C28—C290.0 (4)
O33—C19—C20—N217.8 (3)C30—C27—C28—C29178.9 (2)
N1—C19—C20—N21171.41 (19)C27—C28—C29—C240.4 (4)
C19—C20—N21—C2279.0 (2)C25—C24—C29—C280.7 (4)
C19—C20—N21—S1109.7 (2)S1—C24—C29—C28178.89 (19)

Experimental details

Crystal data
Chemical formulaC23H35N3O8S
Mr513.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.807 (2), 20.096 (3), 10.3305 (17)
β (°) 112.949 (3)
V3)2448.3 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.45 × 0.34 × 0.02
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.921, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
22174, 5330, 3651
Rint0.078
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.152, 1.00
No. of reflections5330
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 0.74

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Oklahoma Center for the Advancement of Science and Technology (grant HR06–113). The authors also thank the National Science Foundation (CHE-0130835) and the University of Oklahoma for funds to acquire the diffractometer and computers used in this work.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin USA.  Google Scholar
First citationBuschmann, H.-J. (1986). Inorg. Chim. Acta, 120, 125–129.  CrossRef CAS Google Scholar
First citationFields, R. E., Heeg, M. J. & Taylor, R. W. (1986). Acta Cryst. C42, 114–116.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFrère, Y. & Gramain, P. (1982). Makromol. Chem. 183, 2163–2172.  Google Scholar
First citationHourdakis, A. & Popov, A. I. (1977). J. Solution Chem. 6, 299–307.  CrossRef CAS Google Scholar
First citationLehn, J.-M. & Montavon, F. (1976). Helv. Chim. Acta, 59, 1566–1583.  CrossRef CAS Google Scholar
First citationLehn, J.-M. & Montavon, F. (1978). Helv. Chim. Acta, 61, 67–82.  CrossRef CAS Google Scholar
First citationLehn, J.-M., Simon, J. & Wagner, J. (1977). Nouv. J. Chim. 1, 77–84.  CAS Google Scholar
First citationPietraszkiewicz, M., Gasiorowski, R., Brzózka, Z. & Wróblewski, W. (1992). J. Inclusion Phenom. Macrocyclic Chem. 14, 237–245.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTarnowska, A., Jarosz, M. & Jurczak, J. (2004). Synthesis, pp. 369–372.  Google Scholar
First citationTümmler, B., Maass, G., Weber, E., Wehner, W. & Vögtle, F. (1977). J. Am. Chem. Soc. 99, 4683–4690.  PubMed Web of Science Google Scholar
First citationWanichacheva, N., Benco, J. S., Lambert, C. R. & McGimpsey, W. G. (2006a). Photochem. Photobiol. 82, 268–273.  Web of Science CrossRef PubMed Google Scholar
First citationWanichacheva, N., Soto, E. R., Lambert, C. R. & McGimpsey, W. G. (2006b). Anal. Chem. 78, 7132–7137.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds