organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1450-o1451

2-[2-(3-Chloro­phen­yl)hydrazinyl­­idene]-1,3-di­phenyl­propane-1,3-dione

aInstituto de Ciencias Químicas, Universidad Austral de Chile, Avda. Los Robles s/n, Campus Isla Teja, Casilla 567, Valdivia, Chile, bDepartamento de Ciencias Físicas, Universidad Andres Bello, Avda. República 220, Santiago de Chile, Chile, cInstituto de Ciencias Moleculares y Microbiología, Universidad Austral de Chile, Avda. Los Robles s/n, Campus Isla Teja, Casilla 567, Valdivia, Chile, and dLaboratorio de Cristalografía, Difracción de Rayos-X, Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Blanco Encalada 2008, Santiago, Chile
*Correspondence e-mail: lalvarez@unab.cl

(Received 4 May 2011; accepted 11 May 2011; online 20 May 2011)

The mol­ecular structure of the title compound, C21H15ClN2O2, features one strong intra­molecular N—H⋯O resonance-assisted hydrogen bond (RAHB). In the crystal, mol­ecules form inversion-related dimers via pairs of weak inter­molecular N—H⋯O contacts. These dimers are further stabilized via three weak C—H⋯O contacts, developing the three-dimensional structure.

Related literature

For resonance-assisted hydrogen bonds, see: Bertolasi et al. (1993[Bertolasi, V., Ferretti, V., Gilli, P., Gilli, G., Issa, Y. M. & Sherif, O. E. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 2223-2228.], 1994a[Bertolasi, V., Nanni, L., Gilli, P., Ferretti, V., Gilli, G., Issa, Y. M. & Sherif, O. E. (1994a). New J. Chem. 18, 251-261.],b[Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1994b). Acta Cryst. B50, 617-625.]); Inabe (1991[Inabe, T. (1991). New J. Chem. 15, 129-136.]); Krygowski et al. (1997[Krygowski, T. M., Wozniak, K., Anulewicz, R., Pawlak, D., Kolodziejski, W., Grech, E. & Szady, A. (1997). J. Phys. Chem. A, 101, 9399-9404.]); Olivieri et al. (1989[Olivieri, A. C., Wilson, R. B., Paul, I. C. & Curtin, D. Y. (1989). J. Am. Chem. Soc. 111, 5525-5532.]). For details of the synthesis, see: Bustos et al. (2007[Bustos, C., Sánchez, C., Martínez, R., Ugarte, R., Schott, E., Carey, D. M. L., Garland, M. T. & Espinoza, L. (2007). Dyes Pigments, 74, 615-621.], 2009[Bustos, C., Schott, E., Ríos, M., Sánchez, C. & Cárcamo, J. G. (2009). J. Chil. Chem. Soc. 54, 267-268.]); Yao (1964[Yao, H. C. (1964). J. Org. Chem. 29, 2959-2962.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15ClN2O2

  • Mr = 362.80

  • Monoclinic, P 21 /n

  • a = 10.2970 (9) Å

  • b = 10.3526 (9) Å

  • c = 16.8926 (15) Å

  • β = 102.131 (1)°

  • V = 1760.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 297 K

  • 0.60 × 0.31 × 0.23 mm

Data collection
  • Bruker D8 Discover with SMART CCD area-detector diffractometer

  • 11123 measured reflections

  • 3573 independent reflections

  • 2657 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.119

  • S = 0.98

  • 3573 reflections

  • 239 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.922 (17) 1.930 (18) 2.6205 (18) 130.1 (14)
C12—H12⋯N2 0.93 2.55 3.016 (2) 111
N1—H1⋯O1i 0.922 (17) 2.628 (17) 3.344 (3) 135.0 (13)
C6—H6⋯O1i 0.93 2.63 3.390 (2) 140
Symmetry code: (i) -x, -y, -z+2.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Comment top

In recent years, much attention has been devoted to structural studies on heterodienic systems forming strong intramolecular hydrogen bonds, N—H···O, assisted by resonance (RAHB) which, inter alia, could have potential technological applications as bistate molecular switches (Olivieri et al., 1989; Inabe, 1991; Bertolasi et al., 1993; Bertolasi et al., 1994a; Bertolasi et al., 1994b; Krygowski et al., 1997; Bustos et al., 2007). On the other hand, it is well known that the phenyl diazonium salts are capable of coupling with a series of β-diketones that may yield the N—H···O moiety (Yao, 1964; Bustos et al., 2007; Bustos et al., 2009). In this report we present the crystal and molecular structure of the title compound 2-(2-(3-chlorophenyl)hydrazono)-1,3-diphenylpropane-1,3-dione, of formula 3-Cl—C6H4—NHN=C(COC6H5)2.

The molecular structure of the title compound exhibits one weak intramolecular hydrogen bond (C12–H12···N2) and one strong intramolecular hydrogen bond (N1–H1···O2) assisted by resonance (RAHB), see Fig. 1 and Table 2. The molecules form an inversion dimer via a pair of weak intermolecular contacts N1–H1···O1# and C6–H6···O1# hydrogen bonds [Symmetry code: (#) -x, -y, 2 - z], (see Fig. 2). These dimers are further stabilized via three weak contacts of the type shown in Fig. 3, to develop the three-dimensional structure.

Related literature top

For resonance-assisted hydrogen bonds, see: Bertolasi et al. (1993, 1994a,b); Inabe (1991); Krygowski et al. (1997); Olivieri et al. (1989). For details of the synthesis, see: Bustos et al. (2007, 2009); Yao (1964).

Experimental top

Chemicals: 1,3-diphenylpropane-1,3-dione, 3-chloroaniline and sodium nitrite were procured from Sigma-Aldrich, and sodium hydroxide, sodium acetate, solvents and hydrochloric acid from Merck. Chemicals were used without further purification.

Procedure: In a 500 ml beaker were dissolved 2.24 g (0.01 mole) of 1,3-diphenylpropane-1,3-dione in 100 ml of an ethanol solution containing 0.4 g (0.01 mole) of sodium hydroxide and 3.65 g of sodium acetate. The resulting β-diketonate solution was kept at -5°C and diluted with water to around 220 mL with vigorous stirring. In another beaker, a diazonium ion solution was prepared adding 1.06 ml (0.01 mole) of 3-chloroaniline (99%, density 1.215 g/ml) in 8 ml of hydrochloric acid (5 mol/L), cooling at -5 °C, and adding a saturated aqueous solution containing 0.69 g (0.01 mole) of sodium nitrite. This solution was then added dropwise, with vigorous stirring, into the β-diketonate solution. During the addition, a yellow solid precipitate was observed. This precipitate was filtered by suction and washed with an abundant quantity of water. Single crystals suitable for X-ray studies were obtained by recrystallization from a saturated solution of the compound in a 3:1 ethanol/acetone mixture.

Refinement top

All hydrogen atoms were found in difference Fourier maps. The hydrogen attached to N1 was refined freely against the diffraction data, but all other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. View of the title compound showing displacement ellipsoids for non-H atoms at the 50% probability level. The strong intramolecular hydrogen bond (N1-H1···O2) assisted by resonance (RAHB) is depicted by a dashed line.
[Figure 2] Fig. 2. View of the formation of an inversion dimer via two weak intermolecular contacts (dashed lines). [Symmetry code: (#) -x, -y, 2 - z].
[Figure 3] Fig. 3. The dimers are connected via three weak contacts (dashed lines) to develop the three-dimensional structure.
2-[2-(3-Chlorophenyl)hydrazinylidene]-1,3-diphenylpropane-1,3-dione top
Crystal data top
C21H15ClN2O2F(000) = 752
Mr = 362.80Dx = 1.369 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 999 reflections
a = 10.2970 (9) Åθ = 2.3–26.3°
b = 10.3526 (9) ŵ = 0.24 mm1
c = 16.8926 (15) ÅT = 297 K
β = 102.131 (1)°Polyhedron, yellow
V = 1760.6 (3) Å30.60 × 0.31 × 0.23 mm
Z = 4
Data collection top
Bruker D8 Discover with SMART CCD area-detector
diffractometer
2657 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.042
Graphite monochromatorθmax = 26.3°, θmin = 2.3°
ϕ and ω scansh = 1212
11123 measured reflectionsk = 1212
3573 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.071P)2]
where P = (Fo2 + 2Fc2)/3
3573 reflections(Δ/σ)max = 0.001
239 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C21H15ClN2O2V = 1760.6 (3) Å3
Mr = 362.80Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.2970 (9) ŵ = 0.24 mm1
b = 10.3526 (9) ÅT = 297 K
c = 16.8926 (15) Å0.60 × 0.31 × 0.23 mm
β = 102.131 (1)°
Data collection top
Bruker D8 Discover with SMART CCD area-detector
diffractometer
2657 reflections with I > 2σ(I)
11123 measured reflectionsRint = 0.042
3573 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.39 e Å3
3573 reflectionsΔρmin = 0.16 e Å3
239 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.69570 (5)0.13603 (5)1.18232 (3)0.0776 (2)
O10.05070 (10)0.25054 (10)0.91373 (7)0.0598 (4)
O20.03738 (11)0.12050 (10)0.92207 (7)0.0630 (4)
N10.25273 (13)0.04080 (12)1.02183 (8)0.0510 (4)
N20.22035 (12)0.07588 (11)0.99272 (7)0.0463 (4)
C10.36632 (15)0.05568 (14)1.08450 (9)0.0459 (5)
C20.46505 (14)0.03750 (14)1.09893 (9)0.0477 (5)
C30.57101 (15)0.01951 (15)1.16316 (9)0.0516 (5)
C40.58144 (17)0.08754 (18)1.21159 (10)0.0636 (6)
C50.48391 (18)0.18002 (18)1.19538 (11)0.0696 (7)
C60.37597 (17)0.16608 (16)1.13176 (11)0.0616 (6)
C70.16409 (16)0.33878 (14)0.92641 (8)0.0466 (5)
C80.11665 (19)0.46296 (15)0.93282 (9)0.0594 (6)
C90.1988 (2)0.56842 (17)0.93377 (11)0.0743 (8)
C100.3278 (2)0.55061 (18)0.92704 (13)0.0810 (8)
C110.3759 (2)0.42915 (18)0.91881 (12)0.0752 (7)
C120.29480 (17)0.32324 (16)0.91906 (10)0.0584 (6)
C130.05962 (15)0.01258 (14)0.81261 (9)0.0489 (5)
C140.17413 (16)0.06169 (16)0.79092 (10)0.0580 (6)
C150.25909 (19)0.0430 (2)0.71700 (12)0.0768 (7)
C160.2295 (2)0.0471 (2)0.66386 (12)0.0840 (8)
C170.1161 (2)0.1191 (2)0.68373 (11)0.0787 (8)
C180.02983 (18)0.10304 (17)0.75838 (10)0.0632 (6)
C190.06905 (15)0.23015 (14)0.92398 (8)0.0466 (5)
C200.11471 (14)0.09339 (14)0.93512 (9)0.0457 (5)
C210.02976 (14)0.01183 (15)0.89255 (9)0.0482 (5)
H10.1934 (18)0.1079 (15)1.0080 (10)0.062 (5)*
H20.460100.110301.066200.0570*
H40.653400.097501.254800.0760*
H50.490600.253301.227800.0840*
H60.310900.229701.120800.0740*
H80.028600.475200.936500.0710*
H90.166700.651300.939000.0890*
H100.383300.621700.928100.0970*
H110.463100.418100.913100.0900*
H120.328000.240700.914300.0700*
H140.193500.124100.826300.0700*
H150.336500.091500.703200.0920*
H160.287000.059200.614000.1010*
H170.096400.179300.647100.0940*
H180.047100.152400.771800.0760*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0598 (3)0.0744 (3)0.0886 (4)0.0128 (2)0.0070 (3)0.0046 (2)
O10.0440 (7)0.0589 (7)0.0723 (7)0.0061 (5)0.0030 (5)0.0073 (5)
O20.0609 (7)0.0489 (7)0.0717 (8)0.0080 (5)0.0030 (6)0.0076 (6)
N10.0465 (7)0.0428 (7)0.0574 (8)0.0001 (6)0.0032 (6)0.0035 (6)
N20.0444 (7)0.0431 (7)0.0488 (7)0.0025 (5)0.0041 (6)0.0035 (5)
C10.0420 (8)0.0442 (8)0.0497 (8)0.0059 (6)0.0057 (6)0.0021 (6)
C20.0480 (9)0.0454 (8)0.0476 (8)0.0038 (7)0.0055 (7)0.0041 (7)
C30.0466 (9)0.0535 (9)0.0522 (9)0.0017 (7)0.0048 (7)0.0048 (7)
C40.0539 (10)0.0756 (12)0.0559 (10)0.0080 (9)0.0007 (8)0.0142 (9)
C50.0577 (11)0.0677 (11)0.0798 (12)0.0069 (9)0.0060 (9)0.0309 (10)
C60.0514 (9)0.0528 (9)0.0769 (12)0.0008 (8)0.0049 (8)0.0174 (8)
C70.0525 (9)0.0449 (8)0.0385 (8)0.0011 (7)0.0005 (6)0.0010 (6)
C80.0708 (11)0.0498 (9)0.0534 (9)0.0075 (8)0.0036 (8)0.0013 (7)
C90.1002 (17)0.0449 (10)0.0701 (12)0.0008 (10)0.0002 (11)0.0019 (8)
C100.0874 (16)0.0552 (12)0.0907 (15)0.0228 (10)0.0031 (12)0.0091 (10)
C110.0633 (12)0.0671 (12)0.0928 (14)0.0129 (9)0.0112 (10)0.0116 (10)
C120.0560 (10)0.0485 (9)0.0690 (11)0.0021 (8)0.0095 (8)0.0032 (8)
C130.0444 (8)0.0509 (9)0.0495 (9)0.0012 (7)0.0059 (7)0.0072 (7)
C140.0531 (10)0.0561 (10)0.0618 (10)0.0040 (7)0.0051 (8)0.0151 (8)
C150.0591 (11)0.0872 (14)0.0755 (13)0.0045 (10)0.0051 (10)0.0279 (12)
C160.0810 (15)0.1068 (17)0.0526 (11)0.0086 (13)0.0125 (10)0.0128 (11)
C170.0879 (15)0.0923 (15)0.0525 (11)0.0040 (12)0.0071 (10)0.0058 (10)
C180.0635 (11)0.0705 (11)0.0536 (10)0.0049 (9)0.0079 (8)0.0025 (8)
C190.0468 (9)0.0509 (9)0.0390 (8)0.0024 (7)0.0020 (6)0.0035 (6)
C200.0424 (8)0.0456 (8)0.0464 (8)0.0002 (6)0.0029 (6)0.0033 (6)
C210.0429 (9)0.0468 (9)0.0540 (9)0.0015 (7)0.0081 (7)0.0001 (7)
Geometric parameters (Å, º) top
Cl1—C31.7418 (17)C13—C211.487 (2)
O1—C191.2269 (19)C14—C151.380 (3)
O2—C211.2264 (19)C15—C161.373 (3)
N1—N21.3203 (17)C16—C171.366 (3)
N1—C11.411 (2)C17—C181.392 (3)
N2—C201.3107 (19)C19—C201.491 (2)
N1—H10.922 (17)C20—C211.485 (2)
C1—C61.386 (2)C2—H20.9300
C1—C21.385 (2)C4—H40.9300
C2—C31.380 (2)C5—H50.9300
C3—C41.368 (2)C6—H60.9300
C4—C51.373 (3)C8—H80.9300
C5—C61.382 (3)C9—H90.9300
C7—C81.388 (2)C10—H100.9300
C7—C191.486 (2)C11—H110.9300
C7—C121.387 (2)C12—H120.9300
C8—C91.379 (3)C14—H140.9300
C9—C101.369 (3)C15—H150.9300
C10—C111.369 (3)C16—H160.9300
C11—C121.379 (3)C17—H170.9300
C13—C141.391 (2)C18—H180.9300
C13—C181.389 (2)
Cl1···C21i3.5703 (16)C21···Cl1i3.5703 (16)
Cl1···H10ii3.1300C4···H12i2.9600
O1···C132.9882 (18)C5···H12i3.0100
O1···C183.083 (2)C8···H16vii3.0200
O1···O2iii3.0602 (16)C8···H8viii2.9800
O1···C15iv3.386 (2)C9···H4ix2.9800
O1···C6iii3.390 (2)C10···H11ii3.1000
O2···O1iii3.0602 (16)C14···H5x2.9100
O2···N12.6205 (18)C15···H6x3.0300
O2···N22.8570 (16)C19···H182.6600
O2···C19iii3.2328 (18)C20···H122.7600
O2···C20iii3.1526 (19)C20···H182.7700
O1···H15iv2.6400C21···H12.500 (17)
O1···H1iii2.628 (17)H1···O21.930 (18)
O1···H6iii2.6300H1···C212.500 (17)
O1···H82.4700H1···H62.3900
O2···H11.930 (18)H1···O1iii2.628 (17)
O2···H9v2.7000H2···N22.5400
O2···H142.5800H4···C9vii2.9800
N1···O22.6205 (18)H5···C14xi2.9100
N2···O22.8570 (16)H6···H12.3900
N2···C123.016 (2)H6···O1iii2.6300
N2···H22.5400H6···C15xi3.0300
N2···H122.5500H8···O12.4700
C1···C14iii3.402 (2)H8···C8viii2.9800
C6···C14iii3.567 (2)H8···H8viii2.4000
C6···O1iii3.390 (2)H9···O2xii2.7000
C10···C11ii3.577 (3)H10···Cl1ii3.1300
C11···C10ii3.577 (3)H11···C10ii3.1000
C12···N23.016 (2)H12···N22.5500
C13···O12.9882 (18)H12···C202.7600
C14···C1iii3.402 (2)H12···C4i2.9600
C14···C6iii3.567 (2)H12···C5i3.0100
C15···O1vi3.386 (2)H14···O22.5800
C18···C193.065 (2)H15···O1vi2.6400
C18···O13.083 (2)H16···C8ix3.0200
C19···O2iii3.2328 (18)H18···C192.6600
C19···C183.065 (2)H18···C202.7700
C20···O2iii3.1526 (19)
N2—N1—C1118.94 (12)C19—C20—C21119.83 (13)
N1—N2—C20120.55 (12)N2—C20—C19114.55 (13)
N2—N1—H1119.5 (11)C13—C21—C20120.28 (13)
C1—N1—H1120.6 (11)O2—C21—C13119.97 (14)
N1—C1—C2121.18 (13)O2—C21—C20119.69 (13)
N1—C1—C6118.03 (14)C1—C2—H2121.00
C2—C1—C6120.79 (15)C3—C2—H2121.00
C1—C2—C3118.30 (14)C3—C4—H4121.00
C2—C3—C4121.95 (15)C5—C4—H4121.00
Cl1—C3—C4119.19 (12)C4—C5—H5119.00
Cl1—C3—C2118.86 (12)C6—C5—H5119.00
C3—C4—C5118.91 (16)C1—C6—H6121.00
C4—C5—C6121.16 (17)C5—C6—H6121.00
C1—C6—C5118.87 (16)C7—C8—H8120.00
C12—C7—C19123.77 (14)C9—C8—H8120.00
C8—C7—C12118.60 (15)C8—C9—H9120.00
C8—C7—C19117.57 (15)C10—C9—H9120.00
C7—C8—C9120.61 (18)C9—C10—H10120.00
C8—C9—C10119.72 (17)C11—C10—H10120.00
C9—C10—C11120.67 (18)C10—C11—H11120.00
C10—C11—C12119.85 (19)C12—C11—H11120.00
C7—C12—C11120.52 (16)C7—C12—H12120.00
C14—C13—C21118.29 (14)C11—C12—H12120.00
C14—C13—C18119.45 (15)C13—C14—H14120.00
C18—C13—C21122.22 (14)C15—C14—H14120.00
C13—C14—C15120.15 (16)C14—C15—H15120.00
C14—C15—C16120.11 (18)C16—C15—H15120.00
C15—C16—C17120.38 (19)C15—C16—H16120.00
C16—C17—C18120.48 (18)C17—C16—H16120.00
C13—C18—C17119.41 (17)C16—C17—H17120.00
O1—C19—C20117.52 (13)C18—C17—H17120.00
O1—C19—C7120.69 (13)C13—C18—H18120.00
C7—C19—C20121.79 (13)C17—C18—H18120.00
N2—C20—C21124.79 (13)
C1—N1—N2—C20179.27 (14)C8—C9—C10—C110.5 (3)
N2—N1—C1—C220.0 (2)C9—C10—C11—C121.4 (3)
N2—N1—C1—C6159.53 (14)C10—C11—C12—C70.9 (3)
N1—N2—C20—C19163.92 (13)C18—C13—C14—C151.8 (2)
N1—N2—C20—C215.6 (2)C21—C13—C18—C17178.47 (16)
N1—C1—C6—C5177.52 (15)C14—C13—C21—O230.3 (2)
C2—C1—C6—C52.0 (2)C14—C13—C21—C20152.55 (15)
N1—C1—C2—C3177.48 (14)C18—C13—C21—O2147.25 (16)
C6—C1—C2—C32.1 (2)C18—C13—C21—C2029.9 (2)
C1—C2—C3—Cl1179.79 (12)C21—C13—C14—C15179.39 (16)
C1—C2—C3—C40.8 (2)C14—C13—C18—C170.9 (3)
Cl1—C3—C4—C5178.97 (14)C13—C14—C15—C161.4 (3)
C2—C3—C4—C50.4 (3)C14—C15—C16—C170.2 (3)
C3—C4—C5—C60.5 (3)C15—C16—C17—C180.7 (3)
C4—C5—C6—C10.8 (3)C16—C17—C18—C130.3 (3)
C19—C7—C8—C9178.70 (14)O1—C19—C20—N2136.93 (14)
C8—C7—C12—C110.5 (2)C7—C19—C20—C21147.85 (13)
C8—C7—C19—O112.4 (2)O1—C19—C20—C2133.1 (2)
C8—C7—C19—C20166.55 (13)C7—C19—C20—N242.09 (19)
C19—C7—C12—C11177.53 (15)N2—C20—C21—O216.7 (2)
C12—C7—C8—C91.5 (2)N2—C20—C21—C13160.48 (14)
C12—C7—C19—C2016.4 (2)C19—C20—C21—O2152.33 (14)
C12—C7—C19—O1164.61 (14)C19—C20—C21—C1330.5 (2)
C7—C8—C9—C101.0 (3)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+2; (iii) x, y, z+2; (iv) x1/2, y+1/2, z+3/2; (v) x, y1, z; (vi) x1/2, y1/2, z+3/2; (vii) x+1/2, y+1/2, z+1/2; (viii) x, y+1, z+2; (ix) x1/2, y+1/2, z1/2; (x) x1/2, y1/2, z1/2; (xi) x+1/2, y1/2, z+1/2; (xii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.922 (17)1.930 (18)2.6205 (18)130.1 (14)
C12—H12···N20.932.553.016 (2)111
N1—H1···O1iii0.922 (17)2.628 (17)3.344 (3)135.0 (13)
C6—H6···O1iii0.932.633.390 (2)140
Symmetry code: (iii) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC21H15ClN2O2
Mr362.80
Crystal system, space groupMonoclinic, P21/n
Temperature (K)297
a, b, c (Å)10.2970 (9), 10.3526 (9), 16.8926 (15)
β (°) 102.131 (1)
V3)1760.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.60 × 0.31 × 0.23
Data collection
DiffractometerBruker D8 Discover with SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11123, 3573, 2657
Rint0.042
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.119, 0.98
No. of reflections3573
No. of parameters239
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.16

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL/PC (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.922 (17)1.930 (18)2.6205 (18)130.1 (14)
C12—H12···N20.932.553.016 (2)111
N1—H1···O1i0.922 (17)2.628 (17)3.3435 (27)135.0 (13)
C6—H6···O1i0.932.633.390 (2)140
Symmetry code: (i) x, y, z+2.
 

Acknowledgements

The authors thank the FONDECYT (grant Nos. 11100446 and 1080269) and Universidad Andrés Bello (grant No. DI-06–10-R).

References

First citationBertolasi, V., Ferretti, V., Gilli, P., Gilli, G., Issa, Y. M. & Sherif, O. E. (1993). J. Chem. Soc. Perkin Trans. 2, pp. 2223–2228.  CSD CrossRef Web of Science Google Scholar
First citationBertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1994b). Acta Cryst. B50, 617–625.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBertolasi, V., Nanni, L., Gilli, P., Ferretti, V., Gilli, G., Issa, Y. M. & Sherif, O. E. (1994a). New J. Chem. 18, 251–261.  CAS Google Scholar
First citationBruker (2000). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBustos, C., Sánchez, C., Martínez, R., Ugarte, R., Schott, E., Carey, D. M. L., Garland, M. T. & Espinoza, L. (2007). Dyes Pigments, 74, 615-621.  CSD CrossRef CAS Google Scholar
First citationBustos, C., Schott, E., Ríos, M., Sánchez, C. & Cárcamo, J. G. (2009). J. Chil. Chem. Soc. 54, 267–268.  CrossRef CAS Google Scholar
First citationInabe, T. (1991). New J. Chem. 15, 129–136.  CAS Google Scholar
First citationKrygowski, T. M., Wozniak, K., Anulewicz, R., Pawlak, D., Kolodziejski, W., Grech, E. & Szady, A. (1997). J. Phys. Chem. A, 101, 9399–9404.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOlivieri, A. C., Wilson, R. B., Paul, I. C. & Curtin, D. Y. (1989). J. Am. Chem. Soc. 111, 5525–5532.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, H. C. (1964). J. Org. Chem. 29, 2959–2962.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1450-o1451
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds