organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­ethyl­ammonium [2-eth­­oxy­carbonyl-2-(2-methyl­benz­yl)-6,9-di­nitro-3-oxo­bi­cyclo­[3.3.1]non-6-en-8-yl­­idene]azinate

aPG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India, and bDepartment of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, Tamil Nadu, India
*Correspondence e-mail: kalaivbalaj@yahoo.co.in

(Received 9 April 2011; accepted 12 May 2011; online 20 May 2011)

In the title salt, C6H16N+·C20H20N3O9, the cations and anions are connected by N—H⋯O hydrogen bonds. The structure is consolidated by weak C—H⋯O inter­actions.

Related literature

For general background to adducts containing a bicyclic [3.3.1]nonane skeleton and the synthesis of closely related compounds, see: Gnanadoss & Kalaivani (1985[Gnanadoss, L. M. & Kalaivani, D. (1985). J. Org. Chem. 50, 1174-1177.]). For related structures, see: Balasubramani et al. (2011[Balasubramani, K., Kalaivani, D., Malarvizhi, R., Subbalakshmi, R., Thomas Muthiah, P., Bocelli, G. & Cantoni, A. (2011). J. Chem. Crystallogr. 41, 767-773.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C6H16N+·C20H20N3O9

  • Mr = 548.59

  • Triclinic, [P \overline 1]

  • a = 8.2820 (3) Å

  • b = 10.9776 (4) Å

  • c = 15.9881 (6) Å

  • α = 97.103 (2)°

  • β = 100.991 (5)°

  • γ = 93.283 (2)°

  • V = 1411.08 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.981

  • 25290 measured reflections

  • 4754 independent reflections

  • 3459 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.197

  • S = 1.07

  • 4754 reflections

  • 361 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1A⋯O4i 0.97 (4) 1.78 (4) 2.740 (3) 168 (3)
C17—H17A⋯O7ii 0.96 2.55 3.434 (5) 154
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SIR92 (Altomare et al., 1993)[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

A series of adducts containing bicycle [3.3.1]nonane skeleton, closely related to the title molecule, has been synthesized in our laboratory (Gnanadoss & Kalaivani, 1985). We have recently reported the structures of two such bicyclic molecules derived from 1,3,5-trinitrobenzene, ethyl 2-benzyl-3-oxobutanoate / ethyl 2(4-nitrophenylmethyl)-3-oxobutanoate and triethylamine (Balasubramani et al., 2011). In this article we report the crystal structure of the title compound (Fig. 1) which is a bicyclic adduct derived from 1,3,5-trinitrobenzene, ethyl 2(2-methylphenylmethyl)-3-oxobutanoate and triethylamine. The values of puckering parameters (Cremer & Pople, 1975) of the six membered ring (C1/C2/C3/C4/C5/C9) atoms: Q = 0.501 (3) Å, θ = 52.6 (3)° and ϕ = 304.1 (4)°, imply that this ring has slightly distorted chair conformation. The puckering parameters of another six membered ring (C1/C8/C7/C6/C5/C9) with values, Q = 0.604 (3) Å, θ = 170.5 (3)° and ϕ = 119.4 (16)°, indicated that it has slightly distorted envelope conformation. The hydrogen bonding observed between the N–H group of triethylammonium cation and oxygen atom of the nitronate ion (Tab. 1 & Fig. 2) may probably be the driving force for the extraordinary stability of the adduct.

Related literature top

For general background to adducts containing a bicyclic [3.3.1]nonane skeleton and the synthesis of closely related compounds, see: Gnanadoss & Kalaivani (1985). For related structures, see: Balasubramani et al. (2011). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A saturated ethanolic solution of 1,3,5-trinitrobenzene (2.1 g, 0.01 mol) was mixed with a saturated ethanolic solution of ethyl 2(2-methylphenylmethyl)-3-oxobutanoate (2.3 g, 0.01 mol). To this mixture triethylamine (6 ml) was added and shaken well for about two hours. The resulting maroon red coloured solution was kept as such for twenty four hours till the colour changed from maroon red to orange red. The orange solution was distilled under reduced pressure to get a viscous mass which was washed repeatedly with 100 ml of dry ether and redissolved in absolute alcohol (20 ml). To the alcoholic solution, 200 ml of dry ether was added and refrigerated between 273 - 283 K for 6 h to get the red orange crystals of the title compound (yield 60%). Single crystals were obtained from ethanol at room temperature by slow evaporation (m.p. 409 (2) K).

Refinement top

The hydrogen atom bound to the N atom waas located from a difference electron density map and allowed to refine freely. The rest of the hydrogen atoms were identified from the difference electron density peak and were included in the refinement with the following constraints: C—H = 0.93, 0.97, 0.96 and 0.98Å for aromatic, methylene, methyl and methyne groups, respectively, and Uiso(H) = 1.5Ueq(methyl C) or 1.2Ueq(the rest C/N atoms).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the displacement ellipsoids plotted at 30% probability level.
[Figure 2] Fig. 2. Unit cell packing of the title compound showing hydrogen bonds.
Triethylammonium [2-ethoxycarbonyl-2-(2-methylbenzyl)-6,9-dinitro- 3-oxobicyclo[3.3.1]non-6-en-8-ylidene]azinate top
Crystal data top
C6H16N+·C20H20N3O9Z = 2
Mr = 548.59F(000) = 584
Triclinic, P1Dx = 1.291 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2820 (3) ÅCell parameters from 7927 reflections
b = 10.9776 (4) Åθ = 2.1–23.8°
c = 15.9881 (6) ŵ = 0.10 mm1
α = 97.103 (2)°T = 293 K
β = 100.991 (5)°Prism, red
γ = 93.283 (2)°0.30 × 0.25 × 0.20 mm
V = 1411.08 (9) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4754 independent reflections
Radiation source: fine-focus sealed tube3459 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scansθmax = 24.6°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 96
Tmin = 0.971, Tmax = 0.981k = 1212
25290 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.197H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.1121P)2 + 0.3791P]
where P = (Fo2 + 2Fc2)/3
4754 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C6H16N+·C20H20N3O9γ = 93.283 (2)°
Mr = 548.59V = 1411.08 (9) Å3
Triclinic, P1Z = 2
a = 8.2820 (3) ÅMo Kα radiation
b = 10.9776 (4) ŵ = 0.10 mm1
c = 15.9881 (6) ÅT = 293 K
α = 97.103 (2)°0.30 × 0.25 × 0.20 mm
β = 100.991 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4754 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3459 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.981Rint = 0.027
25290 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.197H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.42 e Å3
4754 reflectionsΔρmin = 0.23 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8740 (3)0.2324 (2)0.75355 (15)0.0522 (6)
H10.82180.14920.73210.063*
C20.8230 (3)0.27903 (19)0.83970 (14)0.0466 (5)
C30.9196 (3)0.4041 (2)0.87753 (14)0.0496 (5)
C41.1035 (3)0.4074 (3)0.88464 (16)0.0614 (7)
H4A1.15010.35790.92800.074*
H4B1.15170.49150.90240.074*
C51.1458 (3)0.3578 (3)0.79762 (17)0.0646 (7)
H51.26550.35480.80430.078*
C61.0857 (3)0.4370 (3)0.73069 (16)0.0602 (6)
C70.9348 (3)0.4139 (2)0.67895 (15)0.0563 (6)
H70.90160.46540.63800.068*
C80.8283 (3)0.3146 (2)0.68587 (14)0.0503 (5)
C91.0620 (3)0.2288 (3)0.77050 (17)0.0633 (7)
H91.09420.18030.81760.076*
C100.6325 (3)0.2887 (2)0.82428 (16)0.0529 (6)
H10A0.61110.37230.81440.064*
H10B0.58190.23460.77210.064*
C110.5488 (2)0.2574 (2)0.89530 (15)0.0503 (6)
C120.4672 (3)0.1425 (2)0.8923 (2)0.0699 (8)
C130.3932 (4)0.1216 (4)0.9618 (3)0.1014 (13)
H130.33740.04540.96110.122*
C140.4015 (5)0.2119 (6)1.0311 (3)0.1091 (14)
H140.35260.19581.07670.131*
C150.4793 (4)0.3219 (4)1.0328 (2)0.0907 (10)
H150.48430.38271.07940.109*
C160.5510 (3)0.3450 (3)0.96667 (18)0.0656 (7)
H160.60400.42270.96880.079*
C170.4587 (5)0.0413 (3)0.8189 (3)0.1157 (14)
H17A0.41670.07110.76570.173*
H17B0.38690.02700.82570.173*
H17C0.56720.01510.81840.173*
C180.8679 (3)0.1858 (2)0.90228 (17)0.0548 (6)
C190.9359 (4)0.1581 (3)1.0482 (2)0.0841 (9)
H19A0.86040.08441.03230.101*
H19B1.04770.13371.05340.101*
C200.9144 (5)0.2231 (4)1.1295 (2)0.1043 (12)
H20A0.99400.29311.14650.156*
H20B0.92970.16901.17260.156*
H20C0.80510.25031.12310.156*
C210.7584 (5)0.7677 (5)0.5416 (3)0.1150 (14)
H21A0.84170.79010.59370.138*
H21B0.76350.83240.50580.138*
C220.7964 (7)0.6475 (5)0.4941 (3)0.1389 (19)
H22A0.79310.58340.52960.208*
H22B0.90430.65720.48080.208*
H22C0.71580.62600.44170.208*
C230.5420 (6)0.8821 (3)0.5943 (2)0.1097 (14)
H23A0.56590.93860.55530.132*
H23B0.60750.91220.65090.132*
C240.3634 (7)0.8812 (5)0.5984 (3)0.1381 (18)
H24A0.29810.84180.54460.207*
H24B0.33450.96430.60930.207*
H24C0.34260.83670.64390.207*
C250.5726 (4)0.6660 (3)0.62405 (19)0.0764 (8)
H25A0.59360.58600.59690.092*
H25B0.45930.66060.63200.092*
C260.6848 (6)0.6938 (5)0.7104 (2)0.1209 (14)
H26A0.79750.69520.70350.181*
H26B0.66410.63140.74500.181*
H26C0.66470.77260.73810.181*
N11.1922 (3)0.5370 (3)0.71987 (16)0.0803 (7)
N20.6879 (3)0.2852 (2)0.62465 (13)0.0589 (5)
N31.1120 (4)0.1648 (3)0.6904 (2)0.0924 (9)
N40.5911 (3)0.7588 (2)0.56488 (14)0.0652 (6)
O10.8513 (2)0.49432 (16)0.89576 (13)0.0696 (5)
O21.3326 (3)0.5515 (3)0.76464 (16)0.1121 (9)
O31.1441 (3)0.6069 (2)0.66769 (16)0.1045 (8)
O40.6478 (2)0.35738 (18)0.56828 (12)0.0768 (6)
O50.5978 (2)0.18796 (18)0.62164 (12)0.0731 (5)
O61.0281 (5)0.0774 (4)0.6518 (3)0.186 (2)
O71.2365 (4)0.2025 (3)0.67191 (19)0.1193 (10)
O80.8667 (3)0.07679 (17)0.88015 (14)0.0816 (6)
O90.9032 (2)0.23944 (15)0.98232 (11)0.0595 (5)
H1A0.514 (4)0.723 (3)0.513 (2)0.095 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0455 (12)0.0509 (13)0.0581 (14)0.0135 (10)0.0020 (10)0.0073 (10)
C20.0407 (11)0.0461 (12)0.0531 (13)0.0101 (9)0.0025 (9)0.0144 (10)
C30.0502 (13)0.0544 (14)0.0450 (12)0.0042 (10)0.0049 (9)0.0162 (10)
C40.0473 (13)0.0828 (17)0.0515 (14)0.0030 (12)0.0030 (10)0.0225 (12)
C50.0355 (12)0.097 (2)0.0641 (16)0.0140 (12)0.0045 (10)0.0258 (14)
C60.0472 (13)0.0812 (17)0.0544 (14)0.0032 (12)0.0098 (11)0.0187 (12)
C70.0554 (14)0.0666 (15)0.0481 (13)0.0146 (11)0.0067 (10)0.0136 (11)
C80.0451 (12)0.0563 (13)0.0467 (12)0.0123 (10)0.0005 (9)0.0063 (10)
C90.0540 (14)0.0765 (17)0.0651 (16)0.0282 (12)0.0135 (12)0.0193 (13)
C100.0403 (12)0.0554 (13)0.0621 (14)0.0109 (10)0.0007 (10)0.0158 (11)
C110.0336 (11)0.0555 (13)0.0607 (14)0.0095 (9)0.0008 (9)0.0145 (11)
C120.0512 (14)0.0622 (16)0.090 (2)0.0012 (12)0.0058 (13)0.0210 (14)
C130.0624 (19)0.112 (3)0.140 (4)0.0064 (18)0.017 (2)0.070 (3)
C140.071 (2)0.185 (5)0.089 (3)0.037 (3)0.0249 (19)0.061 (3)
C150.0661 (19)0.144 (3)0.067 (2)0.039 (2)0.0154 (15)0.016 (2)
C160.0492 (14)0.0706 (16)0.0715 (18)0.0159 (12)0.0008 (12)0.0013 (14)
C170.115 (3)0.070 (2)0.141 (3)0.0095 (19)0.013 (2)0.001 (2)
C180.0427 (12)0.0555 (15)0.0689 (17)0.0116 (10)0.0055 (11)0.0248 (12)
C190.086 (2)0.089 (2)0.084 (2)0.0114 (16)0.0068 (16)0.0532 (18)
C200.140 (3)0.108 (3)0.063 (2)0.007 (2)0.002 (2)0.0350 (19)
C210.102 (3)0.162 (4)0.076 (2)0.021 (3)0.007 (2)0.028 (2)
C220.151 (4)0.189 (5)0.110 (3)0.092 (4)0.062 (3)0.059 (3)
C230.172 (4)0.066 (2)0.080 (2)0.015 (2)0.004 (2)0.0009 (17)
C240.169 (5)0.129 (4)0.124 (4)0.081 (3)0.043 (3)0.000 (3)
C250.0835 (19)0.0757 (18)0.0698 (18)0.0101 (15)0.0087 (14)0.0179 (15)
C260.134 (3)0.157 (4)0.069 (2)0.027 (3)0.003 (2)0.035 (2)
N10.0673 (16)0.112 (2)0.0616 (14)0.0132 (14)0.0121 (12)0.0218 (14)
N20.0590 (12)0.0628 (13)0.0491 (12)0.0116 (10)0.0013 (9)0.0009 (10)
N30.0744 (18)0.112 (2)0.097 (2)0.0466 (17)0.0251 (16)0.0115 (18)
N40.0697 (14)0.0672 (14)0.0525 (13)0.0033 (11)0.0024 (11)0.0083 (10)
O10.0712 (12)0.0495 (10)0.0882 (13)0.0030 (8)0.0177 (10)0.0084 (9)
O20.0651 (14)0.168 (2)0.0964 (17)0.0373 (15)0.0001 (12)0.0372 (16)
O30.1073 (18)0.1152 (18)0.0907 (16)0.0244 (14)0.0072 (13)0.0478 (15)
O40.0826 (13)0.0792 (13)0.0575 (11)0.0114 (10)0.0186 (9)0.0151 (9)
O50.0713 (12)0.0704 (12)0.0649 (12)0.0075 (9)0.0074 (9)0.0011 (9)
O60.136 (3)0.192 (4)0.211 (4)0.007 (3)0.071 (3)0.104 (3)
O70.115 (2)0.155 (2)0.114 (2)0.0553 (18)0.0610 (17)0.0409 (18)
O80.0982 (15)0.0547 (12)0.0933 (15)0.0237 (10)0.0076 (11)0.0260 (10)
O90.0564 (10)0.0650 (10)0.0585 (11)0.0075 (8)0.0008 (8)0.0295 (9)
Geometric parameters (Å, º) top
C1—C81.501 (3)C17—H17C0.9600
C1—C91.532 (3)C18—O81.205 (3)
C1—C21.552 (3)C18—O91.312 (3)
C1—H10.9800C19—C201.451 (5)
C2—C181.530 (3)C19—O91.460 (3)
C2—C31.541 (3)C19—H19A0.9700
C2—C101.561 (3)C19—H19B0.9700
C3—O11.200 (3)C20—H20A0.9600
C3—C41.504 (3)C20—H20B0.9600
C4—C51.541 (4)C20—H20C0.9600
C4—H4A0.9700C21—N41.503 (5)
C4—H4B0.9700C21—C221.519 (6)
C5—C61.492 (4)C21—H21A0.9700
C5—C91.515 (4)C21—H21B0.9700
C5—H50.9800C22—H22A0.9600
C6—C71.352 (3)C22—H22B0.9600
C6—N11.417 (4)C22—H22C0.9600
C7—C81.391 (3)C23—N41.482 (4)
C7—H70.9300C23—C241.493 (6)
C8—N21.364 (3)C23—H23A0.9700
C9—N31.522 (4)C23—H23B0.9700
C9—H90.9800C24—H24A0.9600
C10—C111.502 (3)C24—H24B0.9600
C10—H10A0.9700C24—H24C0.9600
C10—H10B0.9700C25—N41.494 (4)
C11—C121.388 (3)C25—C261.496 (5)
C11—C161.395 (4)C25—H25A0.9700
C12—C131.403 (5)C25—H25B0.9700
C12—C171.500 (5)C26—H26A0.9600
C13—C141.381 (6)C26—H26B0.9600
C13—H130.9300C26—H26C0.9600
C14—C151.330 (6)N1—O31.228 (3)
C14—H140.9300N1—O21.234 (3)
C15—C161.350 (5)N2—O51.257 (3)
C15—H150.9300N2—O41.282 (3)
C16—H160.9300N3—O61.183 (4)
C17—H17A0.9600N3—O71.192 (4)
C17—H17B0.9600N4—H1A0.97 (4)
C8—C1—C9107.6 (2)H17A—C17—H17C109.5
C8—C1—C2112.97 (17)H17B—C17—H17C109.5
C9—C1—C2108.35 (19)O8—C18—O9124.8 (2)
C8—C1—H1109.3O8—C18—C2123.7 (2)
C9—C1—H1109.3O9—C18—C2111.5 (2)
C2—C1—H1109.3C20—C19—O9108.8 (3)
C18—C2—C3109.13 (18)C20—C19—H19A109.9
C18—C2—C1108.56 (18)O9—C19—H19A109.9
C3—C2—C1108.86 (18)C20—C19—H19B109.9
C18—C2—C10108.64 (17)O9—C19—H19B109.9
C3—C2—C10111.77 (18)H19A—C19—H19B108.3
C1—C2—C10109.82 (18)C19—C20—H20A109.5
O1—C3—C4122.3 (2)C19—C20—H20B109.5
O1—C3—C2122.0 (2)H20A—C20—H20B109.5
C4—C3—C2115.6 (2)C19—C20—H20C109.5
C3—C4—C5110.53 (19)H20A—C20—H20C109.5
C3—C4—H4A109.5H20B—C20—H20C109.5
C5—C4—H4A109.5N4—C21—C22112.3 (4)
C3—C4—H4B109.5N4—C21—H21A109.1
C5—C4—H4B109.5C22—C21—H21A109.2
H4A—C4—H4B108.1N4—C21—H21B109.1
C6—C5—C9109.4 (2)C22—C21—H21B109.1
C6—C5—C4111.0 (2)H21A—C21—H21B107.9
C9—C5—C4107.7 (2)C21—C22—H22A109.5
C6—C5—H5109.6C21—C22—H22B109.5
C9—C5—H5109.6H22A—C22—H22B109.5
C4—C5—H5109.6C21—C22—H22C109.5
C7—C6—N1119.4 (2)H22A—C22—H22C109.5
C7—C6—C5121.8 (2)H22B—C22—H22C109.5
N1—C6—C5118.7 (2)N4—C23—C24112.9 (3)
C6—C7—C8121.2 (2)N4—C23—H23A109.0
C6—C7—H7119.4C24—C23—H23A109.0
C8—C7—H7119.4N4—C23—H23B109.0
N2—C8—C7118.8 (2)C24—C23—H23B109.0
N2—C8—C1119.8 (2)H23A—C23—H23B107.8
C7—C8—C1121.1 (2)C23—C24—H24A109.5
C5—C9—N3112.2 (2)C23—C24—H24B109.5
C5—C9—C1110.36 (19)H24A—C24—H24B109.5
N3—C9—C1109.2 (2)C23—C24—H24C109.5
C5—C9—H9108.3H24A—C24—H24C109.5
N3—C9—H9108.3H24B—C24—H24C109.5
C1—C9—H9108.3N4—C25—C26114.3 (3)
C11—C10—C2116.14 (18)N4—C25—H25A108.7
C11—C10—H10A108.3C26—C25—H25A108.7
C2—C10—H10A108.3N4—C25—H25B108.7
C11—C10—H10B108.3C26—C25—H25B108.7
C2—C10—H10B108.3H25A—C25—H25B107.6
H10A—C10—H10B107.4C25—C26—H26A109.5
C12—C11—C16118.1 (2)C25—C26—H26B109.5
C12—C11—C10121.8 (2)H26A—C26—H26B109.5
C16—C11—C10120.1 (2)C25—C26—H26C109.5
C11—C12—C13117.7 (3)H26A—C26—H26C109.5
C11—C12—C17122.4 (3)H26B—C26—H26C109.5
C13—C12—C17119.9 (3)O3—N1—O2121.7 (3)
C14—C13—C12121.3 (3)O3—N1—C6120.3 (2)
C14—C13—H13119.3O2—N1—C6118.0 (3)
C12—C13—H13119.3O5—N2—O4119.20 (19)
C15—C14—C13120.2 (3)O5—N2—C8121.4 (2)
C15—C14—H14119.9O4—N2—C8119.4 (2)
C13—C14—H14119.9O6—N3—O7123.5 (4)
C14—C15—C16119.8 (4)O6—N3—C9118.0 (3)
C14—C15—H15120.1O7—N3—C9118.4 (3)
C16—C15—H15120.1C23—N4—C25113.9 (3)
C15—C16—C11122.8 (3)C23—N4—C21111.2 (3)
C15—C16—H16118.6C25—N4—C21113.6 (3)
C11—C16—H16118.6C23—N4—H1A109 (2)
C12—C17—H17A109.5C25—N4—H1A102.1 (19)
C12—C17—H17B109.5C21—N4—H1A106.2 (19)
H17A—C17—H17B109.5C18—O9—C19116.3 (2)
C12—C17—H17C109.5
C8—C1—C2—C18177.41 (18)C2—C10—C11—C1681.7 (3)
C9—C1—C2—C1863.5 (2)C16—C11—C12—C130.5 (4)
C8—C1—C2—C363.9 (2)C10—C11—C12—C13179.8 (2)
C9—C1—C2—C355.2 (2)C16—C11—C12—C17179.4 (3)
C8—C1—C2—C1058.8 (2)C10—C11—C12—C170.9 (4)
C9—C1—C2—C10177.86 (18)C11—C12—C13—C140.2 (5)
C18—C2—C3—O1116.9 (2)C17—C12—C13—C14178.7 (3)
C1—C2—C3—O1124.8 (2)C12—C13—C14—C150.7 (5)
C10—C2—C3—O13.3 (3)C13—C14—C15—C160.3 (5)
C18—C2—C3—C466.9 (2)C14—C15—C16—C110.5 (4)
C1—C2—C3—C451.4 (2)C12—C11—C16—C150.9 (4)
C10—C2—C3—C4172.89 (18)C10—C11—C16—C15179.4 (2)
O1—C3—C4—C5123.8 (3)C3—C2—C18—O8150.3 (2)
C2—C3—C4—C552.4 (3)C1—C2—C18—O831.8 (3)
C3—C4—C5—C663.0 (3)C10—C2—C18—O887.6 (3)
C3—C4—C5—C956.7 (3)C3—C2—C18—O931.3 (2)
C9—C5—C6—C727.1 (3)C1—C2—C18—O9149.86 (19)
C4—C5—C6—C791.7 (3)C10—C2—C18—O990.7 (2)
C9—C5—C6—N1151.1 (2)C7—C6—N1—O34.6 (4)
C4—C5—C6—N190.1 (3)C5—C6—N1—O3177.1 (3)
N1—C6—C7—C8178.2 (2)C7—C6—N1—O2175.9 (3)
C5—C6—C7—C80.0 (4)C5—C6—N1—O22.4 (4)
C6—C7—C8—N2170.9 (2)C7—C8—N2—O5171.1 (2)
C6—C7—C8—C12.6 (4)C1—C8—N2—O52.4 (3)
C9—C1—C8—N2142.2 (2)C7—C8—N2—O48.0 (3)
C2—C1—C8—N298.2 (2)C1—C8—N2—O4178.4 (2)
C9—C1—C8—C731.2 (3)C5—C9—N3—O6162.6 (4)
C2—C1—C8—C788.3 (3)C1—C9—N3—O640.0 (4)
C6—C5—C9—N366.1 (3)C5—C9—N3—O720.2 (4)
C4—C5—C9—N3173.18 (19)C1—C9—N3—O7142.8 (3)
C6—C5—C9—C155.9 (3)C24—C23—N4—C2563.4 (4)
C4—C5—C9—C164.9 (3)C24—C23—N4—C21166.6 (3)
C8—C1—C9—C557.4 (3)C26—C25—N4—C2365.5 (4)
C2—C1—C9—C565.0 (2)C26—C25—N4—C2163.3 (4)
C8—C1—C9—N366.3 (3)C22—C21—N4—C23168.0 (3)
C2—C1—C9—N3171.2 (2)C22—C21—N4—C2561.9 (4)
C18—C2—C10—C1126.0 (3)O8—C18—O9—C192.8 (4)
C3—C2—C10—C1194.5 (2)C2—C18—O9—C19175.5 (2)
C1—C2—C10—C11144.6 (2)C20—C19—O9—C18159.9 (3)
C2—C10—C11—C1298.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1A···O4i0.97 (4)1.78 (4)2.740 (3)168 (3)
C17—H17A···O7ii0.962.553.434 (5)154
C10—H10B···O50.972.433.244 (3)142
C17—H17C···O80.962.513.320 (5)142
C25—H25A···O40.972.583.516 (4)164
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC6H16N+·C20H20N3O9
Mr548.59
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.2820 (3), 10.9776 (4), 15.9881 (6)
α, β, γ (°)97.103 (2), 100.991 (5), 93.283 (2)
V3)1411.08 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.971, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
25290, 4754, 3459
Rint0.027
(sin θ/λ)max1)0.586
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.197, 1.07
No. of reflections4754
No. of parameters361
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.23

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1A···O4i0.97 (4)1.78 (4)2.740 (3)168 (3)
C17—H17A···O7ii0.962.553.434 (5)154
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
 

Acknowledgements

The authors thank the SAIF, IIT Madras, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBalasubramani, K., Kalaivani, D., Malarvizhi, R., Subbalakshmi, R., Thomas Muthiah, P., Bocelli, G. & Cantoni, A. (2011). J. Chem. Crystallogr. 41, 767–773.  CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGnanadoss, L. M. & Kalaivani, D. (1985). J. Org. Chem. 50, 1174–1177.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds