organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N6-(4-Fluoro­benz­yl)-3-nitro­pyridine-2,6-di­amine

aChangzhou Siyao Pharmaceuticals Co. Ltd, Changzhou 213004, People's Republic of China, and bOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 18 April 2011; accepted 17 May 2011; online 20 May 2011)

In the title compound, C12H11FN4O2, the pyridine ring is connected to a benzene ring by a –CH2—NH2- chain. The nitro group is twisted out of the pyridine ring plane [torsion angle O—N—C—C = 10.41 (10)°]. An intramolecular N—H⋯O hydrogen bond occurs. The fluoro­benzene ring is disordered over two positions [occupancy ratio = 0.59 (3):0.41 (3)]. Inter­molecular N—H⋯O and N—H⋯N hydrogen bonds stabilize the crystal structure.

Related literature

The title compound is an inter­mediate in the synthesis of analgesic drugs. For the analgesic properties of flupirtine (systematic name eth­yl{2-amino-6-[(4-fluoro­benz­yl)amino]­pyridin-3-yl}carbamate), see: Klawe & Maschke (2009[Klawe, C. & Maschke, M. (2009). Expert Opin. Pharmacother. 10, 1495-1500.]). For synthetic procedures, see: Gerhard & Ilia (2010[Gerhard. J & Ilia, F. (2010). Patent WO 2010/136113 A1, 2 December 2010.]). For a related structure, see: Wang (2009[Wang, B. (2009). Acta Cryst. E65, m861.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11FN4O2

  • Mr = 262.25

  • Monoclinic, P 21 /n

  • a = 14.8187 (14) Å

  • b = 5.9972 (6) Å

  • c = 14.8840 (15) Å

  • β = 109.827 (1)°

  • V = 1244.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.38 × 0.15 × 0.11 mm

Data collection
  • Rigaku SCXmini CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.960, Tmax = 0.988

  • 5923 measured reflections

  • 2184 independent reflections

  • 1169 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.140

  • S = 1.03

  • 2184 reflections

  • 227 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3B⋯O1 0.86 2.03 2.651 (3) 129
N3—H3A⋯N1i 0.86 2.17 3.028 (3) 174
N2—H2⋯O1ii 0.86 2.35 3.060 (3) 141
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Flupirtine, ethyl{2-amino-6-[(4-fluorobenzyl)amino]pyridin-3-yl}carbamate, is of great importance owing to its analgesic properties (Klawe & Maschke, 2009). In this article, we report the crystal structure of the title compound which is one of the key intermediates in the synthsis of analgesia drugs (Gerhard & Ilia, 2010).

In the title molecule (Fig. 1), a pyridine ring is connected with a benzene ring by –CH2—NH2- chain and the nitro group is twisted out of the pyridine ring plane [torsion angle O1—N4—C4—C5 = 10.41 (10)°]. The crystal structure is stabilized by intermolecular N—H···O and N—H···N hydrogen bonds (Figure 2 and Table 1).

Related literature top

The title compound is an intermediate in the synthesis of analgesic drugs. For the analgesic properties of flupirtine (systematic name ethyl{2-amino-6-[(4-fluorobenzyl)amino]pyridin-3-yl}carbamate), see: Klawe & Maschke (2009). For synthetic procedures, see: Gerhard & Ilia (2010). For a related structure, see: Wang (2009).

Experimental top

To a solution of 2-amino-3-nitro-6-chloropyridine (7.8 g, 45 mmol) in 2-propanol (50 ml) were added 4-fluorobenzylamine (5.63 g, 45 mmol) and triethylamine (6.45 g,64 mmol) (Gerhard & Ilia, 2010). Then another 30 ml 2-propanol was add to the above solution. The mixture was heated to backflow and stirred for 3 h. Then 100 ml water was add to the mixture to obtain the title compound which was recrystallized from ethanol by slow evaporation (yield 10.2 g, 91%).

Refinement top

H atoms bonded to C atoms were placed geometrically and treated as riding, with C—H = 0.93 (benzene ring) or 0.97 Å (methylene) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N) or Uiso(H) = 1.5Ueq(methylene). The fluoro benzene ring was disordered over two positions with site occupancy factors 0.59 (3) and 0.41 (3).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP (Farrugia, 1997) view of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Smaller fraction of the fluorobenzene ring has been plotted with hollow bonds.
[Figure 2] Fig. 2. A packing diagram of the title compound showing hydrogen bonds. Smaller fraction of the fluorobenzene ring has been excluded.
N6-(4-Fluorobenzyl)-3-nitropyridine-2,6-diamine top
Crystal data top
C12H11FN4O2F(000) = 544
Mr = 262.25Dx = 1.400 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1144 reflections
a = 14.8187 (14) Åθ = 2.4–26.9°
b = 5.9972 (6) ŵ = 0.11 mm1
c = 14.8840 (15) ÅT = 298 K
β = 109.827 (1)°Prism, yellow
V = 1244.3 (2) Å30.38 × 0.15 × 0.11 mm
Z = 4
Data collection top
Rigaku SCXmini CCD
diffractometer
2184 independent reflections
Radiation source: fine-focus sealed tube1169 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 8.192 pixels mm-1θmax = 25.0°, θmin = 2.4°
ϕ and ω scansh = 1417
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 57
Tmin = 0.960, Tmax = 0.988l = 1717
5923 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0585P)2]
where P = (Fo2 + 2Fc2)/3
2184 reflections(Δ/σ)max = 0.001
227 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C12H11FN4O2V = 1244.3 (2) Å3
Mr = 262.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.8187 (14) ŵ = 0.11 mm1
b = 5.9972 (6) ÅT = 298 K
c = 14.8840 (15) Å0.38 × 0.15 × 0.11 mm
β = 109.827 (1)°
Data collection top
Rigaku SCXmini CCD
diffractometer
2184 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1169 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.988Rint = 0.056
5923 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
2184 reflectionsΔρmin = 0.22 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.6846 (16)0.5113 (18)0.0036 (13)0.121 (4)0.59 (3)
F1'0.7330 (17)0.538 (2)0.050 (2)0.105 (5)0.41 (3)
N10.55771 (13)0.2584 (4)0.46588 (14)0.0474 (6)
N20.49151 (15)0.4615 (4)0.33021 (15)0.0608 (7)
H20.44530.36660.31730.073*
N30.61662 (15)0.0425 (4)0.59818 (14)0.0597 (7)
H3A0.56700.04130.57540.072*
H3B0.65930.01090.65230.072*
N40.78769 (16)0.3201 (4)0.66405 (17)0.0611 (7)
O10.78379 (14)0.1726 (4)0.72145 (14)0.0792 (7)
O20.86264 (15)0.4308 (4)0.68041 (15)0.0852 (7)
C10.56363 (18)0.4356 (5)0.41323 (18)0.0487 (7)
C20.6413 (2)0.5883 (5)0.4429 (2)0.0604 (8)
H2A0.64290.71260.40610.072*
C30.71288 (19)0.5481 (5)0.5260 (2)0.0581 (8)
H30.76490.64480.54630.070*
C40.70977 (17)0.3639 (4)0.58174 (18)0.0488 (7)
C50.62743 (17)0.2205 (4)0.54982 (17)0.0454 (6)
C60.4844 (2)0.6355 (5)0.2601 (2)0.0666 (8)
H6A0.50200.77650.29340.080*
H6B0.41800.64700.21880.080*
C70.5459 (2)0.6006 (5)0.1989 (2)0.0611 (8)
C80.6128 (14)0.425 (4)0.2145 (16)0.067 (4)0.59 (3)
H80.61950.32240.26320.081*0.59 (3)
C90.669 (3)0.407 (6)0.156 (3)0.097 (7)0.59 (3)
H90.72250.31490.17120.116*0.59 (3)
C100.6390 (18)0.540 (6)0.071 (2)0.087 (6)0.59 (3)
C110.5858 (15)0.726 (3)0.0609 (13)0.082 (4)0.59 (3)
H110.58230.83290.01450.099*0.59 (3)
C120.5373 (18)0.747 (4)0.1241 (16)0.072 (4)0.59 (3)
H120.49580.86690.11640.086*0.59 (3)
C8'0.581 (2)0.398 (6)0.186 (2)0.081 (6)0.41 (3)
H8'0.56310.27330.21370.097*0.41 (3)
C9'0.641 (3)0.369 (8)0.134 (3)0.086 (8)0.41 (3)
H9'0.66030.22680.12250.103*0.41 (3)
C10'0.673 (3)0.559 (7)0.098 (3)0.078 (7)0.41 (3)
C11'0.626 (2)0.753 (4)0.099 (2)0.082 (6)0.41 (3)
H11'0.63500.87190.06300.099*0.41 (3)
C12'0.566 (2)0.782 (7)0.152 (3)0.080 (7)0.41 (3)
H12'0.53930.92130.15500.096*0.41 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.158 (10)0.109 (4)0.135 (8)0.014 (5)0.100 (7)0.009 (5)
F1'0.124 (10)0.090 (5)0.141 (11)0.018 (6)0.097 (9)0.018 (6)
N10.0386 (12)0.0553 (15)0.0437 (12)0.0061 (10)0.0080 (10)0.0023 (11)
N20.0504 (14)0.0698 (17)0.0557 (14)0.0039 (11)0.0096 (12)0.0163 (12)
N30.0514 (13)0.0679 (17)0.0481 (12)0.0160 (12)0.0016 (11)0.0080 (12)
N40.0469 (15)0.0722 (18)0.0548 (15)0.0129 (13)0.0050 (13)0.0155 (14)
O10.0631 (13)0.0991 (18)0.0574 (12)0.0146 (12)0.0030 (10)0.0125 (12)
O20.0537 (13)0.0941 (18)0.0881 (15)0.0231 (12)0.0015 (11)0.0111 (13)
C10.0441 (15)0.0529 (18)0.0504 (15)0.0001 (13)0.0180 (13)0.0025 (14)
C20.0638 (18)0.0505 (19)0.0666 (19)0.0090 (15)0.0218 (16)0.0059 (14)
C30.0485 (16)0.0545 (19)0.0687 (18)0.0170 (14)0.0165 (15)0.0079 (16)
C40.0418 (15)0.0527 (18)0.0478 (15)0.0069 (12)0.0100 (13)0.0068 (13)
C50.0399 (14)0.0534 (18)0.0417 (14)0.0054 (13)0.0121 (12)0.0031 (13)
C60.0653 (19)0.071 (2)0.0636 (18)0.0142 (16)0.0224 (16)0.0190 (16)
C70.0670 (19)0.054 (2)0.0666 (19)0.0078 (16)0.0278 (16)0.0107 (16)
C80.078 (9)0.056 (7)0.074 (8)0.010 (6)0.034 (7)0.010 (6)
C90.108 (15)0.074 (14)0.122 (15)0.017 (10)0.056 (12)0.005 (9)
C100.101 (14)0.081 (11)0.102 (13)0.014 (11)0.063 (10)0.009 (9)
C110.101 (10)0.073 (7)0.083 (8)0.011 (7)0.044 (7)0.024 (6)
C120.082 (11)0.064 (9)0.079 (10)0.015 (7)0.039 (8)0.019 (7)
C8'0.101 (18)0.060 (9)0.090 (16)0.004 (11)0.045 (12)0.012 (10)
C9'0.11 (2)0.057 (12)0.111 (19)0.010 (13)0.069 (16)0.007 (13)
C10'0.096 (18)0.057 (10)0.11 (2)0.003 (13)0.066 (14)0.010 (12)
C11'0.098 (14)0.067 (9)0.098 (14)0.004 (9)0.054 (11)0.019 (10)
C12'0.091 (17)0.062 (10)0.097 (19)0.003 (11)0.044 (13)0.010 (11)
Geometric parameters (Å, º) top
F1—C101.39 (3)C6—H6B0.9700
F1'—C10'1.32 (4)C7—C8'1.36 (3)
N1—C11.341 (3)C7—C12'1.38 (4)
N1—C51.343 (3)C7—C121.39 (3)
N2—C11.341 (3)C7—C81.41 (2)
N2—C61.454 (3)C8—C91.40 (4)
N2—H20.8600C8—H80.9300
N3—C51.327 (3)C9—C101.43 (5)
N3—H3A0.8600C9—H90.9300
N3—H3B0.8600C10—C111.35 (4)
N4—O11.245 (3)C11—C121.37 (3)
N4—O21.245 (3)C11—H110.9300
N4—C41.394 (3)C12—H120.9300
C1—C21.419 (4)C8'—C9'1.38 (6)
C2—C31.350 (4)C8'—H8'0.9300
C2—H2A0.9300C9'—C10'1.41 (7)
C3—C41.392 (4)C9'—H9'0.9300
C3—H30.9300C10'—C11'1.36 (5)
C4—C51.436 (3)C11'—C12'1.38 (4)
C6—C71.506 (4)C11'—H11'0.9300
C6—H6A0.9700C12'—H12'0.9300
C1—N1—C5119.7 (2)C12—C7—C8118.1 (15)
C1—N2—C6125.8 (2)C8'—C7—C6123.0 (15)
C1—N2—H2117.1C12'—C7—C6118.4 (18)
C6—N2—H2117.1C12—C7—C6119.2 (12)
C5—N3—H3A120.0C8—C7—C6122.6 (10)
C5—N3—H3B120.0C9—C8—C7119 (2)
H3A—N3—H3B120.0C9—C8—H8120.4
O1—N4—O2119.4 (2)C7—C8—H8120.4
O1—N4—C4121.3 (2)C8—C9—C10116 (3)
O2—N4—C4119.3 (3)C8—C9—H9122.0
N2—C1—N1116.1 (2)C10—C9—H9122.0
N2—C1—C2121.4 (3)C11—C10—F1116 (2)
N1—C1—C2122.5 (2)C11—C10—C9123 (3)
C3—C2—C1118.1 (3)F1—C10—C9119 (3)
C3—C2—H2A120.9C10—C11—C12115 (2)
C1—C2—H2A120.9C10—C11—H11122.5
C2—C3—C4120.9 (3)C12—C11—H11122.5
C2—C3—H3119.6C11—C12—C7125 (2)
C4—C3—H3119.6C11—C12—H12117.7
C3—C4—N4119.2 (2)C7—C12—H12117.7
C3—C4—C5118.3 (2)C7—C8'—C9'123 (3)
N4—C4—C5122.4 (2)C7—C8'—H8'118.7
N3—C5—N1116.4 (2)C9'—C8'—H8'118.7
N3—C5—C4123.2 (2)C8'—C9'—C10'119 (4)
N1—C5—C4120.4 (2)C8'—C9'—H9'120.7
N2—C6—C7115.0 (2)C10'—C9'—H9'120.7
N2—C6—H6A108.5F1'—C10'—C11'122 (3)
C7—C6—H6A108.5F1'—C10'—C9'120 (4)
N2—C6—H6B108.5C11'—C10'—C9'116 (4)
C7—C6—H6B108.5C10'—C11'—C12'123 (3)
H6A—C6—H6B107.5C10'—C11'—H11'118.3
C8'—C7—C12'119 (2)C12'—C11'—H11'118.3
C8'—C7—C12112.9 (17)C7—C12'—C11'119 (3)
C12'—C7—C1221.8 (14)C7—C12'—H12'120.7
C8'—C7—C822.5 (12)C11'—C12'—H12'120.7
C12'—C7—C8114.4 (19)
C6—N2—C1—N1177.6 (2)C12—C7—C8—C91.3 (19)
C6—N2—C1—C22.4 (4)C6—C7—C8—C9178.4 (13)
C5—N1—C1—N2179.7 (2)C7—C8—C9—C1014 (3)
C5—N1—C1—C20.3 (4)C8—C9—C10—C1124 (3)
N2—C1—C2—C3178.1 (2)C8—C9—C10—F1172.7 (18)
N1—C1—C2—C32.0 (4)F1—C10—C11—C12176.8 (13)
C1—C2—C3—C40.9 (4)C9—C10—C11—C1219 (3)
C2—C3—C4—N4176.0 (2)C10—C11—C12—C75 (2)
C2—C3—C4—C51.5 (4)C8'—C7—C12—C1121 (2)
O1—N4—C4—C3171.9 (3)C12'—C7—C12—C1189 (8)
O2—N4—C4—C38.0 (4)C8—C7—C12—C113.6 (19)
O1—N4—C4—C510.7 (4)C6—C7—C12—C11176.7 (11)
O2—N4—C4—C5169.3 (2)C12'—C7—C8'—C9'5 (3)
C1—N1—C5—N3179.8 (2)C12—C7—C8'—C9'29 (3)
C1—N1—C5—C42.3 (3)C8—C7—C8'—C9'80 (6)
C3—C4—C5—N3179.0 (2)C6—C7—C8'—C9'177 (2)
N4—C4—C5—N33.6 (4)C7—C8'—C9'—C10'5 (4)
C3—C4—C5—N13.2 (4)C8'—C9'—C10'—F1'178 (3)
N4—C4—C5—N1174.2 (2)C8'—C9'—C10'—C11'14 (5)
C1—N2—C6—C777.2 (3)F1'—C10'—C11'—C12'177.8 (19)
N2—C6—C7—C8'20.6 (16)C9'—C10'—C11'—C12'15 (4)
N2—C6—C7—C12'161.0 (15)C8'—C7—C12'—C11'5 (2)
N2—C6—C7—C12174.1 (10)C12—C7—C12'—C11'85 (8)
N2—C6—C7—C86.3 (10)C8—C7—C12'—C11'20 (2)
C8'—C7—C8—C983 (6)C6—C7—C12'—C11'176.8 (13)
C12'—C7—C8—C923 (2)C10'—C11'—C12'—C76 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O10.862.032.651 (3)129
N3—H3A···N1i0.862.173.028 (3)174
N2—H2···O1ii0.862.353.060 (3)141
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H11FN4O2
Mr262.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)14.8187 (14), 5.9972 (6), 14.8840 (15)
β (°) 109.827 (1)
V3)1244.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.38 × 0.15 × 0.11
Data collection
DiffractometerRigaku SCXmini CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.960, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
5923, 2184, 1169
Rint0.056
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.140, 1.03
No. of reflections2184
No. of parameters227
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.22

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O10.862.032.651 (3)129
N3—H3A···N1i0.862.173.028 (3)174
N2—H2···O1ii0.862.353.060 (3)141
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z1/2.
 

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGerhard. J & Ilia, F. (2010). Patent WO 2010/136113 A1, 2 December 2010.  Google Scholar
First citationKlawe, C. & Maschke, M. (2009). Expert Opin. Pharmacother. 10, 1495–1500.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, B. (2009). Acta Cryst. E65, m861.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds