organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Butyl-3-(1-naphtho­yl)-1H-indole

aDepartment of Chemical Engineering, Nanjing College of Chemical Technology, Geguan Road No. 265 Nanjing, Nanjing 210048, People's Republic of China, bDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Geguan Road No. 265 Nanjing, Nanjing 210048, People's Republic of China, cNanjing Xiansheng Dongyuan Pharmaceutic Company Limited, Xinglong Road No. 8 Nanjing, Nanjing 211800, People's Republic of China, and dNanjing Sanhome Pharmaceutical Company Limited, Huizhong Road No. 9 Nanjing, Nanjing 210038, People's Republic of China
*Correspondence e-mail: njutshs@126.com

(Received 25 April 2011; accepted 3 May 2011; online 7 May 2011)

In the title mol­ecule, C23H21NO, the dihedral angle between the planes of the indole ring and naphthalene ring system is 68.8 (5)°.

Related literature

For background to cannabinoids and the synthesis of the title compound, see: Lindigkeit et al. (2009[Lindigkeit, R., Boehme, A., Eiserloh, I., Luebbecke, M., Wiggermann, M., Ernst, L. & Beuerle, T. (2009). Forensic Sci. Int. 191, 58-63.]). For related structures, see: Bodwell et al. (1999[Bodwell, G. J., Li, J. & Miller, D. O. (1999). Tetrahedron, 55, 12939-12956.]).

[Scheme 1]

Experimental

Crystal data
  • C23H21NO

  • Mr = 327.41

  • Orthorhombic, P b c a

  • a = 11.799 (2) Å

  • b = 11.529 (2) Å

  • c = 26.220 (5) Å

  • V = 3566.7 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.978, Tmax = 0.993

  • 6455 measured reflections

  • 3278 independent reflections

  • 1527 reflections with I > 2σ(I)

  • Rint = 0.060

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.172

  • S = 1.00

  • 3278 reflections

  • 226 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo,1995)[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is an analogue of JWH-018 (1-pentyl-3-(1-naphthoyl)indole), which has been banned in several European countries (Lindigkeit et al., 2009). The title molecule (Fig. 1) consists of a naphthalene ring (C14—C23), an ethyl carbonyl function (O/C13) and a butylgroup (C1—C4) attached to an indole ring (N/C5—C12). The indole ring makes a dihedral angle of 68.8 (5)° with the naphthalene ring. Bond lengths and angles in the title molecule agree very well with the corresponding bond lengths and angles reported in the crystal structure of a similar compound (Bodwell et al., 1999). There is an intramolecular C—H···O hydrogen bond (Fig. 1) in the molecule.

Related literature top

For background to cannabinoids and the synthesis of the title compound, see: Lindigkeit et al. (2009). For related structures, see: Bodwell et al. (1999).

Experimental top

The title compound was synthesized with standard chemical procedures. Crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.
1-Butyl-3-(1-naphthoyl)-1H-indole top
Crystal data top
C23H21NOF(000) = 1392
Mr = 327.41Dx = 1.219 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 11.799 (2) Åθ = 9–13°
b = 11.529 (2) ŵ = 0.07 mm1
c = 26.220 (5) ÅT = 293 K
V = 3566.7 (12) Å3Block, colorless
Z = 80.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1527 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.060
Graphite monochromatorθmax = 25.4°, θmin = 1.6°
ω/2θ scansh = 014
Absorption correction: ψ scan
(North et al., 1968)
k = 013
Tmin = 0.978, Tmax = 0.993l = 3131
6455 measured reflections3 standard reflections every 200 reflections
3278 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.076P)2]
where P = (Fo2 + 2Fc2)/3
3278 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.23 e Å3
2 restraintsΔρmin = 0.22 e Å3
Crystal data top
C23H21NOV = 3566.7 (12) Å3
Mr = 327.41Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.799 (2) ŵ = 0.07 mm1
b = 11.529 (2) ÅT = 293 K
c = 26.220 (5) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1527 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.060
Tmin = 0.978, Tmax = 0.9933 standard reflections every 200 reflections
6455 measured reflections intensity decay: 1%
3278 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0602 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.00Δρmax = 0.23 e Å3
3278 reflectionsΔρmin = 0.22 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.33878 (19)0.1821 (2)0.38062 (8)0.0896 (8)
N0.5094 (2)0.1691 (2)0.22477 (10)0.0720 (7)
C10.5288 (4)0.0609 (5)0.0666 (2)0.156 (2)
H1A0.58070.07920.03960.234*
H1B0.46700.01600.05320.234*
H1C0.50000.13130.08120.234*
C20.5860 (4)0.0044 (4)0.10484 (18)0.1259 (15)
H2A0.61660.07410.08940.151*
H2B0.64940.04100.11740.151*
C30.5113 (3)0.0397 (3)0.15065 (14)0.0906 (11)
H3A0.43980.07100.13870.109*
H3B0.49560.02750.17170.109*
C40.5736 (3)0.1292 (3)0.18091 (13)0.0867 (11)
H4A0.64490.09680.19250.104*
H4B0.59050.19480.15910.104*
C50.4183 (3)0.2454 (3)0.22338 (12)0.0654 (8)
C60.3752 (3)0.3079 (3)0.18239 (14)0.0816 (10)
H6A0.40700.30180.15000.098*
C70.2849 (3)0.3784 (3)0.19135 (15)0.0888 (11)
H7A0.25410.42070.16450.107*
C80.2378 (3)0.3884 (3)0.23963 (15)0.0871 (11)
H8A0.17590.43720.24450.105*
C90.2806 (3)0.3274 (3)0.28066 (13)0.0757 (9)
H9A0.24840.33490.31290.091*
C100.3734 (2)0.2544 (3)0.27273 (12)0.0641 (8)
C110.4419 (3)0.1806 (3)0.30453 (11)0.0641 (8)
C120.5221 (3)0.1329 (3)0.27286 (13)0.0735 (9)
H12A0.57820.08180.28360.088*
C130.4269 (3)0.1552 (3)0.35786 (12)0.0678 (8)
C140.5213 (3)0.0987 (3)0.38654 (11)0.0624 (8)
C150.6251 (3)0.1499 (3)0.38816 (13)0.0773 (10)
H15A0.63870.21500.36810.093*
C160.7121 (3)0.1070 (4)0.41931 (14)0.0879 (11)
H16A0.78200.14410.42040.106*
C170.6931 (3)0.0105 (4)0.44790 (14)0.0880 (11)
H17A0.75040.01670.46910.106*
C180.5889 (3)0.0496 (3)0.44627 (12)0.0719 (9)
C190.5016 (2)0.0031 (3)0.41518 (11)0.0613 (8)
C200.5676 (4)0.1507 (4)0.47493 (13)0.0901 (11)
H20A0.62340.17990.49640.108*
C210.4663 (4)0.2058 (3)0.47138 (15)0.0993 (12)
H21A0.45390.27300.49020.119*
C220.3820 (3)0.1639 (3)0.44055 (15)0.0896 (11)
H22A0.31360.20360.43820.108*
C230.3976 (3)0.0651 (3)0.41350 (12)0.0712 (9)
H23A0.33880.03710.39330.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0761 (15)0.1134 (19)0.0794 (16)0.0247 (14)0.0141 (12)0.0163 (14)
N0.0750 (18)0.0827 (19)0.0583 (17)0.0028 (16)0.0049 (14)0.0036 (14)
C10.166 (5)0.167 (5)0.137 (4)0.020 (4)0.029 (4)0.037 (4)
C20.116 (3)0.145 (4)0.117 (3)0.014 (3)0.004 (2)0.041 (3)
C30.087 (3)0.100 (3)0.085 (2)0.010 (2)0.0014 (19)0.015 (2)
C40.085 (2)0.106 (3)0.069 (2)0.006 (2)0.0142 (19)0.003 (2)
C50.0692 (19)0.0608 (19)0.066 (2)0.0120 (18)0.0054 (17)0.0082 (17)
C60.090 (2)0.080 (2)0.075 (2)0.018 (2)0.0100 (19)0.018 (2)
C70.103 (3)0.074 (2)0.090 (3)0.009 (2)0.025 (2)0.022 (2)
C80.087 (3)0.066 (2)0.108 (3)0.007 (2)0.019 (2)0.011 (2)
C90.078 (2)0.066 (2)0.083 (2)0.0035 (19)0.0036 (18)0.0010 (19)
C100.066 (2)0.0596 (18)0.067 (2)0.0090 (18)0.0052 (16)0.0030 (17)
C110.0660 (18)0.068 (2)0.0585 (18)0.0007 (17)0.0009 (16)0.0039 (16)
C120.067 (2)0.084 (2)0.069 (2)0.0045 (18)0.0007 (17)0.0070 (19)
C130.066 (2)0.070 (2)0.067 (2)0.0021 (18)0.0031 (17)0.0026 (17)
C140.0637 (19)0.072 (2)0.0515 (17)0.0081 (18)0.0028 (15)0.0037 (16)
C150.066 (2)0.092 (2)0.073 (2)0.004 (2)0.0071 (18)0.0024 (19)
C160.061 (2)0.117 (3)0.086 (3)0.003 (2)0.001 (2)0.020 (3)
C170.073 (2)0.117 (3)0.073 (2)0.023 (2)0.0098 (19)0.019 (2)
C180.077 (2)0.084 (2)0.0556 (19)0.019 (2)0.0035 (17)0.0137 (19)
C190.0624 (19)0.070 (2)0.0515 (17)0.0114 (18)0.0002 (15)0.0110 (16)
C200.114 (3)0.088 (3)0.068 (2)0.030 (3)0.008 (2)0.002 (2)
C210.133 (4)0.073 (3)0.092 (3)0.016 (3)0.004 (3)0.007 (2)
C220.105 (3)0.076 (2)0.088 (3)0.004 (2)0.005 (2)0.007 (2)
C230.077 (2)0.075 (2)0.062 (2)0.0064 (19)0.0006 (16)0.0081 (18)
Geometric parameters (Å, º) top
O—C131.238 (3)C9—H9A0.9300
N—C121.337 (3)C10—C111.439 (4)
N—C51.389 (4)C11—C121.373 (4)
N—C41.452 (4)C11—C131.440 (4)
C1—C21.425 (5)C12—H12A0.9300
C1—H1A0.9600C13—C141.494 (4)
C1—H1B0.9600C14—C151.361 (4)
C1—H1C0.9600C14—C191.412 (4)
C2—C31.545 (5)C15—C161.402 (5)
C2—H2A0.9700C15—H15A0.9300
C2—H2B0.9700C16—C171.360 (5)
C3—C41.494 (5)C16—H16A0.9300
C3—H3A0.9700C17—C181.412 (5)
C3—H3B0.9700C17—H17A0.9300
C4—H4A0.9700C18—C201.410 (5)
C4—H4B0.9700C18—C191.418 (4)
C5—C61.391 (4)C19—C231.420 (4)
C5—C101.402 (4)C20—C211.356 (5)
C6—C71.360 (4)C20—H20A0.9300
C6—H6A0.9300C21—C221.370 (5)
C7—C81.388 (5)C21—H21A0.9300
C7—H7A0.9300C22—C231.355 (4)
C8—C91.381 (4)C22—H22A0.9300
C8—H8A0.9300C23—H23A0.9300
C9—C101.397 (4)
C12—N—C5108.0 (3)C9—C10—C5118.6 (3)
C12—N—C4126.1 (3)C9—C10—C11135.2 (3)
C5—N—C4125.7 (3)C5—C10—C11106.2 (3)
C2—C1—H1A109.5C12—C11—C10105.9 (3)
C2—C1—H1B109.5C12—C11—C13126.2 (3)
H1A—C1—H1B109.5C10—C11—C13127.8 (3)
C2—C1—H1C109.5N—C12—C11111.6 (3)
H1A—C1—H1C109.5N—C12—H12A124.2
H1B—C1—H1C109.5C11—C12—H12A124.2
C1—C2—C3114.6 (4)O—C13—C11121.4 (3)
C1—C2—H2A108.6O—C13—C14119.5 (3)
C3—C2—H2A108.6C11—C13—C14119.1 (3)
C1—C2—H2B108.6C15—C14—C19119.5 (3)
C3—C2—H2B108.6C15—C14—C13119.8 (3)
H2A—C2—H2B107.6C19—C14—C13120.5 (3)
C4—C3—C2108.3 (3)C14—C15—C16121.6 (3)
C4—C3—H3A110.0C14—C15—H15A119.2
C2—C3—H3A110.0C16—C15—H15A119.2
C4—C3—H3B110.0C17—C16—C15119.3 (3)
C2—C3—H3B110.0C17—C16—H16A120.4
H3A—C3—H3B108.4C15—C16—H16A120.4
N—C4—C3112.5 (3)C16—C17—C18121.8 (3)
N—C4—H4A109.1C16—C17—H17A119.1
C3—C4—H4A109.1C18—C17—H17A119.1
N—C4—H4B109.1C20—C18—C17123.0 (4)
C3—C4—H4B109.1C20—C18—C19119.3 (3)
H4A—C4—H4B107.8C17—C18—C19117.7 (3)
N—C5—C6129.1 (3)C14—C19—C18120.0 (3)
N—C5—C10108.4 (3)C14—C19—C23122.9 (3)
C6—C5—C10122.5 (3)C18—C19—C23117.0 (3)
C7—C6—C5117.5 (3)C21—C20—C18120.5 (4)
C7—C6—H6A121.2C21—C20—H20A119.7
C5—C6—H6A121.2C18—C20—H20A119.7
C6—C7—C8121.4 (4)C20—C21—C22121.0 (4)
C6—C7—H7A119.3C20—C21—H21A119.5
C8—C7—H7A119.3C22—C21—H21A119.5
C9—C8—C7121.4 (4)C23—C22—C21120.4 (4)
C9—C8—H8A119.3C23—C22—H22A119.8
C7—C8—H8A119.3C21—C22—H22A119.8
C8—C9—C10118.6 (3)C22—C23—C19121.6 (3)
C8—C9—H9A120.7C22—C23—H23A119.2
C10—C9—H9A120.7C19—C23—H23A119.2
C1—C2—C3—C4166.9 (4)C10—C11—C13—O11.9 (5)
C12—N—C4—C398.8 (4)C12—C11—C13—C1418.0 (5)
C5—N—C4—C376.0 (4)C10—C11—C13—C14166.2 (3)
C2—C3—C4—N179.4 (3)O—C13—C14—C15120.9 (3)
C12—N—C5—C6177.7 (3)C11—C13—C14—C1557.2 (4)
C4—N—C5—C66.7 (5)O—C13—C14—C1954.4 (4)
C12—N—C5—C100.7 (3)C11—C13—C14—C19127.5 (3)
C4—N—C5—C10174.9 (3)C19—C14—C15—C162.8 (5)
N—C5—C6—C7179.3 (3)C13—C14—C15—C16172.5 (3)
C10—C5—C6—C71.1 (5)C14—C15—C16—C171.3 (5)
C5—C6—C7—C80.5 (5)C15—C16—C17—C181.5 (5)
C6—C7—C8—C90.1 (5)C16—C17—C18—C20179.0 (3)
C7—C8—C9—C100.1 (5)C16—C17—C18—C192.6 (5)
C8—C9—C10—C50.6 (4)C15—C14—C19—C181.5 (4)
C8—C9—C10—C11178.5 (3)C13—C14—C19—C18173.7 (3)
N—C5—C10—C9179.7 (2)C15—C14—C19—C23176.7 (3)
C6—C5—C10—C91.2 (4)C13—C14—C19—C238.1 (4)
N—C5—C10—C110.4 (3)C20—C18—C19—C14179.5 (3)
C6—C5—C10—C11178.1 (3)C17—C18—C19—C141.1 (4)
C9—C10—C11—C12179.1 (3)C20—C18—C19—C232.2 (4)
C5—C10—C11—C120.0 (3)C17—C18—C19—C23179.4 (3)
C9—C10—C11—C134.4 (6)C17—C18—C20—C21179.1 (3)
C5—C10—C11—C13176.5 (3)C19—C18—C20—C212.5 (5)
C5—N—C12—C110.7 (4)C18—C20—C21—C220.9 (6)
C4—N—C12—C11174.9 (3)C20—C21—C22—C231.1 (6)
C10—C11—C12—N0.5 (4)C21—C22—C23—C191.3 (5)
C13—C11—C12—N176.1 (3)C14—C19—C23—C22178.6 (3)
C12—C11—C13—O164.0 (3)C18—C19—C23—C220.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23A···O0.932.553.057 (4)115

Experimental details

Crystal data
Chemical formulaC23H21NO
Mr327.41
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)11.799 (2), 11.529 (2), 26.220 (5)
V3)3566.7 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.978, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
6455, 3278, 1527
Rint0.060
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.172, 1.00
No. of reflections3278
No. of parameters226
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationBodwell, G. J., Li, J. & Miller, D. O. (1999). Tetrahedron, 55, 12939–12956.  Web of Science CSD CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLindigkeit, R., Boehme, A., Eiserloh, I., Luebbecke, M., Wiggermann, M., Ernst, L. & Beuerle, T. (2009). Forensic Sci. Int. 191, 58–63.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds