organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Chloro­phen­yl)-4-hy­dr­oxy­piperidinium benzoate

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 5 May 2011; accepted 11 May 2011; online 20 May 2011)

In the title salt, C11H15ClNO+·C7H5O2, the dihedral angle between the mean planes of the chloro­phenyl ring of the cation and the benzene ring of the anion is 74.4 (1)°. In the cation, the six-membered piperazine ring adopts a chair conformation. The crystal packing is stabilized by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds, and weak inter­molecular C—H⋯O, C—H⋯Cl and C—H⋯π inter­actions.

Related literature

For the synthesis and biological activity of uncondensed cyclic derivatives of piperidine, see: Vartanyan (1984[Vartanyan, R. S. (1984). Pharm. Chem. J. 18, 736-749.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) For related structures, see: Jasinski et al. (2009[Jasinski, J. P., Butcher, R. J., Yathirajan, H. S., Mallesha, L. & Mohana, K. N. (2009). Acta Cryst. E65, o2365-o2366.]). For ring-motif pattterns, see: Bernstein et al. (1994[Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431-507. New York: VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C11H15ClNO+·C7H5O2

  • Mr = 333.80

  • Triclinic, [P \overline 1]

  • a = 9.6235 (12) Å

  • b = 10.0971 (16) Å

  • c = 10.2251 (14) Å

  • α = 99.608 (12)°

  • β = 108.748 (13)°

  • γ = 113.357 (14)°

  • V = 812.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 173 K

  • 0.34 × 0.30 × 0.13 mm

Data collection
  • Oxford Diffraction Xcalibur Eos Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.920, Tmax = 0.968

  • 7857 measured reflections

  • 4184 independent reflections

  • 3222 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.125

  • S = 1.05

  • 4184 reflections

  • 217 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1NA⋯O3i 0.87 (1) 1.84 (1) 2.6964 (17) 166 (2)
O1—H1O⋯O3 0.82 (2) 2.05 (2) 2.7780 (16) 147 (2)
N1—H1NB⋯O2ii 0.86 (1) 1.92 (1) 2.7609 (18) 166 (2)
C16—H16A⋯Cl1iii 0.95 2.78 3.5268 (17) 136
C9—H9B⋯O1i 0.99 2.46 3.3008 (19) 143
C1—H1ACg3iv 0.95 2.70 3.554 (2) 150
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x, y-1, z; (iii) -x, -y+1, -z; (iv) -x, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

4-(4-Chlorophenyl)-4-hydroxypiperidine is used as an intermediate for the synthesis of pharmaceuticals such as haloperidol (a neuroleptic drug used to treat patients with psychotic illnesses, extreme agitation, or Tourette's syndrome) and loperamide (a synthetic piperidine derivative, effective against diarrhea resulting from gastroenteritis or inflammatory bowel disease). A review on the synthesis and biological activities of uncondensed cyclic derivatives of piperidine is reported (Vartanyan, 1984). The crystal structure of a related compound, 4-[(E)-(2,4-difluorophenyl) (hydroxyimino)methyl]piperidinium picrate (Jasinski et al., 2009) has been reported. In this paperwe report the crystal structure of C11H15ONCl+ . C15H12O2-.

In the title salt (Fig. 1), the 6-membered piperazine ring in the cation adopts a chair conformation with puckering parameters (Cremer & Pople, 1975) Q, θ and ϕ, 0.568 (2) Å, 0.00 (19)° and 278 (9)°, respectively . The dihedral angle between the mean planes of the chlorophenyl ring of the cation and the benzene ring of the anion is 74.4 (1)°. The crystal structure is stabilized by N1—H1NA···O3 and N1—H1NB···O2, hydrogen bonds forming R44(12) ring-motif patttern (Bernstein et al., 1994) and N1—H1NA···O3, O1—H10···O3 hydrogen bonds resulting in R24(16) ring-motif, generating one dimensional chains along the c axis (Fig. 2). The structure is further consolidated by weak C9—H9B···O1, C16—H16A···Cl1 and C1—H1A···Cg3 π-ring intermolecular interactions.

Related literature top

For the synthesis and biological activity of uncondensed cyclic derivatives of piperidine, see: Vartanyan (1984). For puckering parameters, see: Cremer & Pople (1975) For related structures, see: Jasinski et al. (2009). For ring-motif pattterns, see: Bernstein et al. (1994).

Experimental top

Solutions of 4-(4-chlorophenyl)-piperidin-4-ol (2.12 g, 0.01 mol) in methanol (10 ml) and benzoic acid (1.226 g, 0.01 mol) in methanol (10 ml) were mixed and stirred in a beaker at 333 K for 30 minutes. The mixture was kept aside for three days at room temperature. The salt thus obtained was filtered and dried in a vaccum desiccator over phosphorous pentoxide. The compound was recrystallized from N,N-dimethylformamide by slow evaporation (m.p: 498 - 501 K).

Refinement top

Hydrogen atoms on O1 and N1 were found from a Fourier difference map and were refined using DFIX 0.84(0.02) and 0.86(0.01) values for O–H and N–H distances, respectively, and Uiso(H) = 1.2 times Ueq (O/N). The rest of the H atoms were positioned geometrically, and allowed to ride on their parent atoms, with C—H distances 0.95 Å (CH) or 0.99 Å (CH2) and Uiso(H) = 1.18-1.21 times Ueq (C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis RED (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram for the title compound viewed down the a axis. Dashed lines indicate N—H···O and O—H···O hydrogen bonds generating one dimensional chains along the c axis.
4-(4-Chlorophenyl)-4-hydroxypiperidinium benzoate top
Crystal data top
C11H15ClNO+·C7H5O2Z = 2
Mr = 333.80F(000) = 352
Triclinic, P1Dx = 1.364 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6235 (12) ÅCell parameters from 3721 reflections
b = 10.0971 (16) Åθ = 3.7–32.3°
c = 10.2251 (14) ŵ = 0.25 mm1
α = 99.608 (12)°T = 173 K
β = 108.748 (13)°Block, colorless
γ = 113.357 (14)°0.34 × 0.30 × 0.13 mm
V = 812.7 (2) Å3
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
4184 independent reflections
Radiation source: Enhance (Mo) X-ray Source3222 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 16.1500 pixels mm-1θmax = 28.7°, θmin = 3.7°
ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
k = 1313
Tmin = 0.920, Tmax = 0.968l = 1313
7857 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0558P)2 + 0.1776P]
where P = (Fo2 + 2Fc2)/3
4184 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.29 e Å3
4 restraintsΔρmin = 0.34 e Å3
Crystal data top
C11H15ClNO+·C7H5O2γ = 113.357 (14)°
Mr = 333.80V = 812.7 (2) Å3
Triclinic, P1Z = 2
a = 9.6235 (12) ÅMo Kα radiation
b = 10.0971 (16) ŵ = 0.25 mm1
c = 10.2251 (14) ÅT = 173 K
α = 99.608 (12)°0.34 × 0.30 × 0.13 mm
β = 108.748 (13)°
Data collection top
Oxford Diffraction Xcalibur Eos Gemini
diffractometer
4184 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2010)
3222 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.968Rint = 0.018
7857 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0464 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.29 e Å3
4184 reflectionsΔρmin = 0.34 e Å3
217 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.01350 (8)0.19249 (7)0.06335 (5)0.06605 (19)
O10.37436 (18)0.44147 (14)0.79300 (12)0.0470 (3)
H1O0.360 (3)0.498 (2)0.746 (2)0.056*
O20.46446 (18)0.94763 (13)0.77613 (13)0.0553 (4)
O30.36182 (17)0.70222 (13)0.75160 (12)0.0504 (3)
N10.51659 (18)0.21683 (15)0.95370 (13)0.0372 (3)
H1NB0.514 (2)0.1342 (16)0.9106 (18)0.045*
H1NA0.561 (2)0.231 (2)1.0473 (12)0.045*
C10.1141 (2)0.24120 (18)0.48209 (16)0.0351 (3)
H1A0.05510.23440.54160.042*
C20.0314 (2)0.21412 (19)0.33410 (17)0.0393 (4)
H2A0.08320.18880.29200.047*
C30.1181 (2)0.22451 (18)0.24891 (16)0.0387 (4)
C40.2839 (2)0.2611 (2)0.30731 (18)0.0474 (4)
H4A0.34190.26780.24700.057*
C50.3653 (2)0.2881 (2)0.45636 (17)0.0404 (4)
H5A0.48020.31400.49780.048*
C60.28210 (18)0.27817 (15)0.54568 (14)0.0278 (3)
C70.36689 (18)0.30769 (15)0.70961 (14)0.0282 (3)
C80.54504 (19)0.32943 (17)0.76015 (15)0.0331 (3)
H8A0.54210.23950.70060.040*
H8B0.61560.42120.74320.040*
C90.6232 (2)0.34823 (18)0.92121 (16)0.0373 (3)
H9A0.73510.35560.94740.045*
H9B0.63830.44450.98180.045*
C100.3447 (2)0.19647 (19)0.91069 (16)0.0388 (4)
H10A0.34960.28800.96970.047*
H10B0.27630.10640.93100.047*
C110.26339 (19)0.17363 (18)0.74911 (16)0.0346 (3)
H11A0.15030.16320.72350.042*
H11B0.25030.07740.69040.042*
C120.37590 (19)0.80987 (17)0.70139 (15)0.0324 (3)
C130.27602 (18)0.76646 (16)0.53903 (15)0.0283 (3)
C140.1622 (2)0.61404 (17)0.45411 (16)0.0363 (3)
H14A0.15240.53670.49770.044*
C150.0633 (2)0.5739 (2)0.30681 (18)0.0447 (4)
H15A0.01510.46950.24980.054*
C160.0782 (2)0.6857 (2)0.24240 (18)0.0463 (4)
H16A0.00930.65800.14130.056*
C170.1924 (2)0.8366 (2)0.32407 (19)0.0452 (4)
H17A0.20420.91300.27900.054*
C180.2902 (2)0.87754 (17)0.47237 (17)0.0360 (3)
H18A0.36770.98230.52890.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0874 (4)0.0854 (4)0.0294 (2)0.0485 (3)0.0179 (2)0.0257 (2)
O10.0826 (9)0.0447 (7)0.0316 (6)0.0468 (7)0.0235 (6)0.0149 (5)
O20.0710 (9)0.0364 (6)0.0391 (6)0.0248 (6)0.0082 (6)0.0014 (5)
O30.0727 (9)0.0397 (6)0.0299 (5)0.0272 (6)0.0101 (6)0.0147 (5)
N10.0512 (8)0.0349 (7)0.0253 (6)0.0256 (6)0.0101 (6)0.0098 (5)
C10.0360 (8)0.0427 (8)0.0311 (7)0.0198 (7)0.0169 (6)0.0158 (6)
C20.0362 (8)0.0442 (9)0.0344 (7)0.0189 (7)0.0109 (7)0.0159 (7)
C30.0526 (10)0.0401 (8)0.0270 (7)0.0256 (8)0.0151 (7)0.0155 (6)
C40.0594 (11)0.0691 (12)0.0375 (8)0.0397 (10)0.0314 (8)0.0291 (8)
C50.0406 (9)0.0589 (10)0.0371 (8)0.0300 (8)0.0225 (7)0.0243 (7)
C60.0346 (8)0.0273 (6)0.0269 (6)0.0175 (6)0.0146 (6)0.0119 (5)
C70.0360 (8)0.0289 (7)0.0260 (6)0.0192 (6)0.0153 (6)0.0109 (5)
C80.0326 (8)0.0347 (7)0.0294 (7)0.0152 (6)0.0119 (6)0.0102 (6)
C90.0364 (8)0.0387 (8)0.0287 (7)0.0172 (7)0.0075 (6)0.0080 (6)
C100.0466 (9)0.0422 (8)0.0329 (7)0.0217 (7)0.0192 (7)0.0192 (6)
C110.0342 (8)0.0379 (8)0.0320 (7)0.0159 (7)0.0142 (6)0.0164 (6)
C120.0366 (8)0.0331 (7)0.0290 (7)0.0210 (6)0.0116 (6)0.0083 (6)
C130.0298 (7)0.0322 (7)0.0300 (7)0.0187 (6)0.0150 (6)0.0129 (5)
C140.0387 (8)0.0330 (7)0.0326 (7)0.0155 (7)0.0110 (6)0.0139 (6)
C150.0445 (10)0.0408 (9)0.0335 (8)0.0149 (8)0.0079 (7)0.0089 (7)
C160.0498 (10)0.0602 (11)0.0316 (8)0.0290 (9)0.0141 (7)0.0216 (8)
C170.0557 (11)0.0527 (10)0.0442 (9)0.0311 (9)0.0271 (8)0.0316 (8)
C180.0406 (9)0.0327 (7)0.0407 (8)0.0191 (7)0.0205 (7)0.0166 (6)
Geometric parameters (Å, º) top
Cl1—C31.7400 (15)C8—C91.5167 (19)
O1—C71.4338 (17)C8—H8A0.9900
O1—H1O0.823 (15)C8—H8B0.9900
O2—C121.2376 (19)C9—H9A0.9900
O3—C121.2560 (18)C9—H9B0.9900
N1—C101.485 (2)C10—C111.514 (2)
N1—C91.487 (2)C10—H10A0.9900
N1—H1NB0.861 (10)C10—H10B0.9900
N1—H1NA0.873 (10)C11—H11A0.9900
C1—C21.383 (2)C11—H11B0.9900
C1—C61.393 (2)C12—C131.5064 (19)
C1—H1A0.9500C13—C141.389 (2)
C2—C31.376 (2)C13—C181.391 (2)
C2—H2A0.9500C14—C151.381 (2)
C3—C41.373 (3)C14—H14A0.9500
C4—C51.391 (2)C15—C161.381 (2)
C4—H4A0.9500C15—H15A0.9500
C5—C61.387 (2)C16—C171.373 (3)
C5—H5A0.9500C16—H16A0.9500
C6—C71.5250 (18)C17—C181.386 (2)
C7—C81.533 (2)C17—H17A0.9500
C7—C111.536 (2)C18—H18A0.9500
C7—O1—H1O114.0 (15)N1—C9—H9A109.4
C10—N1—C9111.70 (12)C8—C9—H9A109.4
C10—N1—H1NB110.7 (13)N1—C9—H9B109.4
C9—N1—H1NB110.2 (13)C8—C9—H9B109.4
C10—N1—H1NA108.5 (13)H9A—C9—H9B108.0
C9—N1—H1NA110.3 (13)N1—C10—C11110.57 (13)
H1NB—N1—H1NA105.3 (16)N1—C10—H10A109.5
C2—C1—C6121.38 (14)C11—C10—H10A109.5
C2—C1—H1A119.3N1—C10—H10B109.5
C6—C1—H1A119.3C11—C10—H10B109.5
C3—C2—C1118.85 (15)H10A—C10—H10B108.1
C3—C2—H2A120.6C10—C11—C7112.01 (13)
C1—C2—H2A120.6C10—C11—H11A109.2
C4—C3—C2121.62 (14)C7—C11—H11A109.2
C4—C3—Cl1119.92 (13)C10—C11—H11B109.2
C2—C3—Cl1118.46 (13)C7—C11—H11B109.2
C3—C4—C5118.82 (15)H11A—C11—H11B107.9
C3—C4—H4A120.6O2—C12—O3124.52 (14)
C5—C4—H4A120.6O2—C12—C13118.42 (13)
C6—C5—C4121.26 (15)O3—C12—C13117.06 (13)
C6—C5—H5A119.4C14—C13—C18118.72 (13)
C4—C5—H5A119.4C14—C13—C12120.11 (13)
C5—C6—C1118.06 (13)C18—C13—C12121.12 (13)
C5—C6—C7122.92 (13)C15—C14—C13120.57 (14)
C1—C6—C7119.01 (12)C15—C14—H14A119.7
O1—C7—C6110.41 (11)C13—C14—H14A119.7
O1—C7—C8108.40 (12)C16—C15—C14120.02 (16)
C6—C7—C8112.93 (11)C16—C15—H15A120.0
O1—C7—C11106.31 (12)C14—C15—H15A120.0
C6—C7—C11110.12 (12)C17—C16—C15120.19 (15)
C8—C7—C11108.43 (11)C17—C16—H16A119.9
C9—C8—C7112.22 (12)C15—C16—H16A119.9
C9—C8—H8A109.2C16—C17—C18119.94 (14)
C7—C8—H8A109.2C16—C17—H17A120.0
C9—C8—H8B109.2C18—C17—H17A120.0
C7—C8—H8B109.2C17—C18—C13120.54 (15)
H8A—C8—H8B107.9C17—C18—H18A119.7
N1—C9—C8111.13 (12)C13—C18—H18A119.7
C6—C1—C2—C30.1 (2)C10—N1—C9—C856.75 (16)
C1—C2—C3—C40.1 (2)C7—C8—C9—N155.69 (16)
C1—C2—C3—Cl1179.23 (12)C9—N1—C10—C1157.50 (16)
C2—C3—C4—C50.0 (3)N1—C10—C11—C757.35 (17)
Cl1—C3—C4—C5179.15 (13)O1—C7—C11—C1061.50 (15)
C3—C4—C5—C60.3 (3)C6—C7—C11—C10178.89 (12)
C4—C5—C6—C10.5 (2)C8—C7—C11—C1054.87 (16)
C4—C5—C6—C7179.69 (14)O2—C12—C13—C14173.36 (15)
C2—C1—C6—C50.4 (2)O3—C12—C13—C146.1 (2)
C2—C1—C6—C7179.65 (13)O2—C12—C13—C183.9 (2)
C5—C6—C7—O1114.43 (16)O3—C12—C13—C18176.65 (15)
C1—C6—C7—O164.80 (17)C18—C13—C14—C151.0 (2)
C5—C6—C7—C87.11 (19)C12—C13—C14—C15176.34 (15)
C1—C6—C7—C8173.66 (13)C13—C14—C15—C160.7 (3)
C5—C6—C7—C11128.48 (15)C14—C15—C16—C170.6 (3)
C1—C6—C7—C1152.29 (16)C15—C16—C17—C181.5 (3)
O1—C7—C8—C961.09 (15)C16—C17—C18—C131.1 (3)
C6—C7—C8—C9176.24 (11)C14—C13—C18—C170.1 (2)
C11—C7—C8—C953.92 (15)C12—C13—C18—C17177.21 (14)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1NA···O3i0.87 (1)1.84 (1)2.6964 (17)166 (2)
O1—H1O···O30.82 (2)2.05 (2)2.7780 (16)147 (2)
N1—H1NB···O2ii0.86 (1)1.92 (1)2.7609 (18)166 (2)
C16—H16A···Cl1iii0.952.783.5268 (17)136
C9—H9B···O1i0.992.463.3008 (19)143
C1—H1A···Cg3iv0.952.703.554 (2)150
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y1, z; (iii) x, y+1, z; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H15ClNO+·C7H5O2
Mr333.80
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.6235 (12), 10.0971 (16), 10.2251 (14)
α, β, γ (°)99.608 (12), 108.748 (13), 113.357 (14)
V3)812.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.34 × 0.30 × 0.13
Data collection
DiffractometerOxford Diffraction Xcalibur Eos Gemini
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2010)
Tmin, Tmax0.920, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
7857, 4184, 3222
Rint0.018
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.125, 1.05
No. of reflections4184
No. of parameters217
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.34

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), CrysAlis RED (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C13–C18 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1NA···O3i0.873 (10)1.842 (11)2.6964 (17)165.8 (17)
O1—H1O···O30.823 (15)2.052 (17)2.7780 (16)146.9 (19)
N1—H1NB···O2ii0.861 (10)1.916 (11)2.7609 (18)166.3 (17)
C16—H16A···Cl1iii0.952.783.5268 (17)136
C9—H9B···O1i0.992.463.3008 (19)143
C1—H1A···Cg3iv0.952.703.554 (2)150
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y1, z; (iii) x, y+1, z; (iv) x, y+1, z+1.
 

Acknowledgements

BPS thanks the University of Mysore for the research facilities. HSY is grateful to RL Fine Chem., Bengaluru, India, for a pure sample of 4-(4-chloro­phyn­yl)-piperidin-4-ol. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

References

First citationBernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431–507. New York: VCH.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationJasinski, J. P., Butcher, R. J., Yathirajan, H. S., Mallesha, L. & Mohana, K. N. (2009). Acta Cryst. E65, o2365–o2366.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVartanyan, R. S. (1984). Pharm. Chem. J. 18, 736–749.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds