organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[2-(4-Bromo­phen­yl)hydrazinyl­­idene]-1,3-di­phenyl­propane-1,3-dione

aInstituto de Ciencias Químicas, Universidad Austral de Chile, Avda. Los Robles s/n, Campus Isla Teja, Casilla 567, Valdivia, Chile, bDepartamento de Ciencias Físicas, Universidad Andres Bello, Avda. República 220, Santiago de Chile, Chile, cInstituto de Ciencias Moleculares y Microbiología, Universidad Austral de Chile, Avda. Los Robles s/n, Campus Isla Teja, Casilla 567, Valdivia, Chile, and dLaboratorio de Cristalografía, Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago de Chile, Chile
*Correspondence e-mail: lalvarez@unab.cl

(Received 5 May 2011; accepted 10 May 2011; online 14 May 2011)

The conformation of the title mol­ecule, C21H15BrN2O2, is stabilized by a weak intra­molecular C—H⋯N hydrogen bond and a strong resonance-assisted N—H⋯O intra­molecular hydrogen bond. In the crystal, the mol­ecules are linked by weak inter­molecular C—H⋯O inter­actions, forming zigzag chains along the b axis.

Related literature

For resonance-assisted hydrogen bonds and related structures, see: Bertolasi et al. (1994[Bertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1994). Acta Cryst. B50, 617-625.]). For details of the synthesis, see: Bustos et al. (2007[Bustos, C., Sánchez, C., Martínez, R., Ugarte, R., Schott, E., Carey, D. M. L., Garland, M. T. & Espinoza, L. (2007). Dyes Pigm. 74, 615-621.], 2009[Bustos, C., Schott, E., Ríos, M., Sánchez, C. & Cárcamo, J. G. (2009). J. Chil. Chem. Soc. 54, 267-268.]); Yao (1964[Yao, H. C. (1964). J. Org. Chem. 29, 2959-2962.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15BrN2O2

  • Mr = 407.25

  • Monoclinic, P 21 /n

  • a = 12.0273 (9) Å

  • b = 10.2977 (8) Å

  • c = 14.2626 (11) Å

  • β = 96.452 (1)°

  • V = 1755.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.36 mm−1

  • T = 150 K

  • 0.44 × 0.41 × 0.12 mm

Data collection
  • Bruker D8 Discover diffractometer with SMART CCD area detector

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.368, Tmax = 0.753

  • 13742 measured reflections

  • 3575 independent reflections

  • 3107 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.079

  • S = 1.06

  • 3575 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O2 0.88 1.90 2.592 (2) 135
C8—H8⋯N1 0.95 2.60 3.060 (3) 110
C17—H17⋯O2i 0.95 2.46 3.382 (3) 162
Symmetry code: (i) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Comment top

In recent years, much attention has been devoted to structural studies on heterodienic systems forming strong intramolecular hydrogen bonds, N—H···O, assisted by resonance (RAHB, Resonance Assisted Hydrogen Bond) which, inter alia, could have potential technological applications as bistate molecular switches (Bertolasi et al., 1994; Bustos et al., 2007). On the other hand, it is well known that the phenyl diazonium salts are capable of coupling with a series of β-diketonate anions to give β-diketohidrazones that contain the N—H···O core (Yao, 1964; Bustos et al., 2007; Bustos et al., 2009). Using this reaction (Yao, 1964) we have prepared the title compound and, in this report, we present its crystal and molecular structure determined by X-ray diffraction method.

The molecular structure of the title compound exhibits a strong intramolecular hydrogen bond (N2–H21···O2) and a weak intramolecular hydrogen bond (C8–H8···N1) (Fig. 1 and Tab. 1). The molecules are linked by weak intermolecular C17–H17···O2i interactions forming zigzag chains along the b axis (Fig. 2).

Related literature top

For resonance-assisted hydrogen bonds and related structures, see: Bertolasi et al. (1994). For details of the synthesis, see: Bustos et al. (2007, 2009); Yao (1964).

Experimental top

In a 500 ml flask, 1,3-diphenylpropane-1,3-dione (2.24 g, 0.01 mole) was dissolved in an ethanol solution (100 ml) containing of sodium hydroxide (0.4 g, 0.01 mole) and of sodium acetate (3.65 g, 0.045 mole). The resulting β-diketonate solution was diluted with water to a final volume of about 220 ml, stirred and cooled at 268 K. In another 50 ml beaker a diazonium ion solution was prepared by adding 4-bromoaniline (97%) (1.77 g, 0.01 mole) in 8 ml of hydrochloric acid (5 mol/L), cooling at 268 K, and adding a saturated aqueous solution containing sodium nitrite (0.69 g, 0.01 mole). The diazonium salt solution was then added dropwise, with vigorous stirring, into the β-diketonate solution. During the addition a yellow solid precipitate of the title compound was formed which was filtered by suction and washed with an abundant quantity of water (Yield: 96% of crude product). Single crystals suitable for X-ray studies were obtained by recrystallization from a concentrated solution of the compound in ethanol.

Refinement top

The H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with N—H = 0.88 and C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C/N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-PC (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The strong intramolecular hydrogen bond (N2–H21···O2) is depicted with dashed lines.
[Figure 2] Fig. 2. A partial view of the unit cell along the c-axis, showing the formation of zigzag chains of molecules along the b axis.
2-[2-(4-Bromophenyl)hydrazinylidene]-1,3-diphenylpropane-1,3-dione top
Crystal data top
C21H15BrN2O2F(000) = 824
Mr = 407.25Dx = 1.541 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 999 reflections
a = 12.0273 (9) Åθ = 2.1–26.4°
b = 10.2977 (8) ŵ = 2.36 mm1
c = 14.2626 (11) ÅT = 150 K
β = 96.452 (1)°Polyhedron, yellow
V = 1755.3 (2) Å30.44 × 0.41 × 0.12 mm
Z = 4
Data collection top
Bruker D8 Discover
diffractometer with SMART CCD area detector
3575 independent reflections
Radiation source: fine-focus sealed tube3107 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 26.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1415
Tmin = 0.368, Tmax = 0.753k = 1212
13742 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0456P)2 + 0.6227P]
where P = (Fo2 + 2Fc2)/3
3575 reflections(Δ/σ)max = 0.002
235 parametersΔρmax = 0.67 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C21H15BrN2O2V = 1755.3 (2) Å3
Mr = 407.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.0273 (9) ŵ = 2.36 mm1
b = 10.2977 (8) ÅT = 150 K
c = 14.2626 (11) Å0.44 × 0.41 × 0.12 mm
β = 96.452 (1)°
Data collection top
Bruker D8 Discover
diffractometer with SMART CCD area detector
3575 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3107 reflections with I > 2σ(I)
Tmin = 0.368, Tmax = 0.753Rint = 0.021
13742 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.06Δρmax = 0.67 e Å3
3575 reflectionsΔρmin = 0.17 e Å3
235 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.23271 (2)1.04855 (2)0.59316 (1)0.0359 (1)
O10.13462 (11)0.13416 (13)0.33354 (11)0.0333 (4)
O20.09408 (11)0.40741 (15)0.32404 (10)0.0329 (4)
N10.13907 (13)0.45872 (14)0.37523 (11)0.0244 (5)
N20.07047 (14)0.55054 (14)0.39738 (12)0.0259 (5)
C10.11110 (16)0.66570 (18)0.44103 (13)0.0244 (5)
C20.03445 (16)0.74538 (19)0.47975 (14)0.0275 (6)
C30.07041 (16)0.85857 (19)0.52624 (14)0.0283 (6)
C40.18176 (17)0.89302 (18)0.53100 (13)0.0272 (6)
C50.25851 (16)0.81515 (19)0.49182 (14)0.0294 (6)
C60.22285 (16)0.70074 (19)0.44637 (13)0.0280 (6)
C70.29704 (16)0.25718 (18)0.31885 (13)0.0255 (5)
C80.34273 (16)0.3676 (2)0.28233 (14)0.0294 (6)
C90.45584 (17)0.3718 (2)0.27136 (16)0.0358 (7)
C100.52336 (18)0.2658 (2)0.29719 (16)0.0402 (7)
C110.47871 (18)0.1550 (2)0.33354 (16)0.0370 (7)
C120.36607 (17)0.1503 (2)0.34456 (14)0.0304 (6)
C130.05567 (15)0.24899 (18)0.21378 (13)0.0241 (5)
C140.00727 (16)0.23913 (18)0.13846 (14)0.0277 (6)
C150.03124 (18)0.1653 (2)0.05974 (14)0.0332 (6)
C160.13105 (19)0.0989 (2)0.05795 (16)0.0369 (7)
C170.19298 (18)0.1058 (2)0.13385 (17)0.0373 (7)
C180.15682 (16)0.1820 (2)0.21102 (15)0.0306 (6)
C190.17494 (16)0.24228 (18)0.32685 (13)0.0250 (6)
C200.09791 (15)0.35573 (18)0.32905 (13)0.0245 (5)
C210.02208 (15)0.33948 (18)0.29325 (13)0.0251 (5)
H20.042400.722100.474300.0330*
H30.019000.911800.554500.0340*
H50.335000.839900.496000.0350*
H60.274700.646900.419100.0340*
H80.296400.440400.264800.0350*
H90.486900.447200.246200.0430*
H100.600900.269100.289900.0480*
H110.525400.082500.350800.0440*
H120.335300.074600.369600.0360*
H140.077000.282900.140600.0330*
H150.011000.160700.007400.0400*
H160.157300.048100.004400.0440*
H170.260700.058000.132900.0450*
H180.200800.188800.262100.0370*
H210.002200.539400.384500.0310*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0364 (1)0.0287 (1)0.0424 (1)0.0006 (1)0.0032 (1)0.0091 (1)
O10.0286 (7)0.0262 (7)0.0452 (8)0.0008 (6)0.0049 (6)0.0005 (6)
O20.0243 (7)0.0386 (8)0.0362 (8)0.0060 (6)0.0050 (6)0.0053 (7)
N10.0248 (8)0.0254 (8)0.0234 (8)0.0059 (6)0.0041 (6)0.0006 (6)
N20.0227 (8)0.0264 (8)0.0285 (8)0.0039 (6)0.0027 (7)0.0031 (6)
C10.0285 (10)0.0237 (9)0.0207 (8)0.0033 (7)0.0019 (7)0.0018 (7)
C20.0249 (10)0.0280 (10)0.0302 (10)0.0026 (7)0.0053 (8)0.0007 (8)
C30.0301 (10)0.0260 (9)0.0297 (10)0.0063 (8)0.0076 (8)0.0003 (8)
C40.0334 (11)0.0233 (9)0.0250 (9)0.0013 (8)0.0038 (8)0.0012 (8)
C50.0240 (10)0.0312 (10)0.0332 (10)0.0012 (8)0.0036 (8)0.0003 (8)
C60.0267 (10)0.0284 (10)0.0293 (10)0.0067 (8)0.0056 (8)0.0007 (8)
C70.0247 (9)0.0277 (10)0.0233 (9)0.0026 (7)0.0001 (7)0.0049 (7)
C80.0270 (10)0.0314 (10)0.0297 (10)0.0023 (8)0.0027 (8)0.0021 (8)
C90.0290 (11)0.0394 (12)0.0396 (12)0.0045 (9)0.0060 (9)0.0046 (9)
C100.0235 (10)0.0536 (14)0.0435 (13)0.0021 (10)0.0038 (9)0.0133 (11)
C110.0292 (11)0.0385 (12)0.0416 (12)0.0121 (9)0.0034 (9)0.0095 (10)
C120.0293 (10)0.0299 (10)0.0308 (10)0.0052 (8)0.0013 (8)0.0056 (8)
C130.0202 (9)0.0232 (9)0.0284 (9)0.0030 (7)0.0008 (7)0.0041 (7)
C140.0227 (9)0.0289 (10)0.0314 (10)0.0029 (8)0.0030 (8)0.0013 (8)
C150.0368 (11)0.0349 (11)0.0279 (10)0.0005 (9)0.0035 (8)0.0016 (8)
C160.0394 (12)0.0319 (11)0.0363 (11)0.0022 (9)0.0096 (10)0.0028 (9)
C170.0260 (10)0.0335 (11)0.0502 (13)0.0074 (8)0.0051 (9)0.0049 (10)
C180.0236 (9)0.0324 (11)0.0359 (11)0.0002 (8)0.0040 (8)0.0074 (9)
C190.0255 (10)0.0250 (10)0.0241 (9)0.0021 (7)0.0005 (7)0.0017 (7)
C200.0238 (9)0.0256 (9)0.0239 (9)0.0033 (7)0.0025 (7)0.0002 (7)
C210.0240 (9)0.0239 (9)0.0277 (9)0.0024 (7)0.0049 (7)0.0035 (8)
Geometric parameters (Å, º) top
Br1—C41.8985 (19)C13—C211.488 (3)
O1—C191.222 (2)C14—C151.392 (3)
O2—C211.232 (2)C15—C161.379 (3)
N1—N21.317 (2)C16—C171.383 (3)
N1—C201.315 (2)C17—C181.382 (3)
N2—C11.402 (2)C19—C201.494 (3)
N2—H210.8800C20—C211.485 (3)
C1—C61.385 (3)C2—H20.9500
C1—C21.394 (3)C3—H30.9500
C2—C31.386 (3)C5—H50.9500
C3—C41.380 (3)C6—H60.9500
C4—C51.387 (3)C8—H80.9500
C5—C61.389 (3)C9—H90.9500
C7—C81.389 (3)C10—H100.9500
C7—C191.494 (3)C11—H110.9500
C7—C121.402 (3)C12—H120.9500
C8—C91.387 (3)C14—H140.9500
C9—C101.385 (3)C15—H150.9500
C10—C111.386 (3)C16—H160.9500
C11—C121.382 (3)C17—H170.9500
C13—C141.386 (3)C18—H180.9500
C13—C181.395 (3)
Br1···C17i3.700 (2)C4···H18iii3.0500
Br1···C18i3.433 (2)C5···H14viii2.9000
Br1···C13i3.5778 (19)C6···H16vi3.0100
Br1···H11ii3.2300C6···H14viii2.9500
Br1···H18iii3.2500C14···H6iv2.9900
O1···C132.945 (2)C14···H5iv3.0300
O1···C143.209 (2)C15···H6iv3.0700
O1···C8iv3.231 (2)C19···H142.8100
O1···C9iv3.218 (3)C20···H142.7700
O1···C3iii3.346 (2)C20···H82.7900
O2···N12.866 (2)C20···H2iii3.0600
O2···C2iii3.220 (2)C21···H212.4300
O2···C17v3.382 (3)H2···H212.3600
O2···N22.592 (2)H2···C20iii3.0600
O1···H8iv2.6300H3···O1iii2.6200
O1···H122.4900H3···C3vii2.7900
O1···H3iii2.6200H3···H3vii2.4000
O1···H9iv2.6000H5···C14viii3.0300
O2···H182.6900H5···H14viii2.3900
O2···H17v2.4600H6···N12.5600
O2···H211.9000H6···C14viii2.9900
N1···O22.866 (2)H6···C15viii3.0700
N1···C83.060 (3)H6···H14viii2.4900
N2···O22.592 (2)H6···H16vi2.4400
N1···H82.6000H8···N12.6000
N1···H16vi2.9000H8···C202.7900
N1···H62.5600H8···O1viii2.6300
C2···O2iii3.220 (2)H9···O1viii2.6000
C2···C20iii3.469 (3)H10···H18xi2.6000
C2···C21iii3.373 (3)H11···Br1ii3.2300
C3···O1iii3.346 (2)H12···O12.4900
C3···C3vii3.410 (3)H14···C192.8100
C3···C21iii3.386 (3)H14···C202.7700
C8···O1viii3.231 (2)H14···C5iv2.9000
C8···N13.060 (3)H14···C6iv2.9500
C9···O1viii3.218 (3)H14···H5iv2.3900
C13···O12.945 (2)H14···H6iv2.4900
C13···Br1ix3.5778 (19)H16···N1xii2.9000
C14···C193.173 (3)H16···C6xii3.0100
C14···O13.209 (2)H16···H6xii2.4400
C17···O2x3.382 (3)H17···O2x2.4600
C17···Br1ix3.700 (2)H18···O22.6900
C18···Br1ix3.433 (2)H18···H10xiii2.6000
C19···C143.173 (3)H18···Br1iii3.2500
C20···C2iii3.469 (3)H18···C4iii3.0500
C21···C2iii3.373 (3)H21···O21.9000
C21···C3iii3.386 (3)H21···C212.4300
C3···H3vii2.7900H21···H22.3600
N2—N1—C20119.24 (16)C19—C20—C21119.06 (16)
N1—N2—C1121.18 (16)N1—C20—C19116.22 (16)
N1—N2—H21119.00C13—C21—C20120.18 (16)
C1—N2—H21119.00O2—C21—C13119.06 (16)
N2—C1—C2117.45 (17)O2—C21—C20120.55 (17)
N2—C1—C6122.17 (17)C1—C2—H2120.00
C2—C1—C6120.38 (17)C3—C2—H2120.00
C1—C2—C3120.00 (18)C2—C3—H3120.00
C2—C3—C4119.26 (18)C4—C3—H3120.00
C3—C4—C5121.19 (18)C4—C5—H5120.00
Br1—C4—C3120.03 (15)C6—C5—H5120.00
Br1—C4—C5118.78 (15)C1—C6—H6120.00
C4—C5—C6119.59 (18)C5—C6—H6120.00
C1—C6—C5119.56 (18)C7—C8—H8120.00
C12—C7—C19117.24 (17)C9—C8—H8120.00
C8—C7—C12119.53 (18)C8—C9—H9120.00
C8—C7—C19123.12 (17)C10—C9—H9120.00
C7—C8—C9120.13 (19)C9—C10—H10120.00
C8—C9—C10119.89 (19)C11—C10—H10120.00
C9—C10—C11120.5 (2)C10—C11—H11120.00
C10—C11—C12119.8 (2)C12—C11—H11120.00
C7—C12—C11120.12 (19)C7—C12—H12120.00
C14—C13—C21120.75 (17)C11—C12—H12120.00
C14—C13—C18119.50 (18)C13—C14—H14120.00
C18—C13—C21119.50 (17)C15—C14—H14120.00
C13—C14—C15120.28 (18)C14—C15—H15120.00
C14—C15—C16119.73 (19)C16—C15—H15120.00
C15—C16—C17120.3 (2)C15—C16—H16120.00
C16—C17—C18120.3 (2)C17—C16—H16120.00
C13—C18—C17119.92 (19)C16—C17—H17120.00
O1—C19—C20117.28 (17)C18—C17—H17120.00
O1—C19—C7120.11 (17)C13—C18—H18120.00
C7—C19—C20122.60 (16)C17—C18—H18120.00
N1—C20—C21124.02 (17)
C20—N1—N2—C1175.78 (17)C8—C9—C10—C110.3 (3)
N2—N1—C20—C214.7 (3)C9—C10—C11—C120.3 (3)
N2—N1—C20—C19165.54 (16)C10—C11—C12—C70.2 (3)
N1—N2—C1—C613.0 (3)C18—C13—C14—C151.4 (3)
N1—N2—C1—C2166.92 (17)C21—C13—C18—C17174.85 (18)
N2—C1—C6—C5179.01 (18)C14—C13—C21—O2135.6 (2)
C2—C1—C6—C50.9 (3)C14—C13—C21—C2039.1 (3)
N2—C1—C2—C3178.10 (18)C18—C13—C21—O238.7 (3)
C6—C1—C2—C31.8 (3)C18—C13—C21—C20146.63 (18)
C1—C2—C3—C42.0 (3)C21—C13—C14—C15172.87 (18)
C2—C3—C4—C51.3 (3)C14—C13—C18—C170.5 (3)
C2—C3—C4—Br1179.34 (15)C13—C14—C15—C161.8 (3)
C3—C4—C5—C60.4 (3)C14—C15—C16—C170.2 (3)
Br1—C4—C5—C6179.76 (14)C15—C16—C17—C181.7 (3)
C4—C5—C6—C10.2 (3)C16—C17—C18—C132.1 (3)
C19—C7—C8—C9175.90 (19)O1—C19—C20—N1141.39 (18)
C8—C7—C12—C110.0 (3)C7—C19—C20—C21151.86 (17)
C8—C7—C19—O1159.27 (19)O1—C19—C20—C2129.4 (3)
C8—C7—C19—C2022.0 (3)C7—C19—C20—N137.4 (3)
C19—C7—C12—C11176.17 (18)N1—C20—C21—O217.5 (3)
C12—C7—C8—C90.1 (3)N1—C20—C21—C13157.07 (18)
C12—C7—C19—C20161.96 (18)C19—C20—C21—O2152.44 (18)
C12—C7—C19—O116.8 (3)C19—C20—C21—C1333.0 (3)
C7—C8—C9—C100.2 (3)
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1; (iv) x+1/2, y1/2, z+1/2; (v) x1/2, y+1/2, z+1/2; (vi) x+1/2, y+1/2, z+1/2; (vii) x, y+2, z+1; (viii) x+1/2, y+1/2, z+1/2; (ix) x1/2, y+3/2, z1/2; (x) x1/2, y1/2, z+1/2; (xi) x+1, y, z; (xii) x1/2, y+1/2, z1/2; (xiii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O20.881.902.592 (2)135
C8—H8···N10.952.603.060 (3)110
C17—H17···O2x0.952.463.382 (3)162
Symmetry code: (x) x1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC21H15BrN2O2
Mr407.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)12.0273 (9), 10.2977 (8), 14.2626 (11)
β (°) 96.452 (1)
V3)1755.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.36
Crystal size (mm)0.44 × 0.41 × 0.12
Data collection
DiffractometerBruker D8 Discover
diffractometer with SMART CCD area detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.368, 0.753
No. of measured, independent and
observed [I > 2σ(I)] reflections
13742, 3575, 3107
Rint0.021
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.079, 1.06
No. of reflections3575
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.17

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL-PC (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H21···O20.881.902.592 (2)135
C8—H8···N10.952.603.060 (3)110
C17—H17···O2i0.952.463.382 (3)162
Symmetry code: (i) x1/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT; grant Nos. 11100446 and 1080269) and the Universidad Andrés Bello (grant No. DI-06–10-R) for financial assistance.

References

First citationBertolasi, V., Gilli, P., Ferretti, V. & Gilli, G. (1994). Acta Cryst. B50, 617–625.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2000). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBustos, C., Sánchez, C., Martínez, R., Ugarte, R., Schott, E., Carey, D. M. L., Garland, M. T. & Espinoza, L. (2007). Dyes Pigm. 74, 615–621.  Web of Science CSD CrossRef CAS Google Scholar
First citationBustos, C., Schott, E., Ríos, M., Sánchez, C. & Cárcamo, J. G. (2009). J. Chil. Chem. Soc. 54, 267–268.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, H. C. (1964). J. Org. Chem. 29, 2959–2962.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds