organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1308-o1309

3-(Piperidin-1-ium-1-yl)-6-azonia­spiro­[5.5]undecane dibromide monohydrate

aFacultad de Ciencias Químicas, Campus Coquimatlán, Kilometro 9, Carretera Colima-Coquimatlán, Colima, CP 28400, Mexico, and bInstituto de Investigaciones Químicas - CSIC - Universidad de Sevilla, Avda. Américo Vespucio 49, 41092 Sevilla, Spain
*Correspondence e-mail: ealvarez@iiq.csic.es

(Received 4 February 2011; accepted 7 March 2011; online 7 May 2011)

The title compound, C15H30N22+·2Br·H2O, was synthesized by reaction of 4-piperidino­piperidine with dibromo­pentane. The dication is built up from three linked piperidine rings, two of which have one quaternary N atom in common (azoniaspiro), whereas the third is N—C bonded to the azoniaspiro system and protonated on the N atom (piperidinium). All three piperidine rings adopt chair conformations. The crystal structure features O—H⋯Br and N—H⋯Br hydrogen bonds.

Related literature

For applications of spiro compounds, see: Camblor et al. (2001[Camblor, M. A., Barrett, P. A., Diaz-Cabañas, M. J., Villaescusa, L. A., Puche, M., Boix, T., Pérez, E. & Koller, H. (2001). Microporous Mesoporous Mater. 48, 11-22.]); Jiang et al. (1998[Jiang, Y., Xue, S., Li, Z., Deng, J., Mi, A. & Chan, A. S. C. (1998). Tetrahedron Asymmetry, 9, 3185-3189.]); Kolocouris et al. (2007[Kolocouris, N., Zoidis, G., Foscolos, G. B., Fytas, G., Prathalingham, S. R., Kelly, J. M., Naesens, L. & De Clercq, E. (2007). Bioorg. Med. Chem. 17, 4358-4362.]); Pinto et al. (1992[Pinto, L. H., Holsinger, L. J. & Lamb, R. A. (1992). Cell, 69, 517-528.]); Salbeck et al. (2002[Salbeck, J., Schörner, M. & Fuhrmann, T. (2002). Thin Solid Films, 417, 20-25.]). For related structures, see: Clemente (2003[Clemente, D. A. (2003). Tetrahedron, 59, 8445-8455.]); Day et al. (2005[Day, M. W., Ogino, I. & Davis, M. E. (2005). Private communication (deposition No. 196139). CCDC, Cambridge, England.]); Estienne et al. (1984[Estienne, J., Pierrot, M., Baldy, A., Rosenberg, J. & Robert, G. (1984). Acta Cryst. C40, 1478-1480.]); Huber (1969[Huber, C. S. (1969). Acta Cryst. B25, 1140-1149.]); Monkowius et al. (2004[Monkowius, U., Nogal, S. & Schmidbaur, H. (2004). Z. Naturforsch. Teil B, 59, 259-263.]); Rosen & Guarino (1991[Rosen, T. & Guarino, K. J. (1991). Tetrahedron, 47, 5391-5400.]). For the synthesis, see: Tchoubar & Verrier (1960[Tchoubar, B. & Verrier, M. (1960). Bull. Soc. Chim. Fr. pp. 2151-2156.]).

[Scheme 1]

Experimental

Crystal data
  • C15H30N22+·2Br·H2O

  • Mr = 416.25

  • Monoclinic, P 21 /c

  • a = 6.5491 (2) Å

  • b = 23.3325 (9) Å

  • c = 12.2715 (5) Å

  • β = 102.141 (1)°

  • V = 1833.23 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.42 mm−1

  • T = 173 K

  • 0.34 × 0.32 × 0.30 mm

Data collection
  • Bruker–Nonius X8 Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.245, Tmax = 0.271

  • 28905 measured reflections

  • 5130 independent reflections

  • 4273 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.068

  • S = 1.03

  • 5130 reflections

  • 190 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯Br1 0.90 2.36 (1) 3.2425 (11) 168 (2)
O1—H1O1⋯Br2 0.90 2.48 (1) 3.3664 (8) 168 (1)
O1—H2O1⋯Br2i 0.90 2.54 (1) 3.3528 (7) 151 (2)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In the past few years, spiro compounds having cyclic structures fused at a central nitrogen atom have received great attention due to their potential applications in medicine (Kolocouris et al., 2007; Monkowius et al., 2004; Pinto et al., 1992; Rosen and Guarino, 1991), catalysis (Jiang et al., 1998), optical materials (Salbeck et al., 2002) and zeolitic solids synthesis (Camblor et al., 2001). The title compound was synthesized by reaction of 4-piperidinopiperidine with dibromopentane (Tchoubar and Verrier, 1960).

The structure of the title compound is shown in Fig. 1, and the geometrical parameters are given in the Supplementary Information and the archived CIF. The compound crystallized in the centrosymmetric space group P21/c with one dicationic molecule, two bromide anions and one water molecule in the asymmetric unit. The bond lengths and angles in the dicationic molecule are similar to those observed in some azoniaspiro analogues (Clemente, 2003; Day et al., 2005; Estienne et al., 1984; Huber, 1969). In all these compounds quaternary nitrogen centers appear with a very slightly distorted tetrahedral configuration.

One of the two bromide anions, Br1, is N—H···Br hydrogen bonded to a dicationic molecule and embedded in a double layer of the organocations parallel to (010) showing a number of weak C—H···Br interactions with them (Fig. 1). The second bromide, Br2, and the water molecule form infinite hydrogen bonded chains parallel to [001]. These chains are arranged in layers parallel to (010), which are inserted between the double layers of the organocations and Br1 (Fig. 2).

Related literature top

For applications of spiro compounds, see: Camblor et al. (2001); Jiang et al. (1998); Kolocouris et al. (2007); Pinto et al. (1992); Salbeck et al. (2002). For related structures, see: Clemente (2003); Day et al. (2005); Estienne et al. (1984); Huber (1969); Monkowius et al. (2004); Rosen & Guarino (1991). For the synthesis, see: Tchoubar & Verrier (1960).

Experimental top

The title compound (I) was synthesized by reaction of 4-piperidinopiperidine with dibromopentane. 3.0 g of 4-piperidinopiperidine (0.0178 mol) and 4.09 g of 1,5-dibromopentane (0.0178 mol) were dissolved in 170 ml of ethanol. The mixture was heated under reflux for 48 h. After that, the reaction mixture was cooled at 5 °C for 48 h. The precipitate thus formed was recovered by filtration, washed with fresh ethanol and dried at 80°C overnight (yield 70%) and then recrystallyzed from absolute ethanol. Crystals suitable for single-crystal X-Ray diffraction analysis were isolated and data collection was performed in order to determine the molecular structure of (I). The melting point, 336–337 °C (accompanied by thermal decomposition: bubbles were observed to develop during melting), was determined in a Barnstead 1201D Electrothermal MEL-TEMP apparatus.

NMR spectra were recorded on a Jeol 500 MHz spectrometer with D2O as solvent. Chemical shifts were expressed in p.p.m. relative to TMS (tetramethylsilane) as internal standard. Signals associated with different hydrogen and carbon atoms (Fig.1) where identified by means of COSY, DEPT and HETCOR experiments.1H NMR (500 MHz, D2O): δ 3.95 and 3.32 (d, and m, 2H1ax-eq, 2H5ax-eq), 3.61 (m, 1H3), 3.54 (t, 2H11, 2H15), 3.42 (t, 2H6, 2H10), 2.30 (m, 2H2, 2H4), 1.95 (m, 2H9, 2H7), 1.85 (m, 2H12, 2H14, 2H8), 1.73 (m, 2H13). 13C NMR (500 MHz, D2O): δ 65.1 (C6, C10), 59.9 (C3), 57.1 (C1, C5), 54.5 (C11, C15), 23.0 (C12, C14), 20.9 (C13), 20.3 (C2, C4), 19.3 (C7, C9), 18.9 (C8).

Refinement top

The water hydrogen atoms and the piperidinium N–H were located from a difference Fourier map and refined isotropically, with the O–H and N–H distance restrained both to 0.90 Å, Uiso = 1.5 Ueq (O or N). The remaining H atoms were positioned geometrically [C–H = 0.99 Å] and were refined using a riding model, with Uiso = 1.2 Ueq (C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the asymmetric unit of the title compound, (C15H30N2)+2.2(Br-1).H2O, with atom labeling and numbering. Atoms are represented by 50% probability thermal ellipsoids except for H atoms, which are shown as small spheres. The dotted line is a hydrogen bond. C-bonded hydrogen atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of (I) projected down the a axis. The hydrogen bonds are depicted as dotted lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
3-(Piperidin-1-ium-1-yl)-6-azoniaspiro[5.5]undecane dibromide monohydrate top
Crystal data top
C15H30N22+·2Br·H2OF(000) = 856
Mr = 416.25Dx = 1.508 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9946 reflections
a = 6.5491 (2) Åθ = 2.4–30.5°
b = 23.3325 (9) ŵ = 4.42 mm1
c = 12.2715 (5) ÅT = 173 K
β = 102.141 (1)°Block, colourless
V = 1833.23 (12) Å30.34 × 0.32 × 0.30 mm
Z = 4
Data collection top
Bruker–Nonius X8 Kappa APEXII CCD area-detector
diffractometer
5130 independent reflections
Radiation source: fine-focus sealed tube4273 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.26 pixels mm-1θmax = 30.5°, θmin = 2.4°
ϕ and ω scans with narrow framesh = 59
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
k = 3333
Tmin = 0.245, Tmax = 0.271l = 1717
28905 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0323P)2 + 1.2017P]
where P = (Fo2 + 2Fc2)/3
5130 reflections(Δ/σ)max = 0.007
190 parametersΔρmax = 0.81 e Å3
4 restraintsΔρmin = 0.48 e Å3
Crystal data top
C15H30N22+·2Br·H2OV = 1833.23 (12) Å3
Mr = 416.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.5491 (2) ŵ = 4.42 mm1
b = 23.3325 (9) ÅT = 173 K
c = 12.2715 (5) Å0.34 × 0.32 × 0.30 mm
β = 102.141 (1)°
Data collection top
Bruker–Nonius X8 Kappa APEXII CCD area-detector
diffractometer
5130 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4273 reflections with I > 2σ(I)
Tmin = 0.245, Tmax = 0.271Rint = 0.026
28905 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0274 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.81 e Å3
5130 reflectionsΔρmin = 0.48 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.24994 (3)0.514171 (7)0.206959 (17)0.02573 (6)
N10.0568 (2)0.62958 (6)0.05069 (13)0.0193 (3)
N20.11027 (8)0.60709 (6)0.30473 (13)0.0200 (3)
H1N20.015 (3)0.5790 (7)0.2883 (19)0.030*
C10.0033 (3)0.67931 (7)0.01514 (16)0.0215 (3)
H1A0.13330.69690.02760.026*
H1B0.10810.70870.02460.026*
C20.0370 (3)0.66163 (7)0.12916 (16)0.0218 (3)
H2A0.15690.63490.11990.026*
H2B0.07140.69590.16920.026*
C30.1568 (3)0.63259 (7)0.19865 (16)0.0204 (3)
H30.27000.66180.21920.024*
C40.2337 (3)0.58485 (8)0.13157 (17)0.0252 (4)
H4A0.37060.57080.17330.030*
H4B0.13400.55240.12310.030*
C50.2562 (3)0.60481 (8)0.01682 (17)0.0244 (4)
H5A0.36750.63420.02540.029*
H5B0.29960.57200.02410.029*
C60.1035 (3)0.65089 (8)0.16009 (16)0.0240 (4)
H6A0.20730.68230.14430.029*
H6B0.16630.61930.19570.029*
C70.0892 (3)0.67244 (8)0.24058 (17)0.0283 (4)
H7A0.05080.68430.31110.034*
H7B0.14530.70640.20830.034*
C80.2572 (3)0.62608 (9)0.26500 (19)0.0318 (4)
H8A0.38500.64180.31340.038*
H8B0.20730.59370.30470.038*
C90.3071 (3)0.60483 (9)0.15585 (19)0.0297 (4)
H9A0.37050.63640.12030.036*
H9B0.40980.57320.17170.036*
C100.1114 (3)0.58381 (7)0.07634 (17)0.0228 (4)
H10A0.14850.57130.00590.027*
H10B0.05530.55020.10960.027*
C110.0009 (3)0.64804 (8)0.36873 (17)0.0251 (4)
H11A0.12860.66230.31950.030*
H11B0.09250.68130.39380.030*
C120.0526 (3)0.61806 (9)0.46940 (17)0.0305 (4)
H12A0.12300.64550.51090.037*
H12B0.15080.58620.44370.037*
C130.1417 (4)0.59460 (10)0.54675 (18)0.0339 (5)
H13A0.23470.62660.57850.041*
H13B0.10180.57340.60900.041*
C140.2555 (4)0.55475 (9)0.48168 (18)0.0327 (4)
H14A0.16770.52060.45790.039*
H14B0.38690.54160.53080.039*
C150.3059 (3)0.58378 (8)0.37943 (17)0.0262 (4)
H15A0.40570.61550.40330.031*
H15B0.37280.55580.33740.031*
Br20.52616 (3)0.736064 (9)0.44763 (2)0.03739 (7)
O10.32909 (7)0.76797 (9)0.17852 (6)0.0581 (5)
H1O10.3996 (2)0.7627 (12)0.2491 (4)0.087*
H2O10.412 (3)0.7572 (16)0.1321 (8)0.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01828 (9)0.02090 (8)0.03781 (11)0.00131 (6)0.00543 (8)0.00437 (7)
N10.0162 (7)0.0175 (6)0.0255 (8)0.0007 (5)0.0070 (6)0.0009 (5)
N20.0181 (7)0.0169 (6)0.0245 (8)0.0012 (5)0.0035 (6)0.0005 (5)
C10.0231 (8)0.0161 (7)0.0254 (9)0.0024 (6)0.0052 (7)0.0009 (6)
C20.0217 (8)0.0179 (7)0.0259 (9)0.0053 (6)0.0049 (8)0.0005 (6)
C30.0168 (8)0.0196 (7)0.0250 (9)0.0005 (6)0.0049 (7)0.0011 (6)
C40.0209 (9)0.0258 (8)0.0303 (10)0.0086 (7)0.0084 (8)0.0028 (7)
C50.0163 (8)0.0291 (9)0.0288 (10)0.0051 (7)0.0072 (8)0.0018 (7)
C60.0215 (9)0.0269 (8)0.0255 (10)0.0042 (7)0.0097 (8)0.0004 (7)
C70.0301 (10)0.0292 (9)0.0259 (10)0.0001 (7)0.0063 (9)0.0008 (7)
C80.0243 (10)0.0367 (10)0.0322 (11)0.0000 (8)0.0008 (9)0.0064 (8)
C90.0184 (8)0.0306 (9)0.0410 (12)0.0058 (7)0.0082 (9)0.0079 (8)
C100.0204 (8)0.0174 (7)0.0327 (10)0.0047 (6)0.0101 (8)0.0042 (7)
C110.0254 (9)0.0226 (8)0.0272 (10)0.0069 (7)0.0054 (8)0.0019 (7)
C120.0320 (11)0.0352 (10)0.0262 (10)0.0078 (8)0.0102 (9)0.0002 (8)
C130.0384 (12)0.0371 (11)0.0250 (10)0.0088 (9)0.0038 (9)0.0001 (8)
C140.0378 (11)0.0297 (9)0.0296 (11)0.0102 (8)0.0045 (10)0.0046 (8)
C150.0220 (9)0.0257 (9)0.0290 (10)0.0068 (7)0.0013 (8)0.0026 (7)
Br20.02488 (10)0.02888 (10)0.05666 (16)0.00384 (7)0.00461 (10)0.00798 (9)
O10.0556 (12)0.0605 (12)0.0594 (13)0.0124 (10)0.0147 (11)0.0090 (10)
Geometric parameters (Å, º) top
N1—C51.507 (2)C7—H7B0.9900
N1—C11.513 (2)C8—C91.527 (3)
N1—C101.519 (2)C8—H8A0.9900
N1—C61.522 (2)C8—H8B0.9900
N2—C111.510 (2)C9—C101.520 (3)
N2—C151.511 (2)C9—H9A0.9900
N2—C31.519 (2)C9—H9B0.9900
N2—H1N20.9000 (1)C10—H10A0.9900
C1—C21.519 (3)C10—H10B0.9900
C1—H1A0.9900C11—C121.523 (3)
C1—H1B0.9900C11—H11A0.9900
C2—C31.530 (2)C11—H11B0.9900
C2—H2A0.9900C12—C131.521 (3)
C2—H2B0.9900C12—H12A0.9900
C3—C41.532 (2)C12—H12B0.9900
C3—H31.0000C13—C141.519 (3)
C4—C51.519 (3)C13—H13A0.9900
C4—H4A0.9900C13—H13B0.9900
C4—H4B0.9900C14—C151.522 (3)
C5—H5A0.9900C14—H14A0.9900
C5—H5B0.9900C14—H14B0.9900
C6—C71.515 (3)C15—H15A0.9900
C6—H6A0.9900C15—H15B0.9900
C6—H6B0.9900O1—H1O10.9000 (1)
C7—C81.527 (3)O1—H2O10.9000
C7—H7A0.9900
C5—N1—C1107.06 (14)C8—C7—H7B109.4
C5—N1—C10110.54 (13)H7A—C7—H7B108.0
C1—N1—C10113.04 (13)C9—C8—C7109.64 (17)
C5—N1—C6107.37 (13)C9—C8—H8A109.7
C1—N1—C6110.11 (13)C7—C8—H8A109.7
C10—N1—C6108.57 (14)C9—C8—H8B109.7
C11—N2—C15110.28 (15)C7—C8—H8B109.7
C11—N2—C3113.61 (13)H8A—C8—H8B108.2
C15—N2—C3111.31 (11)C10—C9—C8111.16 (16)
C11—N2—H1N2101.2 (16)C10—C9—H9A109.4
C15—N2—H1N2109.5 (15)C8—C9—H9A109.4
C3—N2—H1N2110.4 (15)C10—C9—H9B109.4
N1—C1—C2112.84 (13)C8—C9—H9B109.4
N1—C1—H1A109.0H9A—C9—H9B108.0
C2—C1—H1A109.0N1—C10—C9112.51 (14)
N1—C1—H1B109.0N1—C10—H10A109.1
C2—C1—H1B109.0C9—C10—H10A109.1
H1A—C1—H1B107.8N1—C10—H10B109.1
C1—C2—C3111.69 (15)C9—C10—H10B109.1
C1—C2—H2A109.3H10A—C10—H10B107.8
C3—C2—H2A109.3N2—C11—C12110.28 (15)
C1—C2—H2B109.3N2—C11—H11A109.6
C3—C2—H2B109.3C12—C11—H11A109.6
H2A—C2—H2B107.9N2—C11—H11B109.6
N2—C3—C2111.00 (13)C12—C11—H11B109.6
N2—C3—C4108.88 (13)H11A—C11—H11B108.1
C2—C3—C4110.52 (15)C13—C12—C11111.48 (17)
N2—C3—H3108.8C13—C12—H12A109.3
C2—C3—H3108.8C11—C12—H12A109.3
C4—C3—H3108.8C13—C12—H12B109.3
C5—C4—C3112.45 (15)C11—C12—H12B109.3
C5—C4—H4A109.1H12A—C12—H12B108.0
C3—C4—H4A109.1C14—C13—C12109.32 (18)
C5—C4—H4B109.1C14—C13—H13A109.8
C3—C4—H4B109.1C12—C13—H13A109.8
H4A—C4—H4B107.8C14—C13—H13B109.8
N1—C5—C4112.68 (14)C12—C13—H13B109.8
N1—C5—H5A109.1H13A—C13—H13B108.3
C4—C5—H5A109.1C13—C14—C15112.11 (17)
N1—C5—H5B109.1C13—C14—H14A109.2
C4—C5—H5B109.1C15—C14—H14A109.2
H5A—C5—H5B107.8C13—C14—H14B109.2
C7—C6—N1112.89 (15)C15—C14—H14B109.2
C7—C6—H6A109.0H14A—C14—H14B107.9
N1—C6—H6A109.0N2—C15—C14110.93 (16)
C7—C6—H6B109.0N2—C15—H15A109.5
N1—C6—H6B109.0C14—C15—H15A109.5
H6A—C6—H6B107.8N2—C15—H15B109.5
C6—C7—C8111.08 (16)C14—C15—H15B109.5
C6—C7—H7A109.4H15A—C15—H15B108.0
C8—C7—H7A109.4H1O1—O1—H2O1108.409 (8)
C6—C7—H7B109.4
C5—N1—C1—C259.45 (18)C1—N1—C6—C768.66 (19)
C10—N1—C1—C262.5 (2)C10—N1—C6—C755.57 (19)
C6—N1—C1—C2175.88 (15)N1—C6—C7—C857.0 (2)
N1—C1—C2—C357.2 (2)C6—C7—C8—C955.5 (2)
C11—N2—C3—C248.88 (17)C7—C8—C9—C1055.8 (2)
C15—N2—C3—C2174.09 (14)C5—N1—C10—C9173.12 (15)
C11—N2—C3—C4170.75 (14)C1—N1—C10—C966.9 (2)
C15—N2—C3—C464.03 (18)C6—N1—C10—C955.58 (19)
C1—C2—C3—N2171.29 (13)C8—C9—C10—N157.4 (2)
C1—C2—C3—C450.38 (19)C15—N2—C11—C1257.94 (19)
N2—C3—C4—C5172.25 (14)C3—N2—C11—C12176.30 (15)
C2—C3—C4—C550.1 (2)N2—C11—C12—C1358.5 (2)
C1—N1—C5—C458.59 (19)C11—C12—C13—C1456.2 (2)
C10—N1—C5—C464.92 (19)C12—C13—C14—C1555.0 (3)
C6—N1—C5—C4176.81 (15)C11—N2—C15—C1456.78 (19)
C3—C4—C5—N156.1 (2)C3—N2—C15—C14176.17 (15)
C5—N1—C6—C7175.11 (15)C13—C14—C15—N256.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···Br10.902.36 (1)3.2425 (11)168 (2)
O1—H1O1···Br20.902.48 (1)3.3664 (8)168 (1)
O1—H2O1···Br2i0.902.54 (1)3.3528 (7)151 (2)
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H30N22+·2Br·H2O
Mr416.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)6.5491 (2), 23.3325 (9), 12.2715 (5)
β (°) 102.141 (1)
V3)1833.23 (12)
Z4
Radiation typeMo Kα
µ (mm1)4.42
Crystal size (mm)0.34 × 0.32 × 0.30
Data collection
DiffractometerBruker–Nonius X8 Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.245, 0.271
No. of measured, independent and
observed [I > 2σ(I)] reflections
28905, 5130, 4273
Rint0.026
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.068, 1.03
No. of reflections5130
No. of parameters190
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.81, 0.48

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···Br10.902.357 (5)3.2425 (11)168 (2)
O1—H1O1···Br20.902.482 (3)3.3664 (8)167.6 (12)
O1—H2O1···Br2i0.902.535 (11)3.3528 (7)151.4 (19)
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

Financial support from the Junta de Andalucía (project P09-FQM-4826), CSIC (PIF08–017–1) and the Fondo Mixto CONACyT - Gobierno del Estado de Colima, is gratefully acknowledged by the authors.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationCamblor, M. A., Barrett, P. A., Diaz-Cabañas, M. J., Villaescusa, L. A., Puche, M., Boix, T., Pérez, E. & Koller, H. (2001). Microporous Mesoporous Mater. 48, 11–22.  CrossRef CAS Google Scholar
First citationClemente, D. A. (2003). Tetrahedron, 59, 8445–8455.  Web of Science CSD CrossRef CAS Google Scholar
First citationDay, M. W., Ogino, I. & Davis, M. E. (2005). Private communication (deposition No. 196139). CCDC, Cambridge, England.  Google Scholar
First citationEstienne, J., Pierrot, M., Baldy, A., Rosenberg, J. & Robert, G. (1984). Acta Cryst. C40, 1478–1480.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHuber, C. S. (1969). Acta Cryst. B25, 1140–1149.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationJiang, Y., Xue, S., Li, Z., Deng, J., Mi, A. & Chan, A. S. C. (1998). Tetrahedron Asymmetry, 9, 3185–3189.  CrossRef CAS Google Scholar
First citationKolocouris, N., Zoidis, G., Foscolos, G. B., Fytas, G., Prathalingham, S. R., Kelly, J. M., Naesens, L. & De Clercq, E. (2007). Bioorg. Med. Chem. 17, 4358–4362.  CrossRef CAS Google Scholar
First citationMonkowius, U., Nogal, S. & Schmidbaur, H. (2004). Z. Naturforsch. Teil B, 59, 259–263.  CAS Google Scholar
First citationPinto, L. H., Holsinger, L. J. & Lamb, R. A. (1992). Cell, 69, 517–528.  CrossRef PubMed CAS Web of Science Google Scholar
First citationRosen, T. & Guarino, K. J. (1991). Tetrahedron, 47, 5391–5400.  CrossRef CAS Google Scholar
First citationSalbeck, J., Schörner, M. & Fuhrmann, T. (2002). Thin Solid Films, 417, 20–25.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTchoubar, B. & Verrier, M. (1960). Bull. Soc. Chim. Fr. pp. 2151–2156.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1308-o1309
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds