metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­ethyl­ammonium tetra­chlorido(pyrazine-2-carboxyl­ato-κ2N1,O)stannate(IV)

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 26 April 2011; accepted 2 May 2011; online 7 May 2011)

The SnIV atom in the title ammonium stannate, (Et3NH)[Sn(C5H3N2O2)Cl4], is chelated by an pyrazine-2-carboxyl­ate ligand and exists in a cis-SnCl4NO octa­hedral geometry. The cation and the anion are linked by an N—H⋯N hydrogen bond.

Related literature

For triethyl­ammonium tetra­chlorido(pyridine-2-carboxyl­ato)stannate(IV), see: Najafi et al. (2011[Najafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m351.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H16N)[Sn(C5H3N2O2)Cl4]

  • Mr = 485.78

  • Triclinic, [P \overline 1]

  • a = 7.4497 (2) Å

  • b = 9.9752 (3) Å

  • c = 12.3728 (4) Å

  • α = 86.491 (2)°

  • β = 80.125 (3)°

  • γ = 83.817 (2)°

  • V = 899.70 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.02 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.538, Tmax = 0.632

  • 15321 measured reflections

  • 4094 independent reflections

  • 3800 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.052

  • S = 1.02

  • 4094 reflections

  • 194 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1⋯N2 0.91 (3) 2.10 (3) 2.999 (2) 167 (2)

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

We have recently reported the crystal structure of triethylammonium tetrachlorido(pyridine-2-carboxylato)stannate, which was synthesized by the reaction of triethylammonium pyridine-2-carboxylate and stannic chloride. The SnIV atom in the anion is N,O-chelated by the pyridine-2-carboxylate in a cis-SnCl4NO octahedral geometry (Najafi et al., 2011). In our previous studies, we have reacted aromatic carboxylic acid with stannic chloride, with/without a proton-abstraction agent. In the present study, replacing pyrdine-2-carboxylic acid by pyrazine-2-carboxylic acid affords a similar salt, (Et3NH)+ [SnCl4(C5H3N2O2)]- (Scheme I, Fig. 1). The tin atom in the stannate is chelated by the pyrazine-2-carboxylate group in a cis-SnCl4NO octahedral geometry. The cation forms an N–H···N hydrogen bond with the anion. Of the four Sn–Cl bonds, the ones that are trans to the Sn–O/Sn–N bonds are somewhat shorter than the other two. No Cl···Cl interactions are present.

Related literature top

For triethylammonium tetrachlorido(pyridine-2-carboxylato)stannate, see: Najafi et al. (2011).

Experimental top

The reaction was carried out under a nitrogen atmosphere. Pyrazine-2-carboxylic acid (1.0 mmol, 0.12 g) and the triethylamine (1.0 mmol, 0.10 g) were dissolved in dry methanol (20 ml). Stannic chloride (1.0 mmol, 0.35 g) was added to the mixture and stirred for 12 h. Suitable crystals were obtained by slow evaporation of the solvent.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The ammonium H-atom was located in a difference Fourier map, and was freely refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of (Et3NH)+ [SnCl4(C5H3N2O2)]- at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The hydrogen bond is denoted by a dashed bond.
Triethylammonium tetrachlorido(pyrazine-2-carboxylato-κ2N1,O)stannate(IV) top
Crystal data top
(C6H16N)[Sn(C5H3N2O2)Cl4]Z = 2
Mr = 485.78F(000) = 480
Triclinic, P1Dx = 1.793 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4497 (2) ÅCell parameters from 10335 reflections
b = 9.9752 (3) Åθ = 2.6–29.2°
c = 12.3728 (4) ŵ = 2.02 mm1
α = 86.491 (2)°T = 100 K
β = 80.125 (3)°Irregular block, colorless
γ = 83.817 (2)°0.35 × 0.30 × 0.25 mm
V = 899.70 (5) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4094 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3800 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.030
Detector resolution: 10.4041 pixels mm-1θmax = 27.5°, θmin = 2.6°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1212
Tmin = 0.538, Tmax = 0.632l = 1516
15321 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0257P)2 + 0.2896P]
where P = (Fo2 + 2Fc2)/3
4094 reflections(Δ/σ)max = 0.001
194 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
(C6H16N)[Sn(C5H3N2O2)Cl4]γ = 83.817 (2)°
Mr = 485.78V = 899.70 (5) Å3
Triclinic, P1Z = 2
a = 7.4497 (2) ÅMo Kα radiation
b = 9.9752 (3) ŵ = 2.02 mm1
c = 12.3728 (4) ÅT = 100 K
α = 86.491 (2)°0.35 × 0.30 × 0.25 mm
β = 80.125 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4094 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3800 reflections with I > 2σ(I)
Tmin = 0.538, Tmax = 0.632Rint = 0.030
15321 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.052H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.35 e Å3
4094 reflectionsΔρmin = 0.65 e Å3
194 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.310753 (18)0.248889 (13)0.740250 (10)0.01198 (5)
Cl10.46068 (7)0.34171 (5)0.86858 (4)0.01988 (11)
Cl20.00680 (7)0.26586 (5)0.83792 (4)0.01703 (11)
Cl30.39067 (7)0.02423 (5)0.80641 (4)0.01605 (11)
Cl40.26028 (7)0.46373 (5)0.64356 (4)0.02064 (11)
O10.22917 (19)0.16094 (14)0.60971 (11)0.0149 (3)
O20.3047 (2)0.10363 (15)0.43513 (11)0.0194 (3)
N10.5661 (2)0.22659 (16)0.61249 (13)0.0128 (3)
N20.8334 (2)0.21721 (17)0.42643 (14)0.0171 (4)
N31.0881 (2)0.24246 (17)0.21208 (14)0.0142 (3)
C10.3419 (3)0.14663 (19)0.51771 (16)0.0134 (4)
C20.5317 (3)0.18609 (19)0.51747 (16)0.0128 (4)
C30.6667 (3)0.18070 (19)0.42525 (16)0.0155 (4)
H3A0.63970.15010.35920.019*
C40.8662 (3)0.2544 (2)0.52239 (17)0.0179 (4)
H4A0.98460.27890.52640.021*
C50.7345 (3)0.2587 (2)0.61660 (17)0.0168 (4)
H5A0.76380.28440.68370.020*
C60.9980 (3)0.3321 (2)0.13009 (16)0.0161 (4)
H6A1.07340.32210.05640.019*
H6B0.99430.42720.14950.019*
C70.8062 (3)0.3011 (2)0.12490 (18)0.0201 (5)
H7A0.75650.36100.06910.030*
H7B0.72880.31510.19660.030*
H7C0.80840.20700.10570.030*
C81.2722 (3)0.2874 (2)0.22036 (17)0.0173 (4)
H8A1.33580.31180.14590.021*
H8B1.34770.21160.25110.021*
C91.2544 (3)0.4075 (2)0.29232 (19)0.0220 (5)
H9A1.37630.43440.29470.033*
H9B1.19520.38270.36680.033*
H9C1.18010.48290.26200.033*
C101.1019 (3)0.0937 (2)0.19176 (16)0.0168 (4)
H10A1.16730.04290.24700.020*
H10B0.97690.06460.20210.020*
C111.2003 (3)0.0582 (2)0.07822 (17)0.0189 (4)
H11A1.20390.03920.07010.028*
H11B1.32550.08400.06810.028*
H11C1.13520.10670.02300.028*
H11.015 (3)0.249 (2)0.279 (2)0.027 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.01291 (8)0.01297 (8)0.00947 (8)0.00012 (5)0.00092 (5)0.00091 (5)
Cl10.0232 (3)0.0225 (3)0.0154 (2)0.0057 (2)0.0037 (2)0.0045 (2)
Cl20.0141 (2)0.0218 (3)0.0137 (2)0.00087 (19)0.00009 (19)0.00038 (19)
Cl30.0189 (3)0.0141 (2)0.0142 (2)0.00126 (19)0.00218 (19)0.00034 (18)
Cl40.0249 (3)0.0158 (2)0.0181 (2)0.0031 (2)0.0002 (2)0.00323 (19)
O10.0143 (7)0.0201 (7)0.0107 (7)0.0020 (6)0.0023 (6)0.0023 (6)
O20.0241 (8)0.0229 (8)0.0123 (7)0.0054 (6)0.0030 (6)0.0027 (6)
N10.0154 (9)0.0120 (8)0.0104 (8)0.0013 (7)0.0017 (7)0.0008 (6)
N20.0182 (9)0.0166 (9)0.0150 (9)0.0021 (7)0.0011 (7)0.0008 (7)
N30.0151 (9)0.0164 (9)0.0103 (8)0.0020 (7)0.0002 (7)0.0004 (7)
C10.0183 (10)0.0092 (9)0.0121 (9)0.0000 (8)0.0028 (8)0.0015 (7)
C20.0167 (10)0.0088 (9)0.0116 (9)0.0016 (7)0.0011 (8)0.0006 (7)
C30.0201 (11)0.0130 (10)0.0126 (10)0.0001 (8)0.0023 (8)0.0004 (8)
C40.0133 (10)0.0222 (11)0.0180 (10)0.0011 (8)0.0038 (8)0.0028 (8)
C50.0157 (10)0.0189 (10)0.0161 (10)0.0010 (8)0.0040 (8)0.0005 (8)
C60.0195 (11)0.0144 (10)0.0139 (10)0.0010 (8)0.0035 (8)0.0002 (8)
C70.0199 (11)0.0211 (11)0.0190 (10)0.0015 (9)0.0046 (9)0.0012 (9)
C80.0140 (10)0.0213 (11)0.0164 (10)0.0028 (8)0.0017 (8)0.0005 (8)
C90.0199 (11)0.0191 (11)0.0283 (12)0.0030 (9)0.0062 (10)0.0019 (9)
C100.0207 (11)0.0135 (10)0.0158 (10)0.0022 (8)0.0022 (9)0.0009 (8)
C110.0215 (11)0.0176 (11)0.0169 (10)0.0008 (9)0.0018 (9)0.0031 (8)
Geometric parameters (Å, º) top
Sn1—O12.0911 (13)C4—H4A0.9500
Sn1—N12.2558 (16)C5—H5A0.9500
Sn1—Cl22.3707 (5)C6—C71.507 (3)
Sn1—Cl12.3742 (5)C6—H6A0.9900
Sn1—Cl32.3879 (5)C6—H6B0.9900
Sn1—Cl42.4150 (5)C7—H7A0.9800
O1—C11.299 (2)C7—H7B0.9800
O2—C11.217 (2)C7—H7C0.9800
N1—C51.337 (3)C8—C91.517 (3)
N1—C21.340 (2)C8—H8A0.9900
N2—C31.334 (3)C8—H8B0.9900
N2—C41.334 (3)C9—H9A0.9800
N3—C61.508 (3)C9—H9B0.9800
N3—C81.509 (3)C9—H9C0.9800
N3—C101.510 (3)C10—C111.513 (3)
N3—H10.91 (3)C10—H10A0.9900
C1—C21.508 (3)C10—H10B0.9900
C2—C31.385 (3)C11—H11A0.9800
C3—H3A0.9500C11—H11B0.9800
C4—C51.389 (3)C11—H11C0.9800
O1—Sn1—N175.62 (6)N1—C5—H5A120.1
O1—Sn1—Cl291.17 (4)C4—C5—H5A120.1
N1—Sn1—Cl2166.13 (4)C7—C6—N3113.48 (17)
O1—Sn1—Cl1168.99 (4)C7—C6—H6A108.9
N1—Sn1—Cl193.47 (4)N3—C6—H6A108.9
Cl2—Sn1—Cl199.813 (18)C7—C6—H6B108.9
O1—Sn1—Cl386.56 (4)N3—C6—H6B108.9
N1—Sn1—Cl388.14 (4)H6A—C6—H6B107.7
Cl2—Sn1—Cl395.397 (18)C6—C7—H7A109.5
Cl1—Sn1—Cl391.748 (18)C6—C7—H7B109.5
O1—Sn1—Cl487.08 (4)H7A—C7—H7B109.5
N1—Sn1—Cl482.96 (4)C6—C7—H7C109.5
Cl2—Sn1—Cl492.285 (18)H7A—C7—H7C109.5
Cl1—Sn1—Cl493.058 (19)H7B—C7—H7C109.5
Cl3—Sn1—Cl4170.120 (17)N3—C8—C9111.95 (17)
C1—O1—Sn1119.66 (12)N3—C8—H8A109.2
C5—N1—C2118.45 (17)C9—C8—H8A109.2
C5—N1—Sn1129.40 (13)N3—C8—H8B109.2
C2—N1—Sn1111.85 (13)C9—C8—H8B109.2
C3—N2—C4116.56 (18)H8A—C8—H8B107.9
C6—N3—C8110.51 (15)C8—C9—H9A109.5
C6—N3—C10114.20 (15)C8—C9—H9B109.5
C8—N3—C10111.59 (16)H9A—C9—H9B109.5
C6—N3—H1108.5 (15)C8—C9—H9C109.5
C8—N3—H1108.8 (15)H9A—C9—H9C109.5
C10—N3—H1102.8 (15)H9B—C9—H9C109.5
O2—C1—O1124.81 (19)N3—C10—C11113.47 (16)
O2—C1—C2119.63 (17)N3—C10—H10A108.9
O1—C1—C2115.56 (16)C11—C10—H10A108.9
N1—C2—C3120.55 (18)N3—C10—H10B108.9
N1—C2—C1116.58 (17)C11—C10—H10B108.9
C3—C2—C1122.87 (17)H10A—C10—H10B107.7
N2—C3—C2121.97 (18)C10—C11—H11A109.5
N2—C3—H3A119.0C10—C11—H11B109.5
C2—C3—H3A119.0H11A—C11—H11B109.5
N2—C4—C5122.67 (19)C10—C11—H11C109.5
N2—C4—H4A118.7H11A—C11—H11C109.5
C5—C4—H4A118.7H11B—C11—H11C109.5
N1—C5—C4119.72 (18)
N1—Sn1—O1—C16.70 (13)C5—N1—C2—C1178.09 (16)
Cl2—Sn1—O1—C1169.01 (13)Sn1—N1—C2—C17.6 (2)
Cl1—Sn1—O1—C114.2 (3)O2—C1—C2—N1176.95 (18)
Cl3—Sn1—O1—C195.65 (13)O1—C1—C2—N12.4 (3)
Cl4—Sn1—O1—C176.78 (13)O2—C1—C2—C32.6 (3)
O1—Sn1—N1—C5178.97 (18)O1—C1—C2—C3178.07 (18)
Cl2—Sn1—N1—C5162.83 (14)C4—N2—C3—C22.5 (3)
Cl1—Sn1—N1—C50.41 (17)N1—C2—C3—N21.1 (3)
Cl3—Sn1—N1—C592.05 (17)C1—C2—C3—N2179.39 (18)
Cl4—Sn1—N1—C592.25 (17)C3—N2—C4—C51.5 (3)
O1—Sn1—N1—C27.47 (12)C2—N1—C5—C42.4 (3)
Cl2—Sn1—N1—C210.7 (3)Sn1—N1—C5—C4170.79 (14)
Cl1—Sn1—N1—C2173.97 (12)N2—C4—C5—N11.0 (3)
Cl3—Sn1—N1—C294.39 (13)C8—N3—C6—C7174.78 (16)
Cl4—Sn1—N1—C281.31 (12)C10—N3—C6—C758.4 (2)
Sn1—O1—C1—O2175.82 (15)C6—N3—C8—C979.8 (2)
Sn1—O1—C1—C24.8 (2)C10—N3—C8—C9151.96 (17)
C5—N1—C2—C31.4 (3)C6—N3—C10—C1156.1 (2)
Sn1—N1—C2—C3172.92 (15)C8—N3—C10—C1170.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···N20.91 (3)2.10 (3)2.999 (2)167 (2)

Experimental details

Crystal data
Chemical formula(C6H16N)[Sn(C5H3N2O2)Cl4]
Mr485.78
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.4497 (2), 9.9752 (3), 12.3728 (4)
α, β, γ (°)86.491 (2), 80.125 (3), 83.817 (2)
V3)899.70 (5)
Z2
Radiation typeMo Kα
µ (mm1)2.02
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.538, 0.632
No. of measured, independent and
observed [I > 2σ(I)] reflections
15321, 4094, 3800
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.052, 1.02
No. of reflections4094
No. of parameters194
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.65

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H1···N20.91 (3)2.10 (3)2.999 (2)167 (2)
 

Acknowledgements

We thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationNajafi, E., Amini, M. M. & Ng, S. W. (2011). Acta Cryst. E67, m351.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds