metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m820-m821

{N,N′-[2,2′-(Ethane-1,2-diyldisulfanediyl)di-o-phenyl­ene]bis­­(quinoline-2-carboxamidato)}copper(II)

aDepartment of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran, and bDepartment of Chemistry and Biochemistry, University of California, Santa Barbara, California, 93106, USA
*Correspondence e-mail: smeghdad@cc.iut.ac.ir

(Received 8 May 2011; accepted 24 May 2011; online 28 May 2011)

In the title compound, [Cu(C34H24N4O2S2)] or [Cu(bqdapte)], where H2bqdapte is 1,2-{bis­[2-(quinoline-2-carboxamido)­phen­yl]sulfan­yl}ethane, the CuII ion is coordinated to the dianionic hexa­dentate bqdapte2− ligand by two amide and two quinoline N atoms and two thio­ether S atoms. In the observed conformation of the hexa­dentate ligand, the quinoline rings attain positions related by a twofold axis. The Cu atom displays a Jahn–Teller-distorted octa­hedral CuN4S2 geometry axially compressed along the two trans-configured Cu—Namidate bonds.

Related literature

For general background to the applications of transition metal complexes of hybrid N,S-donor ligands, see: Kouroulis et al. (2009[Kouroulis, K. N., Hadjikakou, S. K., Kourkoumelis, N., Kubicki, M., Male, L., Hursthouse, M., Skoulika, S., Metsios, A. K., Tyurin, V. Y., Dolganov, A. V., Milaeva, E. R. & Hadjiliadis, N. (2009). Dalton Trans. pp. 10446-10456.]); Lee et al. (2007[Lee, D.-H., Hatcher, L. Q., Vance, M. A., Sarangi, R., Milligan, A. E., Narducci Sarjeant, A. A., Incarvito, C. D., Rheingold, A. L., Hodgson, K. O., Hedman, B., Solomon, E. I. & Karlin, K. D. (2007). Inorg. Chem. 46, 6056-6068.]); Ronson et al. (2006[Ronson, T. K., Adams, H. & Ward, M. D. (2006). CrystEngComm, 8, 497-501.]); Sarkar et al. (2009[Sarkar, S., Patra, A., Drew, M. G. B., Zangrando, E. & Chattopadhyay, P. (2009). Polyhedron, 28, 1-6.]); Tavacoli et al. (2003[Tavacoli, S., Miller, T. A., Paul, R. L., Jeffery, J. C. & Ward, M. D. (2003). Polyhedron, 22, 507-514.]); Xie et al. (2005[Xie, Y. B., Li, J. R. & Bu, X. H. (2005). Polyhedron, 24, 413-418.]). For related structures, see: Kouroulis et al. (2009[Kouroulis, K. N., Hadjikakou, S. K., Kourkoumelis, N., Kubicki, M., Male, L., Hursthouse, M., Skoulika, S., Metsios, A. K., Tyurin, V. Y., Dolganov, A. V., Milaeva, E. R. & Hadjiliadis, N. (2009). Dalton Trans. pp. 10446-10456.]); Sarkar et al. (2009[Sarkar, S., Patra, A., Drew, M. G. B., Zangrando, E. & Chattopadhyay, P. (2009). Polyhedron, 28, 1-6.]); Singh & Mukherjee (2005[Singh, A. K. & Mukherjee, R. (2005). Inorg. Chem. 44, 5813-5819.]); Sunatsuki et al. (1998[Sunatsuki, Y., Matsumoto, T., Fukushima, Y., Mimura, M., Hirohata, M., Matsumoto, N. & Kai, F. (1998). Polyhedron, 17, 1943-1952.]); Zhang et al. (2004[Zhang, S., Tu, C., Wang, X., Yang, Z., Zhang, J., Lin, L., Ding, J. & Guo, Z. (2004). Eur. J. Inorg. Chem. pp. 4028-4035.]). For the synthesis of the ligand see: Meghdadi et al. (2011[Meghdadi, S., Mirkhani, V. & Ford, P. C. (2011). Synth. Commun. In the press.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C34H24N4O2S2)]

  • Mr = 648.23

  • Orthorhombic, P c c n

  • a = 11.4124 (15) Å

  • b = 13.5097 (18) Å

  • c = 18.606 (2) Å

  • V = 2868.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 150 K

  • 0.30 × 0.25 × 0.08 mm

Data collection
  • Bruker SMART 100 diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.770, Tmax = 0.927

  • 21464 measured reflections

  • 2926 independent reflections

  • 2467 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.119

  • S = 1.22

  • 2926 reflections

  • 195 parameters

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The coordination chemistry of transition metal complexes with flexible hybrid N,S-donor ligands has been the focus of growing attention (Sarkar et al. 2009) due to their application in designing new molecular architectures (Ronson et al., 2006; Tavacoli et al.., 2003; Xie et al.., 2005) and in bioinorganic chemistry (Kouroulis et al. 2009; Lee et al., 2007). Many of these efforts have been devoted to the design and synthesis of new caboxamide ligands (Kouroulis et al. 2009; Singh & Mukherjee 2005; Sunatsuki et al., 1998; Zhang et al., 2004). The bioinorganic relevance of copper and its crucial role in many biological and catalytic functions have stimulated efforts towards the design, synthesis, and characterization of copper complexes as models for providing better understanding of biological systems and for the development of efficient catalysts (Lee et al., 2007; Zhang et al., 2004). In continuation of our studies on carboxamido metal complexes, we herein report the synthesis and structure of the title compound, [Cu(C34H24N4O2S2)], (I), and make a brief comparison with reported structures.

The structure of complex (I), and the atomic numbering used, is shown in Fig. 1. The Cu(II) ion displays a Jahn-Teller distorted octahedral CuN4S2 geometry arising from the hexadentate thiocarboxamido ligand. This complex has a 2-fold axis passing through Cu and the midpoint of C17 and its symmetry related atom. Two quinoline nitrogen, two deprotonated amide nitrogen, and two thioether sulfur bind copper(II) in cis, trans, and cis orientations. The geometric parameters are listed below in the supplementary materials. The angles at the metal center between cis-positioned donor pairs span the range 80.23 (7) - 105.76 (8)° and are close to those reported for related complexes (Singh & Mukherjee, 2005; Zhang et al., 2004). The three trans angles, N1—Cu—N1i 171.46 (10)°, N2—Cu—S 163.79 (5)°, and N2i—Cu—Si 163.79 (5)°, deviate significantly from the ideal value of 180° for a regular octahedral structure. This is presumably due to the structural demands imparted by the hexadentate ligand. The dimethylene bridge of the five-membered CuS2C2 ring has gauche conformation. The equatorial plane is occupied by two N atoms from quinoline moieties at longer Cu–N distances [2.183 (2) Å] and two thioether sulfur atoms [2.523 (1) Å]. The axial positions are occupied by the two amido nitrogen atoms at shorter Cu–N1 distances [1.956 (2) Å]. This Cu–N1 bond distance lies in the range of normal values for copper(II) to deprotonated amido nitrogen bond distances (Sunatsuki et al., 1998). On the other hand, Cu–N2 bond distance is longer than normal value of 1.96–2.08 Å for the copper(II) to pyridyl nitrogen in related complexes. (Singh & Mukherjee, 2005; Sunatsuki et al., 1998; Zhang et al., 2004). In agreement with findings on a pair of analogous Cu and Ni complexes with pyridine replacing quinoline in the bqdapte ligand (Sunatsuki et al., 1998), the coordination of the copper(II) ion in the title compound can be described as a Jahn-Teller distorted axially compressed (N1 and N1i) and equatorially elongated octahedron (N2, S, N2i, Si).

Related literature top

For general background to the applications of transition metal complexes of hybrid N,S-donor ligands, see: Kouroulis et al. (2009); Lee et al. (2007); Ronson et al. (2006); Sarkar et al. (2009); Tavacoli et al. (2003); Xie et al. (2005). For related structures, see: Kouroulis et al. (2009); Sarkar et al. (2009); Singh & Mukherjee (2005); Sunatsuki et al. (1998); Zhang et al. (2004). For the synthesis of the ligand see: Meghdadi et al. (2011).

Experimental top

The ligand 1,4-bis[o-(quinoline-2-carboxamidophenyl)]-1,4-dithiobutane (H2bqctb) was prepared according to a general method reported elsewhere (Meghdadi et al., 2011) by the reaction of quinaldic acid with 1,2-di(o-aminophenylthio)ethane (dapte) in the presence of triphenyl phosphite (TPP) and in tetrabutylammonium bromide (TBAB) as the reaction media.

The title complex was prepared as follows. To a stirring solution of H2bqctb (58.6 mg, 0.1 mmol) in dichloromethane (20 ml) was added a solution of Cu(CH3COO)2.H2O (20 mg, 0.1 mmol) in methanol (20 ml), and the mixture was stirred for 4 h. The final reaction mixture was filtered and the filtrate was left undisturbed for 24 h. Bright green crystals suitable for X-ray crystallography were obtained by slow evaporation of the filtrate at room temperature. The crystals were filtered off and washed with cold diethyl ether-dichloromethane (9/1), and dried under vacuum. Yield: 71%.

Refinement top

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP drawing of (I), with atom labeling scheme. Displacement ellipsoids are drawn at 50% probability level.
{N,N'-[2,2'-(Ethane-1,2-diyldisulfanediyl)di-o- phenylene]bis(quinoline-2-carboxamidato)}copper(II) top
Crystal data top
[Cu(C34H24N4O2S2)]Dx = 1.501 Mg m3
Mr = 648.23Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PccnCell parameters from 118 reflections
a = 11.4124 (15) Åθ = 17.8–27.3°
b = 13.5097 (18) ŵ = 0.95 mm1
c = 18.606 (2) ÅT = 150 K
V = 2868.6 (7) Å3Plate, green
Z = 40.3 × 0.25 × 0.08 mm
F(000) = 1332
Data collection top
Bruker SMART 100
diffractometer
2926 independent reflections
Radiation source: fine-focus sealed tube2467 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1414
Tmin = 0.770, Tmax = 0.927k = 1615
21464 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.072P)2]
where P = (Fo2 + 2Fc2)/3
2926 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Cu(C34H24N4O2S2)]V = 2868.6 (7) Å3
Mr = 648.23Z = 4
Orthorhombic, PccnMo Kα radiation
a = 11.4124 (15) ŵ = 0.95 mm1
b = 13.5097 (18) ÅT = 150 K
c = 18.606 (2) Å0.3 × 0.25 × 0.08 mm
Data collection top
Bruker SMART 100
diffractometer
2926 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2467 reflections with I > 2σ(I)
Tmin = 0.770, Tmax = 0.927Rint = 0.040
21464 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.22Δρmax = 0.83 e Å3
2926 reflectionsΔρmin = 0.40 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.95359 (19)0.63312 (18)0.40463 (12)0.0287 (5)
C20.97185 (18)0.72050 (18)0.45446 (11)0.0254 (5)
C31.07936 (19)0.72879 (19)0.49149 (13)0.0324 (6)
H31.13950.68370.48320.039*
C41.09359 (19)0.80390 (19)0.53956 (12)0.0326 (6)
H41.16420.81120.56390.039*
C51.00127 (18)0.87021 (17)0.55221 (11)0.0267 (5)
C61.0075 (2)0.9476 (2)0.60300 (13)0.0329 (6)
H61.07660.95760.62850.040*
C70.9143 (2)1.0077 (2)0.61517 (12)0.0336 (6)
H70.92001.05790.64920.040*
C80.8095 (2)0.99472 (18)0.57677 (13)0.0320 (5)
H80.74601.03600.58580.038*
C90.80010 (19)0.92180 (18)0.52621 (12)0.0284 (5)
H90.73080.91460.50040.034*
C100.89525 (18)0.85719 (17)0.51284 (11)0.0236 (5)
C110.81073 (18)0.54899 (17)0.33282 (11)0.0260 (5)
C120.85951 (19)0.45376 (19)0.33824 (13)0.0321 (5)
H120.92000.44260.37070.039*
C130.8195 (2)0.37658 (19)0.29635 (13)0.0358 (6)
H130.85350.31430.30100.043*
C140.7295 (2)0.39057 (19)0.24748 (13)0.0340 (6)
H140.70450.33850.21860.041*
C150.6777 (2)0.48159 (18)0.24211 (12)0.0309 (5)
H150.61620.49090.21000.037*
C160.71616 (19)0.56053 (18)0.28432 (12)0.0267 (5)
C170.6849 (2)0.7377 (2)0.20459 (13)0.0427 (7)
H17A0.66770.69820.16230.051*
H17B0.64100.79890.20050.051*
Cu0.75000.75000.38326 (2)0.02369 (16)
N10.84546 (16)0.63022 (15)0.37545 (9)0.0242 (4)
N20.88397 (15)0.78305 (15)0.46349 (9)0.0245 (4)
O1.03533 (14)0.57507 (15)0.39668 (10)0.0433 (5)
S0.63335 (5)0.67137 (5)0.28325 (3)0.03301 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0220 (11)0.0413 (14)0.0229 (11)0.0030 (10)0.0022 (9)0.0047 (10)
C20.0188 (10)0.0374 (12)0.0199 (10)0.0012 (9)0.0004 (8)0.0011 (9)
C30.0200 (11)0.0451 (14)0.0321 (13)0.0074 (10)0.0029 (9)0.0080 (11)
C40.0188 (11)0.0490 (16)0.0300 (12)0.0028 (10)0.0053 (9)0.0047 (11)
C50.0225 (11)0.0362 (13)0.0212 (11)0.0010 (9)0.0002 (9)0.0008 (9)
C60.0254 (12)0.0450 (15)0.0283 (12)0.0028 (10)0.0032 (9)0.0056 (11)
C70.0346 (13)0.0385 (14)0.0276 (12)0.0005 (11)0.0019 (9)0.0086 (10)
C80.0284 (12)0.0345 (13)0.0331 (13)0.0059 (10)0.0062 (10)0.0002 (10)
C90.0228 (11)0.0370 (14)0.0255 (11)0.0042 (10)0.0026 (9)0.0017 (10)
C100.0206 (10)0.0320 (12)0.0180 (10)0.0008 (9)0.0042 (8)0.0027 (9)
C110.0222 (10)0.0341 (13)0.0216 (11)0.0017 (9)0.0040 (9)0.0018 (9)
C120.0274 (11)0.0410 (14)0.0280 (12)0.0023 (10)0.0020 (10)0.0032 (11)
C130.0402 (13)0.0314 (14)0.0359 (13)0.0009 (11)0.0079 (11)0.0008 (10)
C140.0420 (14)0.0330 (14)0.0269 (12)0.0085 (11)0.0052 (10)0.0045 (10)
C150.0327 (12)0.0388 (14)0.0212 (11)0.0093 (10)0.0022 (9)0.0009 (10)
C160.0244 (10)0.0352 (13)0.0206 (11)0.0021 (9)0.0028 (9)0.0006 (9)
C170.0633 (18)0.0398 (16)0.0249 (13)0.0066 (13)0.0162 (12)0.0024 (10)
Cu0.0172 (2)0.0340 (3)0.0199 (2)0.00048 (15)0.0000.000
N10.0192 (9)0.0337 (11)0.0199 (9)0.0004 (8)0.0008 (7)0.0029 (8)
N20.0174 (8)0.0361 (10)0.0201 (9)0.0009 (8)0.0012 (7)0.0021 (8)
O0.0219 (9)0.0598 (13)0.0481 (11)0.0127 (8)0.0052 (8)0.0262 (9)
S0.0244 (3)0.0392 (4)0.0354 (4)0.0007 (2)0.0049 (2)0.0076 (3)
Geometric parameters (Å, º) top
C1—O1.228 (3)C11—N11.411 (3)
C1—N11.349 (3)C11—C161.415 (3)
C1—C21.515 (3)C12—C131.379 (4)
C2—N21.322 (3)C12—H120.9300
C2—C31.412 (3)C13—C141.385 (4)
C3—C41.362 (3)C13—H130.9300
C3—H30.9300C14—C151.368 (4)
C4—C51.403 (3)C14—H140.9300
C4—H40.9300C15—C161.395 (3)
C5—C61.411 (3)C15—H150.9300
C5—C101.425 (3)C16—S1.771 (2)
C6—C71.357 (3)C17—C17i1.523 (6)
C6—H60.9300C17—S1.814 (3)
C7—C81.405 (3)C17—H17A0.9700
C7—H70.9300C17—H17B0.9700
C8—C91.366 (3)Cu—N1i1.9561 (19)
C8—H80.9300Cu—N11.956 (2)
C9—C101.415 (3)Cu—N22.1830 (18)
C9—H90.9300Cu—N2i2.1830 (18)
C10—N21.365 (3)Cu—S2.5225 (7)
C11—C121.405 (3)Cu—Si2.5225 (7)
O—C1—N1128.9 (2)C15—C14—C13119.4 (2)
O—C1—C2117.83 (19)C15—C14—H14120.3
N1—C1—C2113.24 (19)C13—C14—H14120.3
N2—C2—C3123.1 (2)C14—C15—C16120.6 (2)
N2—C2—C1118.12 (19)C14—C15—H15119.7
C3—C2—C1118.7 (2)C16—C15—H15119.7
C4—C3—C2118.9 (2)C15—C16—C11121.0 (2)
C4—C3—H3120.6C15—C16—S118.16 (17)
C2—C3—H3120.6C11—C16—S120.48 (17)
C3—C4—C5119.7 (2)C17i—C17—S115.10 (14)
C3—C4—H4120.1C17i—C17—H17A108.5
C5—C4—H4120.1S—C17—H17A108.5
C4—C5—C6123.2 (2)C17i—C17—H17B108.5
C4—C5—C10118.2 (2)S—C17—H17B108.5
C6—C5—C10118.6 (2)H17A—C17—H17B107.5
C7—C6—C5121.0 (2)N1i—Cu—N1171.48 (10)
C7—C6—H6119.5N1i—Cu—N2105.76 (8)
C5—C6—H6119.5N1—Cu—N280.21 (7)
C6—C7—C8120.5 (2)N1i—Cu—N2i80.21 (7)
C6—C7—H7119.7N1—Cu—N2i105.76 (8)
C8—C7—H7119.7N2—Cu—N2i93.71 (9)
C9—C8—C7120.5 (2)N1i—Cu—S89.98 (6)
C9—C8—H8119.8N1—Cu—S83.73 (5)
C7—C8—H8119.8N2—Cu—S163.78 (5)
C8—C9—C10120.4 (2)N2i—Cu—S92.79 (5)
C8—C9—H9119.8N1i—Cu—Si83.73 (5)
C10—C9—H9119.8N1—Cu—Si89.98 (6)
N2—C10—C9119.90 (19)N2—Cu—Si92.79 (5)
N2—C10—C5121.08 (19)N2i—Cu—Si163.78 (5)
C9—C10—C5119.0 (2)S—Cu—Si84.93 (3)
C12—C11—N1124.1 (2)C1—N1—C11120.39 (19)
C12—C11—C16116.7 (2)C1—N1—Cu117.11 (16)
N1—C11—C16119.1 (2)C11—N1—Cu121.92 (14)
C13—C12—C11121.4 (2)C2—N2—C10118.88 (18)
C13—C12—H12119.3C2—N2—Cu108.28 (15)
C11—C12—H12119.3C10—N2—Cu132.55 (14)
C12—C13—C14120.9 (2)C16—S—C17104.70 (12)
C12—C13—H13119.6C16—S—Cu93.79 (7)
C14—C13—H13119.6C17—S—Cu102.48 (9)
O—C1—C2—N2179.7 (2)S—Cu—N1—C1162.05 (16)
N1—C1—C2—N20.6 (3)Si—Cu—N1—C177.15 (15)
O—C1—C2—C32.6 (3)N2—Cu—N1—C11173.02 (17)
N1—C1—C2—C3176.5 (2)N2i—Cu—N1—C1181.90 (16)
N2—C2—C3—C40.8 (4)S—Cu—N1—C119.24 (15)
C1—C2—C3—C4176.1 (2)Si—Cu—N1—C1194.14 (16)
C2—C3—C4—C51.0 (4)C3—C2—N2—C102.6 (3)
C3—C4—C5—C6177.6 (2)C1—C2—N2—C10174.38 (19)
C3—C4—C5—C101.0 (3)C3—C2—N2—Cu171.95 (19)
C4—C5—C6—C7177.6 (2)C1—C2—N2—Cu11.1 (2)
C10—C5—C6—C71.0 (4)C9—C10—N2—C2176.6 (2)
C5—C6—C7—C80.6 (4)C5—C10—N2—C22.5 (3)
C6—C7—C8—C90.5 (4)C9—C10—N2—Cu10.4 (3)
C7—C8—C9—C101.2 (4)C5—C10—N2—Cu170.41 (15)
C8—C9—C10—N2178.4 (2)N1i—Cu—N2—C2159.59 (15)
C8—C9—C10—C50.8 (3)N1—Cu—N2—C214.17 (15)
C4—C5—C10—N20.8 (3)N2i—Cu—N2—C2119.54 (17)
C6—C5—C10—N2179.5 (2)S—Cu—N2—C26.1 (3)
C4—C5—C10—C9178.4 (2)Si—Cu—N2—C275.33 (15)
C6—C5—C10—C90.3 (3)N1i—Cu—N2—C1013.9 (2)
N1—C11—C12—C13178.2 (2)N1—Cu—N2—C10172.3 (2)
C16—C11—C12—C132.2 (3)N2i—Cu—N2—C1066.97 (17)
C11—C12—C13—C140.1 (4)S—Cu—N2—C10179.59 (13)
C12—C13—C14—C151.7 (4)Si—Cu—N2—C1098.16 (19)
C13—C14—C15—C161.2 (3)C15—C16—S—C1783.65 (19)
C14—C15—C16—C111.0 (3)C11—C16—S—C17103.38 (19)
C14—C15—C16—S171.92 (18)C15—C16—S—Cu172.39 (17)
C12—C11—C16—C152.7 (3)C11—C16—S—Cu0.59 (18)
N1—C11—C16—C15178.84 (18)C17i—C17—S—C1659.6 (3)
C12—C11—C16—S170.09 (16)C17i—C17—S—Cu37.8 (3)
N1—C11—C16—S6.1 (3)N1i—Cu—S—C16178.82 (9)
O—C1—N1—C114.6 (4)N1—Cu—S—C164.58 (9)
C2—C1—N1—C11174.42 (18)N2—Cu—S—C1612.6 (2)
O—C1—N1—Cu166.8 (2)N2i—Cu—S—C16100.98 (9)
C2—C1—N1—Cu14.1 (2)Si—Cu—S—C1695.11 (7)
C12—C11—N1—C124.9 (3)N1i—Cu—S—C1772.85 (11)
C16—C11—N1—C1159.3 (2)N1—Cu—S—C17101.39 (11)
C12—C11—N1—Cu164.14 (16)N2—Cu—S—C1793.4 (2)
C16—C11—N1—Cu11.7 (3)N2i—Cu—S—C17153.05 (11)
N2—Cu—N1—C115.69 (15)Si—Cu—S—C1710.85 (9)
N2i—Cu—N1—C1106.81 (16)
Symmetry code: (i) x+3/2, y+3/2, z.

Experimental details

Crystal data
Chemical formula[Cu(C34H24N4O2S2)]
Mr648.23
Crystal system, space groupOrthorhombic, Pccn
Temperature (K)150
a, b, c (Å)11.4124 (15), 13.5097 (18), 18.606 (2)
V3)2868.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.3 × 0.25 × 0.08
Data collection
DiffractometerBruker SMART 100
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.770, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
21464, 2926, 2467
Rint0.040
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.119, 1.22
No. of reflections2926
No. of parameters195
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.40

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

Partial support of this work by the Research Council of the University of Isfahan is gratefully acknowledged. Also acknowledged is partial support from the US National Science Foundation grant (NSF-CHE-0749524) to PCF.

References

First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKouroulis, K. N., Hadjikakou, S. K., Kourkoumelis, N., Kubicki, M., Male, L., Hursthouse, M., Skoulika, S., Metsios, A. K., Tyurin, V. Y., Dolganov, A. V., Milaeva, E. R. & Hadjiliadis, N. (2009). Dalton Trans. pp. 10446–10456.  CrossRef Google Scholar
First citationLee, D.-H., Hatcher, L. Q., Vance, M. A., Sarangi, R., Milligan, A. E., Narducci Sarjeant, A. A., Incarvito, C. D., Rheingold, A. L., Hodgson, K. O., Hedman, B., Solomon, E. I. & Karlin, K. D. (2007). Inorg. Chem. 46, 6056–6068.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMeghdadi, S., Mirkhani, V. & Ford, P. C. (2011). Synth. Commun. In the press.  Google Scholar
First citationRonson, T. K., Adams, H. & Ward, M. D. (2006). CrystEngComm, 8, 497–501.  CrossRef CAS Google Scholar
First citationSarkar, S., Patra, A., Drew, M. G. B., Zangrando, E. & Chattopadhyay, P. (2009). Polyhedron, 28, 1–6.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, A. K. & Mukherjee, R. (2005). Inorg. Chem. 44, 5813–5819.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSunatsuki, Y., Matsumoto, T., Fukushima, Y., Mimura, M., Hirohata, M., Matsumoto, N. & Kai, F. (1998). Polyhedron, 17, 1943–1952.  CrossRef CAS Google Scholar
First citationTavacoli, S., Miller, T. A., Paul, R. L., Jeffery, J. C. & Ward, M. D. (2003). Polyhedron, 22, 507–514.  CrossRef CAS Google Scholar
First citationXie, Y. B., Li, J. R. & Bu, X. H. (2005). Polyhedron, 24, 413–418.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, S., Tu, C., Wang, X., Yang, Z., Zhang, J., Lin, L., Ding, J. & Guo, Z. (2004). Eur. J. Inorg. Chem. pp. 4028–4035.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m820-m821
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds