metal-organic compounds
{N,N′-[2,2′-(Ethane-1,2-diyldisulfanediyl)di-o-phenylene]bis(quinoline-2-carboxamidato)}copper(II)
aDepartment of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran, and bDepartment of Chemistry and Biochemistry, University of California, Santa Barbara, California, 93106, USA
*Correspondence e-mail: smeghdad@cc.iut.ac.ir
In the title compound, [Cu(C34H24N4O2S2)] or [Cu(bqdapte)], where H2bqdapte is 1,2-{bis[2-(quinoline-2-carboxamido)phenyl]sulfanyl}ethane, the CuII ion is coordinated to the dianionic hexadentate bqdapte2− ligand by two amide and two quinoline N atoms and two thioether S atoms. In the observed conformation of the hexadentate ligand, the quinoline rings attain positions related by a twofold axis. The Cu atom displays a Jahn–Teller-distorted octahedral CuN4S2 geometry axially compressed along the two trans-configured Cu—Namidate bonds.
Related literature
For general background to the applications of transition metal complexes of hybrid N,S-donor ligands, see: Kouroulis et al. (2009); Lee et al. (2007); Ronson et al. (2006); Sarkar et al. (2009); Tavacoli et al. (2003); Xie et al. (2005). For related structures, see: Kouroulis et al. (2009); Sarkar et al. (2009); Singh & Mukherjee (2005); Sunatsuki et al. (1998); Zhang et al. (2004). For the synthesis of the ligand see: Meghdadi et al. (2011).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811019581/qk2010sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811019581/qk2010Isup2.hkl
The ligand 1,4-bis[o-(quinoline-2-carboxamidophenyl)]-1,4-dithiobutane (H2bqctb) was prepared according to a general method reported elsewhere (Meghdadi et al., 2011) by the reaction of quinaldic acid with 1,2-di(o-aminophenylthio)ethane (dapte) in the presence of triphenyl phosphite (TPP) and in tetrabutylammonium bromide (TBAB) as the reaction media.
The title complex was prepared as follows. To a stirring solution of H2bqctb (58.6 mg, 0.1 mmol) in dichloromethane (20 ml) was added a solution of Cu(CH3COO)2.H2O (20 mg, 0.1 mmol) in methanol (20 ml), and the mixture was stirred for 4 h. The final reaction mixture was filtered and the filtrate was left undisturbed for 24 h. Bright green crystals suitable for X-ray crystallography were obtained by slow evaporation of the filtrate at room temperature. The crystals were filtered off and washed with cold diethyl ether-dichloromethane (9/1), and dried under vacuum. Yield: 71%.
Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.
Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The ORTEP drawing of (I), with atom labeling scheme. Displacement ellipsoids are drawn at 50% probability level. |
[Cu(C34H24N4O2S2)] | Dx = 1.501 Mg m−3 |
Mr = 648.23 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pccn | Cell parameters from 118 reflections |
a = 11.4124 (15) Å | θ = 17.8–27.3° |
b = 13.5097 (18) Å | µ = 0.95 mm−1 |
c = 18.606 (2) Å | T = 150 K |
V = 2868.6 (7) Å3 | Plate, green |
Z = 4 | 0.3 × 0.25 × 0.08 mm |
F(000) = 1332 |
Bruker SMART 100 diffractometer | 2926 independent reflections |
Radiation source: fine-focus sealed tube | 2467 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
ω scans | θmax = 26.4°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −14→14 |
Tmin = 0.770, Tmax = 0.927 | k = −16→15 |
21464 measured reflections | l = −23→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.22 | w = 1/[σ2(Fo2) + (0.072P)2] where P = (Fo2 + 2Fc2)/3 |
2926 reflections | (Δ/σ)max = 0.001 |
195 parameters | Δρmax = 0.83 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
[Cu(C34H24N4O2S2)] | V = 2868.6 (7) Å3 |
Mr = 648.23 | Z = 4 |
Orthorhombic, Pccn | Mo Kα radiation |
a = 11.4124 (15) Å | µ = 0.95 mm−1 |
b = 13.5097 (18) Å | T = 150 K |
c = 18.606 (2) Å | 0.3 × 0.25 × 0.08 mm |
Bruker SMART 100 diffractometer | 2926 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | 2467 reflections with I > 2σ(I) |
Tmin = 0.770, Tmax = 0.927 | Rint = 0.040 |
21464 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.119 | H-atom parameters constrained |
S = 1.22 | Δρmax = 0.83 e Å−3 |
2926 reflections | Δρmin = −0.40 e Å−3 |
195 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.95359 (19) | 0.63312 (18) | 0.40463 (12) | 0.0287 (5) | |
C2 | 0.97185 (18) | 0.72050 (18) | 0.45446 (11) | 0.0254 (5) | |
C3 | 1.07936 (19) | 0.72879 (19) | 0.49149 (13) | 0.0324 (6) | |
H3 | 1.1395 | 0.6837 | 0.4832 | 0.039* | |
C4 | 1.09359 (19) | 0.80390 (19) | 0.53956 (12) | 0.0326 (6) | |
H4 | 1.1642 | 0.8112 | 0.5639 | 0.039* | |
C5 | 1.00127 (18) | 0.87021 (17) | 0.55221 (11) | 0.0267 (5) | |
C6 | 1.0075 (2) | 0.9476 (2) | 0.60300 (13) | 0.0329 (6) | |
H6 | 1.0766 | 0.9576 | 0.6285 | 0.040* | |
C7 | 0.9143 (2) | 1.0077 (2) | 0.61517 (12) | 0.0336 (6) | |
H7 | 0.9200 | 1.0579 | 0.6492 | 0.040* | |
C8 | 0.8095 (2) | 0.99472 (18) | 0.57677 (13) | 0.0320 (5) | |
H8 | 0.7460 | 1.0360 | 0.5858 | 0.038* | |
C9 | 0.80010 (19) | 0.92180 (18) | 0.52621 (12) | 0.0284 (5) | |
H9 | 0.7308 | 0.9146 | 0.5004 | 0.034* | |
C10 | 0.89525 (18) | 0.85719 (17) | 0.51284 (11) | 0.0236 (5) | |
C11 | 0.81073 (18) | 0.54899 (17) | 0.33282 (11) | 0.0260 (5) | |
C12 | 0.85951 (19) | 0.45376 (19) | 0.33824 (13) | 0.0321 (5) | |
H12 | 0.9200 | 0.4426 | 0.3707 | 0.039* | |
C13 | 0.8195 (2) | 0.37658 (19) | 0.29635 (13) | 0.0358 (6) | |
H13 | 0.8535 | 0.3143 | 0.3010 | 0.043* | |
C14 | 0.7295 (2) | 0.39057 (19) | 0.24748 (13) | 0.0340 (6) | |
H14 | 0.7045 | 0.3385 | 0.2186 | 0.041* | |
C15 | 0.6777 (2) | 0.48159 (18) | 0.24211 (12) | 0.0309 (5) | |
H15 | 0.6162 | 0.4909 | 0.2100 | 0.037* | |
C16 | 0.71616 (19) | 0.56053 (18) | 0.28432 (12) | 0.0267 (5) | |
C17 | 0.6849 (2) | 0.7377 (2) | 0.20459 (13) | 0.0427 (7) | |
H17A | 0.6677 | 0.6982 | 0.1623 | 0.051* | |
H17B | 0.6410 | 0.7989 | 0.2005 | 0.051* | |
Cu | 0.7500 | 0.7500 | 0.38326 (2) | 0.02369 (16) | |
N1 | 0.84546 (16) | 0.63022 (15) | 0.37545 (9) | 0.0242 (4) | |
N2 | 0.88397 (15) | 0.78305 (15) | 0.46349 (9) | 0.0245 (4) | |
O | 1.03533 (14) | 0.57507 (15) | 0.39668 (10) | 0.0433 (5) | |
S | 0.63335 (5) | 0.67137 (5) | 0.28325 (3) | 0.03301 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0220 (11) | 0.0413 (14) | 0.0229 (11) | 0.0030 (10) | 0.0022 (9) | −0.0047 (10) |
C2 | 0.0188 (10) | 0.0374 (12) | 0.0199 (10) | 0.0012 (9) | −0.0004 (8) | −0.0011 (9) |
C3 | 0.0200 (11) | 0.0451 (14) | 0.0321 (13) | 0.0074 (10) | −0.0029 (9) | −0.0080 (11) |
C4 | 0.0188 (11) | 0.0490 (16) | 0.0300 (12) | 0.0028 (10) | −0.0053 (9) | −0.0047 (11) |
C5 | 0.0225 (11) | 0.0362 (13) | 0.0212 (11) | 0.0010 (9) | 0.0002 (9) | 0.0008 (9) |
C6 | 0.0254 (12) | 0.0450 (15) | 0.0283 (12) | −0.0028 (10) | −0.0032 (9) | −0.0056 (11) |
C7 | 0.0346 (13) | 0.0385 (14) | 0.0276 (12) | −0.0005 (11) | 0.0019 (9) | −0.0086 (10) |
C8 | 0.0284 (12) | 0.0345 (13) | 0.0331 (13) | 0.0059 (10) | 0.0062 (10) | −0.0002 (10) |
C9 | 0.0228 (11) | 0.0370 (14) | 0.0255 (11) | 0.0042 (10) | 0.0026 (9) | 0.0017 (10) |
C10 | 0.0206 (10) | 0.0320 (12) | 0.0180 (10) | 0.0008 (9) | 0.0042 (8) | 0.0027 (9) |
C11 | 0.0222 (10) | 0.0341 (13) | 0.0216 (11) | −0.0017 (9) | 0.0040 (9) | −0.0018 (9) |
C12 | 0.0274 (11) | 0.0410 (14) | 0.0280 (12) | −0.0023 (10) | 0.0020 (10) | 0.0032 (11) |
C13 | 0.0402 (13) | 0.0314 (14) | 0.0359 (13) | −0.0009 (11) | 0.0079 (11) | 0.0008 (10) |
C14 | 0.0420 (14) | 0.0330 (14) | 0.0269 (12) | −0.0085 (11) | 0.0052 (10) | −0.0045 (10) |
C15 | 0.0327 (12) | 0.0388 (14) | 0.0212 (11) | −0.0093 (10) | 0.0022 (9) | −0.0009 (10) |
C16 | 0.0244 (10) | 0.0352 (13) | 0.0206 (11) | −0.0021 (9) | 0.0028 (9) | −0.0006 (9) |
C17 | 0.0633 (18) | 0.0398 (16) | 0.0249 (13) | 0.0066 (13) | −0.0162 (12) | −0.0024 (10) |
Cu | 0.0172 (2) | 0.0340 (3) | 0.0199 (2) | −0.00048 (15) | 0.000 | 0.000 |
N1 | 0.0192 (9) | 0.0337 (11) | 0.0199 (9) | 0.0004 (8) | 0.0008 (7) | −0.0029 (8) |
N2 | 0.0174 (8) | 0.0361 (10) | 0.0201 (9) | 0.0009 (8) | 0.0012 (7) | 0.0021 (8) |
O | 0.0219 (9) | 0.0598 (13) | 0.0481 (11) | 0.0127 (8) | −0.0052 (8) | −0.0262 (9) |
S | 0.0244 (3) | 0.0392 (4) | 0.0354 (4) | 0.0007 (2) | −0.0049 (2) | −0.0076 (3) |
C1—O | 1.228 (3) | C11—N1 | 1.411 (3) |
C1—N1 | 1.349 (3) | C11—C16 | 1.415 (3) |
C1—C2 | 1.515 (3) | C12—C13 | 1.379 (4) |
C2—N2 | 1.322 (3) | C12—H12 | 0.9300 |
C2—C3 | 1.412 (3) | C13—C14 | 1.385 (4) |
C3—C4 | 1.362 (3) | C13—H13 | 0.9300 |
C3—H3 | 0.9300 | C14—C15 | 1.368 (4) |
C4—C5 | 1.403 (3) | C14—H14 | 0.9300 |
C4—H4 | 0.9300 | C15—C16 | 1.395 (3) |
C5—C6 | 1.411 (3) | C15—H15 | 0.9300 |
C5—C10 | 1.425 (3) | C16—S | 1.771 (2) |
C6—C7 | 1.357 (3) | C17—C17i | 1.523 (6) |
C6—H6 | 0.9300 | C17—S | 1.814 (3) |
C7—C8 | 1.405 (3) | C17—H17A | 0.9700 |
C7—H7 | 0.9300 | C17—H17B | 0.9700 |
C8—C9 | 1.366 (3) | Cu—N1i | 1.9561 (19) |
C8—H8 | 0.9300 | Cu—N1 | 1.956 (2) |
C9—C10 | 1.415 (3) | Cu—N2 | 2.1830 (18) |
C9—H9 | 0.9300 | Cu—N2i | 2.1830 (18) |
C10—N2 | 1.365 (3) | Cu—S | 2.5225 (7) |
C11—C12 | 1.405 (3) | Cu—Si | 2.5225 (7) |
O—C1—N1 | 128.9 (2) | C15—C14—C13 | 119.4 (2) |
O—C1—C2 | 117.83 (19) | C15—C14—H14 | 120.3 |
N1—C1—C2 | 113.24 (19) | C13—C14—H14 | 120.3 |
N2—C2—C3 | 123.1 (2) | C14—C15—C16 | 120.6 (2) |
N2—C2—C1 | 118.12 (19) | C14—C15—H15 | 119.7 |
C3—C2—C1 | 118.7 (2) | C16—C15—H15 | 119.7 |
C4—C3—C2 | 118.9 (2) | C15—C16—C11 | 121.0 (2) |
C4—C3—H3 | 120.6 | C15—C16—S | 118.16 (17) |
C2—C3—H3 | 120.6 | C11—C16—S | 120.48 (17) |
C3—C4—C5 | 119.7 (2) | C17i—C17—S | 115.10 (14) |
C3—C4—H4 | 120.1 | C17i—C17—H17A | 108.5 |
C5—C4—H4 | 120.1 | S—C17—H17A | 108.5 |
C4—C5—C6 | 123.2 (2) | C17i—C17—H17B | 108.5 |
C4—C5—C10 | 118.2 (2) | S—C17—H17B | 108.5 |
C6—C5—C10 | 118.6 (2) | H17A—C17—H17B | 107.5 |
C7—C6—C5 | 121.0 (2) | N1i—Cu—N1 | 171.48 (10) |
C7—C6—H6 | 119.5 | N1i—Cu—N2 | 105.76 (8) |
C5—C6—H6 | 119.5 | N1—Cu—N2 | 80.21 (7) |
C6—C7—C8 | 120.5 (2) | N1i—Cu—N2i | 80.21 (7) |
C6—C7—H7 | 119.7 | N1—Cu—N2i | 105.76 (8) |
C8—C7—H7 | 119.7 | N2—Cu—N2i | 93.71 (9) |
C9—C8—C7 | 120.5 (2) | N1i—Cu—S | 89.98 (6) |
C9—C8—H8 | 119.8 | N1—Cu—S | 83.73 (5) |
C7—C8—H8 | 119.8 | N2—Cu—S | 163.78 (5) |
C8—C9—C10 | 120.4 (2) | N2i—Cu—S | 92.79 (5) |
C8—C9—H9 | 119.8 | N1i—Cu—Si | 83.73 (5) |
C10—C9—H9 | 119.8 | N1—Cu—Si | 89.98 (6) |
N2—C10—C9 | 119.90 (19) | N2—Cu—Si | 92.79 (5) |
N2—C10—C5 | 121.08 (19) | N2i—Cu—Si | 163.78 (5) |
C9—C10—C5 | 119.0 (2) | S—Cu—Si | 84.93 (3) |
C12—C11—N1 | 124.1 (2) | C1—N1—C11 | 120.39 (19) |
C12—C11—C16 | 116.7 (2) | C1—N1—Cu | 117.11 (16) |
N1—C11—C16 | 119.1 (2) | C11—N1—Cu | 121.92 (14) |
C13—C12—C11 | 121.4 (2) | C2—N2—C10 | 118.88 (18) |
C13—C12—H12 | 119.3 | C2—N2—Cu | 108.28 (15) |
C11—C12—H12 | 119.3 | C10—N2—Cu | 132.55 (14) |
C12—C13—C14 | 120.9 (2) | C16—S—C17 | 104.70 (12) |
C12—C13—H13 | 119.6 | C16—S—Cu | 93.79 (7) |
C14—C13—H13 | 119.6 | C17—S—Cu | 102.48 (9) |
O—C1—C2—N2 | −179.7 (2) | S—Cu—N1—C1 | 162.05 (16) |
N1—C1—C2—N2 | −0.6 (3) | Si—Cu—N1—C1 | 77.15 (15) |
O—C1—C2—C3 | −2.6 (3) | N2—Cu—N1—C11 | 173.02 (17) |
N1—C1—C2—C3 | 176.5 (2) | N2i—Cu—N1—C11 | 81.90 (16) |
N2—C2—C3—C4 | 0.8 (4) | S—Cu—N1—C11 | −9.24 (15) |
C1—C2—C3—C4 | −176.1 (2) | Si—Cu—N1—C11 | −94.14 (16) |
C2—C3—C4—C5 | 1.0 (4) | C3—C2—N2—C10 | −2.6 (3) |
C3—C4—C5—C6 | 177.6 (2) | C1—C2—N2—C10 | 174.38 (19) |
C3—C4—C5—C10 | −1.0 (3) | C3—C2—N2—Cu | 171.95 (19) |
C4—C5—C6—C7 | −177.6 (2) | C1—C2—N2—Cu | −11.1 (2) |
C10—C5—C6—C7 | 1.0 (4) | C9—C10—N2—C2 | −176.6 (2) |
C5—C6—C7—C8 | −0.6 (4) | C5—C10—N2—C2 | 2.5 (3) |
C6—C7—C8—C9 | −0.5 (4) | C9—C10—N2—Cu | 10.4 (3) |
C7—C8—C9—C10 | 1.2 (4) | C5—C10—N2—Cu | −170.41 (15) |
C8—C9—C10—N2 | 178.4 (2) | N1i—Cu—N2—C2 | −159.59 (15) |
C8—C9—C10—C5 | −0.8 (3) | N1—Cu—N2—C2 | 14.17 (15) |
C4—C5—C10—N2 | −0.8 (3) | N2i—Cu—N2—C2 | 119.54 (17) |
C6—C5—C10—N2 | −179.5 (2) | S—Cu—N2—C2 | 6.1 (3) |
C4—C5—C10—C9 | 178.4 (2) | Si—Cu—N2—C2 | −75.33 (15) |
C6—C5—C10—C9 | −0.3 (3) | N1i—Cu—N2—C10 | 13.9 (2) |
N1—C11—C12—C13 | 178.2 (2) | N1—Cu—N2—C10 | −172.3 (2) |
C16—C11—C12—C13 | 2.2 (3) | N2i—Cu—N2—C10 | −66.97 (17) |
C11—C12—C13—C14 | −0.1 (4) | S—Cu—N2—C10 | 179.59 (13) |
C12—C13—C14—C15 | −1.7 (4) | Si—Cu—N2—C10 | 98.16 (19) |
C13—C14—C15—C16 | 1.2 (3) | C15—C16—S—C17 | −83.65 (19) |
C14—C15—C16—C11 | 1.0 (3) | C11—C16—S—C17 | 103.38 (19) |
C14—C15—C16—S | −171.92 (18) | C15—C16—S—Cu | 172.39 (17) |
C12—C11—C16—C15 | −2.7 (3) | C11—C16—S—Cu | −0.59 (18) |
N1—C11—C16—C15 | −178.84 (18) | C17i—C17—S—C16 | −59.6 (3) |
C12—C11—C16—S | 170.09 (16) | C17i—C17—S—Cu | 37.8 (3) |
N1—C11—C16—S | −6.1 (3) | N1i—Cu—S—C16 | 178.82 (9) |
O—C1—N1—C11 | 4.6 (4) | N1—Cu—S—C16 | 4.58 (9) |
C2—C1—N1—C11 | −174.42 (18) | N2—Cu—S—C16 | 12.6 (2) |
O—C1—N1—Cu | −166.8 (2) | N2i—Cu—S—C16 | −100.98 (9) |
C2—C1—N1—Cu | 14.1 (2) | Si—Cu—S—C16 | 95.11 (7) |
C12—C11—N1—C1 | 24.9 (3) | N1i—Cu—S—C17 | 72.85 (11) |
C16—C11—N1—C1 | −159.3 (2) | N1—Cu—S—C17 | −101.39 (11) |
C12—C11—N1—Cu | −164.14 (16) | N2—Cu—S—C17 | −93.4 (2) |
C16—C11—N1—Cu | 11.7 (3) | N2i—Cu—S—C17 | 153.05 (11) |
N2—Cu—N1—C1 | −15.69 (15) | Si—Cu—S—C17 | −10.85 (9) |
N2i—Cu—N1—C1 | −106.81 (16) |
Symmetry code: (i) −x+3/2, −y+3/2, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C34H24N4O2S2)] |
Mr | 648.23 |
Crystal system, space group | Orthorhombic, Pccn |
Temperature (K) | 150 |
a, b, c (Å) | 11.4124 (15), 13.5097 (18), 18.606 (2) |
V (Å3) | 2868.6 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.95 |
Crystal size (mm) | 0.3 × 0.25 × 0.08 |
Data collection | |
Diffractometer | Bruker SMART 100 diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2003) |
Tmin, Tmax | 0.770, 0.927 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21464, 2926, 2467 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.119, 1.22 |
No. of reflections | 2926 |
No. of parameters | 195 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.83, −0.40 |
Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
Partial support of this work by the Research Council of the University of Isfahan is gratefully acknowledged. Also acknowledged is partial support from the US National Science Foundation grant (NSF-CHE-0749524) to PCF.
References
Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Kouroulis, K. N., Hadjikakou, S. K., Kourkoumelis, N., Kubicki, M., Male, L., Hursthouse, M., Skoulika, S., Metsios, A. K., Tyurin, V. Y., Dolganov, A. V., Milaeva, E. R. & Hadjiliadis, N. (2009). Dalton Trans. pp. 10446–10456. CrossRef Google Scholar
Lee, D.-H., Hatcher, L. Q., Vance, M. A., Sarangi, R., Milligan, A. E., Narducci Sarjeant, A. A., Incarvito, C. D., Rheingold, A. L., Hodgson, K. O., Hedman, B., Solomon, E. I. & Karlin, K. D. (2007). Inorg. Chem. 46, 6056–6068. Web of Science CrossRef PubMed CAS Google Scholar
Meghdadi, S., Mirkhani, V. & Ford, P. C. (2011). Synth. Commun. In the press. Google Scholar
Ronson, T. K., Adams, H. & Ward, M. D. (2006). CrystEngComm, 8, 497–501. CrossRef CAS Google Scholar
Sarkar, S., Patra, A., Drew, M. G. B., Zangrando, E. & Chattopadhyay, P. (2009). Polyhedron, 28, 1–6. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, A. K. & Mukherjee, R. (2005). Inorg. Chem. 44, 5813–5819. Web of Science CrossRef PubMed CAS Google Scholar
Sunatsuki, Y., Matsumoto, T., Fukushima, Y., Mimura, M., Hirohata, M., Matsumoto, N. & Kai, F. (1998). Polyhedron, 17, 1943–1952. CrossRef CAS Google Scholar
Tavacoli, S., Miller, T. A., Paul, R. L., Jeffery, J. C. & Ward, M. D. (2003). Polyhedron, 22, 507–514. CrossRef CAS Google Scholar
Xie, Y. B., Li, J. R. & Bu, X. H. (2005). Polyhedron, 24, 413–418. Web of Science CSD CrossRef CAS Google Scholar
Zhang, S., Tu, C., Wang, X., Yang, Z., Zhang, J., Lin, L., Ding, J. & Guo, Z. (2004). Eur. J. Inorg. Chem. pp. 4028–4035. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The coordination chemistry of transition metal complexes with flexible hybrid N,S-donor ligands has been the focus of growing attention (Sarkar et al. 2009) due to their application in designing new molecular architectures (Ronson et al., 2006; Tavacoli et al.., 2003; Xie et al.., 2005) and in bioinorganic chemistry (Kouroulis et al. 2009; Lee et al., 2007). Many of these efforts have been devoted to the design and synthesis of new caboxamide ligands (Kouroulis et al. 2009; Singh & Mukherjee 2005; Sunatsuki et al., 1998; Zhang et al., 2004). The bioinorganic relevance of copper and its crucial role in many biological and catalytic functions have stimulated efforts towards the design, synthesis, and characterization of copper complexes as models for providing better understanding of biological systems and for the development of efficient catalysts (Lee et al., 2007; Zhang et al., 2004). In continuation of our studies on carboxamido metal complexes, we herein report the synthesis and structure of the title compound, [Cu(C34H24N4O2S2)], (I), and make a brief comparison with reported structures.
The structure of complex (I), and the atomic numbering used, is shown in Fig. 1. The Cu(II) ion displays a Jahn-Teller distorted octahedral CuN4S2 geometry arising from the hexadentate thiocarboxamido ligand. This complex has a 2-fold axis passing through Cu and the midpoint of C17 and its symmetry related atom. Two quinoline nitrogen, two deprotonated amide nitrogen, and two thioether sulfur bind copper(II) in cis, trans, and cis orientations. The geometric parameters are listed below in the supplementary materials. The angles at the metal center between cis-positioned donor pairs span the range 80.23 (7) - 105.76 (8)° and are close to those reported for related complexes (Singh & Mukherjee, 2005; Zhang et al., 2004). The three trans angles, N1—Cu—N1i 171.46 (10)°, N2—Cu—S 163.79 (5)°, and N2i—Cu—Si 163.79 (5)°, deviate significantly from the ideal value of 180° for a regular octahedral structure. This is presumably due to the structural demands imparted by the hexadentate ligand. The dimethylene bridge of the five-membered CuS2C2 ring has gauche conformation. The equatorial plane is occupied by two N atoms from quinoline moieties at longer Cu–N distances [2.183 (2) Å] and two thioether sulfur atoms [2.523 (1) Å]. The axial positions are occupied by the two amido nitrogen atoms at shorter Cu–N1 distances [1.956 (2) Å]. This Cu–N1 bond distance lies in the range of normal values for copper(II) to deprotonated amido nitrogen bond distances (Sunatsuki et al., 1998). On the other hand, Cu–N2 bond distance is longer than normal value of 1.96–2.08 Å for the copper(II) to pyridyl nitrogen in related complexes. (Singh & Mukherjee, 2005; Sunatsuki et al., 1998; Zhang et al., 2004). In agreement with findings on a pair of analogous Cu and Ni complexes with pyridine replacing quinoline in the bqdapte ligand (Sunatsuki et al., 1998), the coordination of the copper(II) ion in the title compound can be described as a Jahn-Teller distorted axially compressed (N1 and N1i) and equatorially elongated octahedron (N2, S, N2i, Si).