metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m813-m814

Tri­aqua­bis­­{2-meth­­oxy-6-[(phenyl­iminium­yl)meth­yl]phenolate-κO1}manganese(II) dinitrate

aCollege of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China, and bZhejiang Normal University Xingzhi College, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: sky53@zjnu.cn

(Received 25 March 2011; accepted 24 May 2011; online 28 May 2011)

The crystal structure of the title compound, [Mn(C14H13NO2)2(H2O)3](NO3)2, is comprised of two Schiff base 2-meth­oxy-6-(N-phenyl­carboximido­yl)phenol (HL) ligands and three coordinated water mol­ecules. The MnII ion lies on a twofold axis that bis­ects one water O atom. The coordination sphere of the five-coordinate Mn atom is completed by the two monodentate HL ligands and three coordinated water mol­ecules binding through their O atoms, affording a distorted tetra­gonal–pyramidal geometry. In the phenolate ligands, the hy­droxy H atom transfers to the imine N atom. This H atom is also involved in an intra­molecular N—H⋯O hydrogen bond that imposes a nearly planar conformation on each ligand, with dihedral angles of 2.78 (3) and 2.43 (5)° between the aromatic rings of each ligand. In the crystal, mol­ecules are linked by inter­molecular O—H⋯O hydrogen bonds.

Related literature

For Schiff base ligands derived from o-vanillin and aniline and their rare earth complexes, see: Garnovskii et al. (1993[Garnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1-69.]); Shen et al. (2011[Shen, J.-B., Ge, G.-D. & Zhao, G.-L. (2011). Acta Cryst. E67, m463.]); Zhao et al. (2006[Zhao, G.-L., Feng, Y.-L. & Wen, Y.-H. (2006). J. Rare Earth, 24, 268-275.]). For the synthesis of related Schiff bases, see: Burrows & Bailar (1966[Burrows, R. C. & Bailar, J. C. (1966). J. Am. Chem. Soc. 88, 4150-4152.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C14H13NO2)2(H2O)3](NO3)2

  • Mr = 687.52

  • Orthorhombic, P b c n

  • a = 17.4364 (3) Å

  • b = 10.4199 (2) Å

  • c = 16.9014 (3) Å

  • V = 3070.74 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.50 mm−1

  • T = 296 K

  • 0.26 × 0.14 × 0.06 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.918, Tmax = 0.969

  • 11534 measured reflections

  • 2705 independent reflections

  • 1864 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.118

  • S = 1.07

  • 2705 reflections

  • 210 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O5i 0.85 2.18 3.032 (3) 180
O1W—H1WB⋯O4ii 0.85 1.96 2.809 (3) 180
O2W—H2WA⋯O3ii 0.85 1.96 2.800 (3) 169
N1—H1A⋯O1 0.86 1.92 2.611 (2) 137
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

It has well been documented that Schiff bases are important in diverse fields of chemistry and biochemistry owing to their biological activities (Garnovskii et al., 1993). The complexes prepared by ligands derived from o -vanillin have attracted considerable attention for a number of years due to the intriguing biological activities of o-vanillin and the convenience of the synthesis of related Schiff bases (Burrows & Bailar, 1966). For these reasons, we have been engaged in the syntheses of new Schiff bases derived from o-vanillin and their transition and rare earth metal complexes (Shen et al. 2011; Zhao et al. 2006). Herein, we describe a new MnII complex.

The structure of complex (1) is shown in Fig. 1, which contains two 2-methoxy-6-(N-phenylcarboximidoyl)phenol (HL) ligands, three coordinated water molecules and two independent nitrate ions. The coordination sphere of the five-coordinate Mn atom is completed by the two monodentate HL ligands and three coordinated water molecules binding through their O atoms, affording a distorted tetragonal pyramid geometry. The coordination geometry around MnII is better described as a distorted square pyramid with the basal positions occupied by the four O atoms; O1, O1A, O1W and O1WA. The apical position is occupied by O2W. The MnII ion lies on a twofold axis that bisects O2W. The five Mn—O bond distances are listed in Table 1.The Mn—O (phenolic) bonds are 2.118 (4) Å, which are shorter than the similar reported complexes (Shen et al. 2011).

The hydrogen bonds lend stability to the structure. The packing plot of this compound is shown in Fig. 2. In the phenolate ligands, the proton of the phenolic hydroxy group transfers to the imine N atom. This proton is also involved in an intramolecular N—H···O hydrogen bond that imposes a nearly planar conformation on each ligand, with dihedral angles of 2.78 (3) and 2.43 (5)° between the aromatic rings of each ligand. In the crystal structure, molecules are linked by intermolecular O—H···O hydrogen bonds.

Related literature top

For Schiff base ligands derived from o-vanillin and aniline and their rare earth complexes, see: Garnovskii et al. (1993); Shen et al. (2011); Zhao et al. (2006). For the synthesis of related Schiff bases, see: Burrows & Bailar (1966).

Experimental top

Reagents and solvents used were of commercially available quality. The Schiff base ligand 2-methoxy-6-(N-phenylcarboximidoyl)phenol was synthesized from condensation of o-vanillin and aniline. 1 mmol HLligand was dissolved in ethanol(20 ml), then 0.5 mmol Manganese nitrate solution (in ethanol). The mixture solution was stirred for 4 h at room temperature. The resulting solid was filtered out and the solution evaporated yielding red crystals of compound (1) after several days.

Refinement top

The structure was solved by direct methods and successive Fourier difference synthesis. The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aliphatic C—H =0.96 Å (Uiso(H) = 1.2Ueq(C)), aromatic C—H = 0.93 Å (Uiso(H) = 1.2 Ueq(C)) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq (N)]. Water H atoms bonded to O atoms were located in difference Fourier maps and refined with O—H distance restraints of 0.83 (2)Å and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. (The atoms labelled with the suffix A are related by the symmetry operation -x + 1,-y,-z + 1)
[Figure 2] Fig. 2. The packing plot of the title compound, showing H-bond interactions (dashed lines).
Triaquabis{2-methoxy-6-[(phenyliminiumyl)methyl]phenolate- κO1}manganese(II) dinitrate top
Crystal data top
[Mn(C14H13NO2)2(H2O)3](NO3)2F(000) = 1428
Mr = 687.52Dx = 1.487 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2780 reflections
a = 17.4364 (3) Åθ = 2.3–25.0°
b = 10.4199 (2) ŵ = 0.50 mm1
c = 16.9014 (3) ÅT = 296 K
V = 3070.74 (10) Å3Block, red
Z = 40.26 × 0.14 × 0.06 mm
Data collection top
Bruker APEXII area-detector
diffractometer
2705 independent reflections
Radiation source: fine-focus sealed tube1864 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1820
Tmin = 0.918, Tmax = 0.969k = 1212
11534 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0599P)2]
where P = (Fo2 + 2Fc2)/3
2705 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.22 e Å3
4 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Mn(C14H13NO2)2(H2O)3](NO3)2V = 3070.74 (10) Å3
Mr = 687.52Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 17.4364 (3) ŵ = 0.50 mm1
b = 10.4199 (2) ÅT = 296 K
c = 16.9014 (3) Å0.26 × 0.14 × 0.06 mm
Data collection top
Bruker APEXII area-detector
diffractometer
2705 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1864 reflections with I > 2σ(I)
Tmin = 0.918, Tmax = 0.969Rint = 0.035
11534 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0434 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.07Δρmax = 0.22 e Å3
2705 reflectionsΔρmin = 0.33 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.33828 (5)0.25000.0421 (2)
O10.38704 (9)0.30891 (16)0.29244 (10)0.0460 (5)
O1W0.46876 (11)0.3817 (2)0.12448 (11)0.0662 (6)
H1WA0.46740.33230.08450.099*
H1WB0.47220.45550.10340.099*
O20.43669 (10)0.13545 (17)0.19361 (11)0.0597 (6)
O2W0.50000.5493 (2)0.25000.0604 (8)
H2WA0.50760.60370.21340.091*
N10.27417 (11)0.4077 (2)0.37372 (11)0.0414 (5)
H1A0.32250.40150.36450.050*
C10.15746 (18)0.6407 (3)0.48555 (17)0.0601 (8)
H10.10660.66630.49020.072*
C20.2127 (2)0.7023 (3)0.52808 (17)0.0611 (8)
H20.19960.76970.56150.073*
C30.28780 (19)0.6644 (3)0.52134 (17)0.0606 (8)
H30.32550.70600.55070.073*
C40.30785 (16)0.5658 (3)0.47178 (15)0.0518 (7)
H40.35880.54020.46780.062*
C50.25210 (14)0.5048 (2)0.42797 (14)0.0404 (6)
C60.17617 (15)0.5410 (3)0.43588 (16)0.0532 (7)
H60.13810.49820.40780.064*
C70.23079 (14)0.3276 (2)0.33641 (15)0.0418 (6)
H70.17850.32940.34700.050*
C80.25749 (14)0.2381 (2)0.28081 (14)0.0395 (6)
C90.33671 (14)0.2317 (2)0.26127 (14)0.0394 (6)
C100.35947 (15)0.1353 (2)0.20736 (15)0.0436 (6)
C110.30689 (17)0.0538 (2)0.17469 (16)0.0536 (7)
H110.32330.00870.13930.064*
C120.22898 (16)0.0622 (3)0.19330 (16)0.0533 (7)
H120.19410.00600.17030.064*
C130.20462 (16)0.1525 (3)0.24499 (15)0.0479 (7)
H130.15270.15850.25720.057*
C140.46842 (18)0.0327 (3)0.1474 (2)0.0848 (11)
H14A0.52330.04050.14600.102*
H14B0.44850.03690.09450.102*
H14C0.45470.04810.17080.102*
O50.03646 (13)0.2937 (2)0.48143 (13)0.0812 (7)
O30.04351 (13)0.2360 (2)0.36037 (13)0.0807 (7)
O40.02028 (16)0.1259 (2)0.44494 (15)0.0969 (8)
N30.02000 (14)0.2189 (3)0.42868 (17)0.0580 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0316 (4)0.0502 (4)0.0447 (4)0.0000.0042 (2)0.000
O10.0337 (10)0.0565 (11)0.0479 (11)0.0064 (9)0.0031 (9)0.0088 (9)
O1W0.0830 (14)0.0674 (13)0.0484 (11)0.0038 (12)0.0137 (11)0.0008 (11)
O20.0445 (12)0.0622 (12)0.0725 (13)0.0052 (9)0.0152 (10)0.0130 (11)
O2W0.080 (2)0.0509 (17)0.0506 (16)0.0000.0063 (14)0.000
N10.0292 (11)0.0542 (13)0.0408 (12)0.0027 (10)0.0044 (10)0.0003 (11)
C10.057 (2)0.0640 (19)0.0593 (19)0.0149 (16)0.0125 (16)0.0020 (17)
C20.086 (3)0.0493 (17)0.0481 (18)0.0032 (17)0.0109 (17)0.0025 (15)
C30.072 (2)0.0544 (17)0.0554 (19)0.0096 (16)0.0029 (16)0.0059 (16)
C40.0437 (17)0.0572 (17)0.0545 (17)0.0043 (14)0.0016 (14)0.0017 (15)
C50.0382 (15)0.0468 (14)0.0363 (14)0.0017 (12)0.0056 (12)0.0064 (13)
C60.0425 (17)0.0627 (18)0.0545 (16)0.0024 (14)0.0021 (14)0.0039 (16)
C70.0298 (14)0.0500 (14)0.0458 (14)0.0028 (12)0.0012 (11)0.0035 (11)
C80.0338 (15)0.0449 (14)0.0397 (13)0.0032 (11)0.0004 (11)0.0058 (11)
C90.0375 (15)0.0440 (15)0.0367 (14)0.0011 (13)0.0002 (12)0.0054 (12)
C100.0432 (17)0.0434 (15)0.0441 (16)0.0031 (13)0.0052 (13)0.0026 (13)
C110.070 (2)0.0427 (16)0.0477 (17)0.0044 (15)0.0059 (15)0.0051 (14)
C120.0534 (19)0.0541 (17)0.0525 (17)0.0150 (14)0.0026 (15)0.0015 (16)
C130.0366 (16)0.0565 (17)0.0505 (17)0.0084 (13)0.0004 (12)0.0025 (15)
C140.072 (2)0.082 (2)0.101 (3)0.014 (2)0.027 (2)0.027 (2)
O50.0847 (17)0.0844 (16)0.0745 (15)0.0036 (13)0.0044 (13)0.0299 (14)
O30.0851 (17)0.0974 (18)0.0595 (13)0.0022 (14)0.0156 (13)0.0015 (14)
O40.128 (2)0.0688 (15)0.0942 (19)0.0224 (15)0.0255 (17)0.0070 (15)
N30.0543 (16)0.0531 (16)0.0666 (17)0.0138 (13)0.0033 (14)0.0050 (17)
Geometric parameters (Å, º) top
Mn1—O12.1184 (16)C3—H30.9300
Mn1—O1i2.1184 (16)C4—C51.377 (3)
Mn1—O2W2.199 (3)C4—H40.9300
Mn1—O1W2.2365 (18)C5—C61.383 (3)
Mn1—O1Wi2.2366 (18)C6—H60.9300
Mn1—O22.5678 (19)C7—C81.403 (3)
Mn1—O2i2.5678 (19)C7—H70.9300
O1—C91.302 (3)C8—C131.419 (3)
O1W—H1WA0.8500C8—C91.422 (3)
O1W—H1WB0.8501C9—C101.413 (3)
O2—C101.366 (3)C10—C111.366 (3)
O2—C141.436 (3)C11—C121.397 (4)
O2W—H2WA0.8500C11—H110.9300
N1—C71.291 (3)C12—C131.352 (4)
N1—C51.419 (3)C12—H120.9300
N1—H1A0.8600C13—H130.9300
C1—C21.363 (4)C14—H14A0.9600
C1—C61.375 (3)C14—H14B0.9600
C1—H10.9300C14—H14C0.9600
C2—C31.372 (4)O5—N31.218 (3)
C2—H20.9300O3—N31.238 (3)
C3—C41.371 (4)O4—N31.228 (3)
O1—Mn1—O1i163.38 (9)C2—C3—H3119.7
O1—Mn1—O2W98.31 (5)C3—C4—C5119.6 (3)
O1i—Mn1—O2W98.31 (5)C3—C4—H4120.2
O1—Mn1—O1W97.12 (7)C5—C4—H4120.2
O1i—Mn1—O1W86.24 (7)C4—C5—C6119.9 (3)
O2W—Mn1—O1W78.33 (5)C4—C5—N1119.0 (2)
O1—Mn1—O1Wi86.24 (7)C6—C5—N1121.1 (2)
O1i—Mn1—O1Wi97.12 (7)C1—C6—C5119.5 (3)
O2W—Mn1—O1Wi78.33 (5)C1—C6—H6120.3
O1W—Mn1—O1Wi156.67 (11)C5—C6—H6120.3
O1—Mn1—O266.86 (6)N1—C7—C8124.2 (2)
O1i—Mn1—O298.93 (6)N1—C7—H7117.9
O2W—Mn1—O2145.39 (4)C8—C7—H7117.9
O1W—Mn1—O273.12 (7)C7—C8—C13119.2 (2)
O1Wi—Mn1—O2128.55 (7)C7—C8—C9120.6 (2)
O1—Mn1—O2i98.93 (6)C13—C8—C9120.2 (2)
O1i—Mn1—O2i66.86 (6)O1—C9—C10120.7 (2)
O2W—Mn1—O2i145.39 (4)O1—C9—C8122.1 (2)
O1W—Mn1—O2i128.55 (7)C10—C9—C8117.1 (2)
O1Wi—Mn1—O2i73.12 (7)C11—C10—O2126.4 (2)
O2—Mn1—O2i69.21 (8)C11—C10—C9120.9 (2)
C9—O1—Mn1125.39 (15)O2—C10—C9112.7 (2)
Mn1—O1W—H1WA129.7C10—C11—C12121.5 (2)
Mn1—O1W—H1WB124.3C10—C11—H11119.3
H1WA—O1W—H1WB102.5C12—C11—H11119.3
C10—O2—C14118.1 (2)C13—C12—C11119.6 (3)
C10—O2—Mn1111.19 (15)C13—C12—H12120.2
C14—O2—Mn1130.53 (16)C11—C12—H12120.2
Mn1—O2W—H2WA131.8C12—C13—C8120.6 (3)
C7—N1—C5128.2 (2)C12—C13—H13119.7
C7—N1—H1A116.0C8—C13—H13119.7
C5—N1—H1A115.9O2—C14—H14A109.5
C2—C1—C6120.7 (3)O2—C14—H14B109.5
C2—C1—H1119.7H14A—C14—H14B109.5
C6—C1—H1119.7O2—C14—H14C109.5
C1—C2—C3119.7 (3)H14A—C14—H14C109.5
C1—C2—H2120.2H14B—C14—H14C109.5
C3—C2—H2120.2O5—N3—O4118.4 (3)
C4—C3—C2120.6 (3)O5—N3—O3120.8 (3)
C4—C3—H3119.7O4—N3—O3120.8 (3)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O5ii0.852.183.032 (3)180
O1W—H1WB···O4iii0.851.962.809 (3)180
O2W—H2WA···O3iii0.851.962.800 (3)169
N1—H1A···O10.861.922.611 (2)137
Symmetry codes: (ii) x+1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C14H13NO2)2(H2O)3](NO3)2
Mr687.52
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)296
a, b, c (Å)17.4364 (3), 10.4199 (2), 16.9014 (3)
V3)3070.74 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.50
Crystal size (mm)0.26 × 0.14 × 0.06
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.918, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
11534, 2705, 1864
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.118, 1.07
No. of reflections2705
No. of parameters210
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.33

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O5i0.852.183.032 (3)180
O1W—H1WB···O4ii0.851.962.809 (3)180
O2W—H2WA···O3ii0.851.962.800 (3)169
N1—H1A···O10.861.922.611 (2)137
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1/2.
 

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurrows, R. C. & Bailar, J. C. (1966). J. Am. Chem. Soc. 88, 4150–4152.  CrossRef CAS Web of Science Google Scholar
First citationGarnovskii, A. D., Nivorozhkin, A. L. & Minkin, V. I. (1993). Coord. Chem. Rev. 126, 1–69.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, J.-B., Ge, G.-D. & Zhao, G.-L. (2011). Acta Cryst. E67, m463.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, G.-L., Feng, Y.-L. & Wen, Y.-H. (2006). J. Rare Earth, 24, 268–275.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m813-m814
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds