organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(3,4-Di­methyl­benzyl­­idene)-2,2-di­methyl-1,3-dioxane-4,6-dione

aMicroScale Science Institute, Department of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: wulanzeng@163.com

(Received 18 April 2011; accepted 2 May 2011; online 7 May 2011)

The title compound, C15H16O4, was prepared by the reaction of 2,2-dimethyl-1,3-dioxane-4,6-dione and 3,4-dimethyl­benzaldehyde in ethanol. The 1,3-dioxane ring exhibits an envelope conformation. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds, forming chains parallel to the b axis.

Related literature

For related structures, see: Zeng (2010[Zeng, W.-L. (2010). Acta Cryst. E66, o2319.], 2011[Zeng, W.-L. (2011). Acta Cryst. E67, o478.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16O4

  • Mr = 260.28

  • Monoclinic, P 21 /c

  • a = 16.8249 (15) Å

  • b = 7.1390 (6) Å

  • c = 11.7101 (11) Å

  • β = 108.612 (1)°

  • V = 1333.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.45 × 0.32 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.972

  • 6611 measured reflections

  • 2341 independent reflections

  • 1330 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.201

  • S = 1.09

  • 2341 reflections

  • 176 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6C⋯O4i 0.96 2.58 3.447 (4) 151
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In previous papers, the crystal structure of 5-(4-hydroxybenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione (Zeng, 2010) and 2,2-dimethyl-5-[(5-methylfuran-2-yl)methylidene]-1,3-dioxane-4,6-dione (Zeng, 2011) have been reported. As part of this ongoing search for new Meldrum's acid compounds, the title compound has been synthesized and its structure is reported here.

In the title compound (Fig. 1), bond lengths and angles fall in the usual ranges. The 1,3-dioxane ring exhibits an envelope conformation with the dimethyl-substituted carbon C4 atom forming the flap. In the crystal structure, the molecules interact through a weak intermolecular C—H···O hydrogen bond (Table 1) to form chains parallel to the b axis.

Related literature top

For related structures, see: Zeng (2010, 2011).

Experimental top

The mixture of malonic acid (6.24 g, 0.06 mol) and acetic anhydride (9 ml) in concentrated sulfuric acid (0.25 ml) was stirred with water at 303K. After dissolving, propan-2-one (3.48 g, 0.06 mol) was added dropwise into the solution and the reaction was allowed to proceed for 2 h. The mixture was then cooled and filtered, and an ethanol solution of 3,4-dimethylbenzaldehyde (8.04 g, 0.06 mol) was added. The solution was then filtered and concentrated. Single crystals were obtained by slow evaporation of a petroleum ether/ethylacetate (4:1 v/v) solution at room temperature over a period of several days.

Refinement top

The H atoms were placed in calculated positions (C—H = 0.93–0.96 Å), and refined as riding with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
5-(3,4-Dimethylbenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione top
Crystal data top
C15H16O4F(000) = 552
Mr = 260.28Dx = 1.297 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1211 reflections
a = 16.8249 (15) Åθ = 2.6–21.6°
b = 7.1390 (6) ŵ = 0.09 mm1
c = 11.7101 (11) ÅT = 298 K
β = 108.612 (1)°Block, yellow
V = 1333.0 (2) Å30.45 × 0.32 × 0.30 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2341 independent reflections
Radiation source: fine-focus sealed tube1330 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1920
Tmin = 0.959, Tmax = 0.972k = 88
6611 measured reflectionsl = 1311
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.201H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0016P)2]
where P = (Fo2 + 2Fc2)/3
2341 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C15H16O4V = 1333.0 (2) Å3
Mr = 260.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.8249 (15) ŵ = 0.09 mm1
b = 7.1390 (6) ÅT = 298 K
c = 11.7101 (11) Å0.45 × 0.32 × 0.30 mm
β = 108.612 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2341 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1330 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.972Rint = 0.040
6611 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.201H-atom parameters constrained
S = 1.09Δρmax = 0.15 e Å3
2341 reflectionsΔρmin = 0.15 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30755 (12)0.6940 (3)0.53926 (17)0.0576 (6)
O20.39334 (12)0.4548 (3)0.50624 (17)0.0579 (6)
O30.21388 (14)0.6469 (3)0.62839 (19)0.0710 (7)
O40.39031 (14)0.1691 (3)0.5720 (2)0.0791 (8)
C10.27252 (18)0.5845 (4)0.6047 (3)0.0523 (8)
C20.30722 (17)0.3945 (4)0.6311 (3)0.0518 (8)
C30.36633 (19)0.3278 (4)0.5704 (3)0.0554 (8)
C40.38899 (17)0.6503 (4)0.5324 (3)0.0508 (8)
C50.45580 (18)0.6974 (5)0.6484 (3)0.0626 (9)
H5A0.45160.82730.66690.094*
H5B0.51000.67350.64060.094*
H5C0.44860.62160.71210.094*
C60.3971 (2)0.7532 (5)0.4258 (3)0.0675 (9)
H6A0.35360.71350.35460.101*
H6B0.45090.72700.41720.101*
H6C0.39210.88540.43700.101*
C70.28095 (18)0.2646 (4)0.6950 (3)0.0603 (9)
H70.30450.14740.69280.072*
C80.22436 (18)0.2659 (4)0.7661 (3)0.0564 (8)
C90.18336 (19)0.0988 (4)0.7737 (3)0.0618 (9)
H90.19470.00670.73490.074*
C100.12658 (19)0.0834 (5)0.8362 (3)0.0616 (9)
C110.11383 (19)0.2368 (5)0.9012 (3)0.0629 (9)
C120.1564 (2)0.3997 (5)0.8989 (3)0.0676 (9)
H120.14920.50140.94430.081*
C130.20958 (19)0.4168 (5)0.8313 (3)0.0657 (9)
H130.23590.53080.82920.079*
C140.0815 (2)0.1001 (5)0.8349 (3)0.0894 (12)
H14A0.10230.19210.79180.134*
H14B0.02250.08280.79600.134*
H14C0.09130.14190.91620.134*
C150.0553 (2)0.2249 (6)0.9743 (3)0.0873 (12)
H15A0.00040.18950.92310.131*
H15B0.05230.34461.01010.131*
H15C0.07560.13291.03670.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0568 (12)0.0537 (13)0.0679 (13)0.0146 (10)0.0280 (10)0.0096 (10)
O20.0655 (13)0.0499 (13)0.0608 (13)0.0058 (10)0.0238 (10)0.0083 (11)
O30.0672 (14)0.0724 (17)0.0842 (16)0.0231 (12)0.0395 (13)0.0142 (12)
O40.0819 (17)0.0485 (15)0.113 (2)0.0095 (12)0.0404 (14)0.0078 (13)
C10.0512 (18)0.054 (2)0.0523 (17)0.0059 (15)0.0178 (14)0.0017 (15)
C20.0458 (16)0.0447 (18)0.0641 (19)0.0000 (13)0.0164 (14)0.0030 (15)
C30.0544 (18)0.045 (2)0.066 (2)0.0024 (15)0.0183 (15)0.0080 (16)
C40.0535 (18)0.0467 (19)0.0570 (18)0.0075 (14)0.0241 (14)0.0031 (14)
C50.063 (2)0.065 (2)0.059 (2)0.0037 (16)0.0175 (16)0.0079 (16)
C60.071 (2)0.074 (2)0.066 (2)0.0139 (17)0.0331 (16)0.0138 (18)
C70.0519 (18)0.0481 (19)0.076 (2)0.0015 (15)0.0136 (16)0.0016 (16)
C80.0520 (18)0.048 (2)0.065 (2)0.0037 (15)0.0132 (15)0.0094 (16)
C90.063 (2)0.053 (2)0.063 (2)0.0030 (15)0.0103 (16)0.0072 (15)
C100.0559 (19)0.057 (2)0.063 (2)0.0132 (15)0.0063 (16)0.0142 (17)
C110.059 (2)0.061 (2)0.063 (2)0.0000 (17)0.0122 (16)0.0134 (18)
C120.074 (2)0.060 (2)0.070 (2)0.0043 (17)0.0241 (18)0.0107 (17)
C130.066 (2)0.054 (2)0.077 (2)0.0098 (16)0.0234 (18)0.0074 (17)
C140.093 (3)0.078 (3)0.087 (3)0.032 (2)0.015 (2)0.007 (2)
C150.083 (3)0.099 (3)0.086 (3)0.010 (2)0.035 (2)0.014 (2)
Geometric parameters (Å, º) top
O1—C11.354 (3)C7—H70.9300
O1—C41.432 (3)C8—C131.388 (4)
O2—C31.346 (4)C8—C91.395 (4)
O2—C41.436 (3)C9—C101.381 (4)
O3—C11.193 (3)C9—H90.9300
O4—C31.201 (3)C10—C111.389 (4)
C1—C21.470 (4)C10—C141.511 (4)
C2—C71.351 (4)C11—C121.371 (4)
C2—C31.474 (4)C11—C151.500 (4)
C4—C61.492 (4)C12—C131.377 (4)
C4—C51.499 (4)C12—H120.9300
C5—H5A0.9600C13—H130.9300
C5—H5B0.9600C14—H14A0.9600
C5—H5C0.9600C14—H14B0.9600
C6—H6A0.9600C14—H14C0.9600
C6—H6B0.9600C15—H15A0.9600
C6—H6C0.9600C15—H15B0.9600
C7—C81.452 (4)C15—H15C0.9600
C1—O1—C4120.2 (2)C8—C7—H7112.6
C3—O2—C4119.1 (2)C13—C8—C9116.8 (3)
O3—C1—O1117.2 (3)C13—C8—C7125.9 (3)
O3—C1—C2126.7 (3)C9—C8—C7117.3 (3)
O1—C1—C2115.8 (3)C10—C9—C8122.7 (3)
C7—C2—C1124.8 (3)C10—C9—H9118.6
C7—C2—C3115.8 (3)C8—C9—H9118.6
C1—C2—C3118.7 (3)C9—C10—C11118.8 (3)
O4—C3—O2118.2 (3)C9—C10—C14119.5 (3)
O4—C3—C2124.9 (3)C11—C10—C14121.6 (3)
O2—C3—C2116.9 (3)C12—C11—C10119.0 (3)
O1—C4—O2109.8 (2)C12—C11—C15120.1 (3)
O1—C4—C6106.6 (2)C10—C11—C15120.9 (3)
O2—C4—C6106.0 (2)C11—C12—C13121.7 (3)
O1—C4—C5110.7 (2)C11—C12—H12119.1
O2—C4—C5109.7 (2)C13—C12—H12119.1
C6—C4—C5113.9 (3)C12—C13—C8120.7 (3)
C4—C5—H5A109.5C12—C13—H13119.6
C4—C5—H5B109.5C8—C13—H13119.6
H5A—C5—H5B109.5C10—C14—H14A109.5
C4—C5—H5C109.5C10—C14—H14B109.5
H5A—C5—H5C109.5H14A—C14—H14B109.5
H5B—C5—H5C109.5C10—C14—H14C109.5
C4—C6—H6A109.5H14A—C14—H14C109.5
C4—C6—H6B109.5H14B—C14—H14C109.5
H6A—C6—H6B109.5C11—C15—H15A109.5
C4—C6—H6C109.5C11—C15—H15B109.5
H6A—C6—H6C109.5H15A—C15—H15B109.5
H6B—C6—H6C109.5C11—C15—H15C109.5
C2—C7—C8134.7 (3)H15A—C15—H15C109.5
C2—C7—H7112.6H15B—C15—H15C109.5
C4—O1—C1—O3164.6 (2)C1—C2—C7—C88.5 (6)
C4—O1—C1—C219.9 (4)C3—C2—C7—C8179.5 (3)
O3—C1—C2—C75.1 (5)C2—C7—C8—C1331.0 (6)
O1—C1—C2—C7179.9 (3)C2—C7—C8—C9151.5 (3)
O3—C1—C2—C3165.6 (3)C13—C8—C9—C103.9 (4)
O1—C1—C2—C39.4 (4)C7—C8—C9—C10178.4 (3)
C4—O2—C3—O4160.0 (3)C8—C9—C10—C114.5 (4)
C4—O2—C3—C221.6 (4)C8—C9—C10—C14177.0 (3)
C7—C2—C3—O41.7 (4)C9—C10—C11—C121.6 (4)
C1—C2—C3—O4169.8 (3)C14—C10—C11—C12180.0 (3)
C7—C2—C3—O2180.0 (3)C9—C10—C11—C15177.7 (3)
C1—C2—C3—O28.5 (4)C14—C10—C11—C150.8 (5)
C1—O1—C4—O247.5 (3)C10—C11—C12—C131.8 (5)
C1—O1—C4—C6161.9 (2)C15—C11—C12—C13178.9 (3)
C1—O1—C4—C573.7 (3)C11—C12—C13—C82.5 (5)
C3—O2—C4—O148.1 (3)C9—C8—C13—C120.4 (5)
C3—O2—C4—C6162.8 (2)C7—C8—C13—C12177.8 (3)
C3—O2—C4—C573.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6C···O4i0.962.583.447 (4)151
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC15H16O4
Mr260.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)16.8249 (15), 7.1390 (6), 11.7101 (11)
β (°) 108.612 (1)
V3)1333.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.32 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.959, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
6611, 2341, 1330
Rint0.040
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.201, 1.09
No. of reflections2341
No. of parameters176
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.15

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6C···O4i0.962.583.447 (4)151
Symmetry code: (i) x, y+1, z.
 

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZeng, W.-L. (2010). Acta Cryst. E66, o2319.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZeng, W.-L. (2011). Acta Cryst. E67, o478.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds