metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-1,2-bis­­(1H-imidazol-1-ylmeth­yl)benzene-κ2N3:N3′]disilver(I) bis­­(4-carb­­oxy­naphthalene-1-carboxyl­ate) tetra­hydrate

aDepartment of Chemistry, Tonghua Normal University, Tonghua 134001, People's Republic of China, and bSchool of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, People's Republic of China
*Correspondence e-mail: yangyantonghua@yahoo.com.cn

(Received 18 April 2011; accepted 17 May 2011; online 25 May 2011)

In the title compound, [Ag2(C14H14N4)2](C12H7O4)2·4H2O, the dinuclear dication has crystallographically imposed inversion symmetry. Each AgI ion is bicoordinated in a slightly distorted linear coordination geometry by the N atoms of two ligands, resulting in the formation of a 22-membered metallamacrocycle. In the dication, ππ inter­actions are observed between the imidazole rings, with centroid–centroid distances of 3.528 (3) Å and dihedral angles of 9.92 (9)°. The crystal structure is stabilized by inter­molecular O—H⋯O hydrogen bonds and ππ inter­actions involving the benzene rings of adjacent dications, with centroid–centroid distances of 3.651 (2) Å.

Related literature

For the synthesis and structures of related compounds, see: Tan et al. (2004[Tan, H.-Y., Zhang, H.-X., Ou, H.-D. & Kang, B.-S. (2004). Inorg. Chim. Acta, 357, 869-874.]); Liu et al. (2007[Liu, H.-Y., Sun, H.-M. & Ma, J.-F. (2007). Acta Cryst. E63, m3109.]); Liu, Ma et al. (2008[Liu, Y.-Y., Ma, J.-C., Zhang, L.-P. & Ma, J.-F. (2008). J. Coord. Chem. 61, 3583-3593.]); Liu, Chi & Wang (2008[Liu, H.-Y., Chi, Y.-C. & Wang, G.-H. (2008). Acta Cryst. E64, m1071.]); Sun et al. (2009[Sun, H.-M., Chi, Y.-C. & Liu, H.-Y. (2009). Acta Cryst. E65, m1042-m1043.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag2(C14H14N4)2](C12H7O4)2·4H2O

  • Mr = 1194.74

  • Triclinic, [P \overline 1]

  • a = 9.6644 (5) Å

  • b = 11.3769 (12) Å

  • c = 11.8255 (5) Å

  • α = 109.376 (8)°

  • β = 95.783 (3)°

  • γ = 94.442 (4)°

  • V = 1211.79 (15) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 293 K

  • 0.15 × 0.12 × 0.11 mm

Data collection
  • Bruker APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.35, Tmax = 0.59

  • 8572 measured reflections

  • 4904 independent reflections

  • 3384 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.069

  • S = 0.89

  • 4904 reflections

  • 346 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3i 0.82 1.69 2.496 (2) 166
O1W—HW11⋯O4 0.87 (2) 1.96 (2) 2.814 (3) 166 (3)
O1W—HW12⋯O2Wii 0.83 (2) 2.12 (2) 2.902 (3) 158 (3)
O2W—HW21⋯O1 0.84 (2) 1.99 (2) 2.810 (3) 164 (4)
O2W—HW22⋯O3i 0.88 (2) 2.13 (3) 2.841 (3) 138 (3)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The design and synthesis of silver(I) complexes have attracted intense interests of chemists (Liu, Chi & Wang, 2008; Tan et al., 2004) because of the versatility of their coordination geometry (Sun et al., 2009). So far, some complexes, modified by secondary nitrogen-based ligands, have been reported (Liu et al., 2007). In this work, the combination of 1,2-bis(1H-imidazol-1-ylmethyl)benzene (1,2-bix) with naphthalene-1,4-dicarboxylic acid (1,4-H2ndc) and silver(I) ions resulted in the title compound, whose synthesis and structure are reported herein.

The contents of the asymmetric unit of the title compound is shown in Fig. 1. The complex, which has crystallographically imposed inversion symmetry, shows a binuclear structure, where each of silver(I) atom has a slightly distorted linear geometry and is coordinated by the N atoms from two 1,2-bix ligands. The Ag-N bond distances are within the normal range and are comparable to those observed in related N-containing compounds (Liu, Ma et al., 2008). Notably, the 1,4-Hndc anion does not coordinate to the metal and acts as a counter-anion. In the dication, π-π interactions are observed between the imidazole rings (N1/N2/C1–C3 and N3/N4/C12–C14), with centroid-centroid distance of 3.528 (3) Å and dihedral angles of 9.92 (9)°. The crystal structure is stabilized by a three-dimensional network of intermolecular O—H···O hydrogen bonds (Table 1) and π-π interactions involving the benzene rings of adjacent dications, with centroid-to-centroid distances Cg1···Cg1i = 3.651 (2) Å [Cg1 is the centroid of the C5–C10 ring; symmetry code: (i) 1-x, -y, 1-z].

Related literature top

For the synthesis and structures of related compounds, see: Tan et al. (2004); Liu et al. (2007); Liu, Ma et al. (2008); Liu, Chi & Wang (2008); Sun et al. (2009).

Experimental top

A mixture of AgNO3.2H2O (0.5 mmol), naphthalene-1,4-dicarboxylic acid (0.5 mmol), 1,2-bis(1H-imidazol-1-ylmethyl)benzene (0.5 mmol) in H2O (12 ml) was adjusted to pH = 5-6 by addition of aqueous NaOH solution, and heated at 145°C for 2 days. After the mixture was slowly cooled to room temperature, crystals of the title compound suitable for X-ray analysis were obtained (yield 33%).

Refinement top

Water hydrogen atoms were located in difference Fourier maps and refined isotropically, with distance restraints of O—H = 0.85 (1) and H···H = 1.35 (1) Å and with Uiso(H) = 1.5Ueq(O). All other H atoms were positioned geometrically (C—H = 0.93 Å, O—H = 0.82 Å) and refined as riding, with Uiso(H)=1.2Ueq(C, O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. Symmetry code: (i) 2-x, -y, -z.
Bis[µ-1,2-bis(1H-imidazol-1-ylmethyl)benzene- κ2N3:N3']disilver(I) bis(4-carboxynaphthalene-1-carboxylate) tetrahydrate top
Crystal data top
[Ag2(C14H14N4)2](C12H7O4)2·4H2OZ = 1
Mr = 1194.74F(000) = 608
Triclinic, P1Dx = 1.637 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6644 (5) ÅCell parameters from 4904 reflections
b = 11.3769 (12) Åθ = 1.8–26.4°
c = 11.8255 (5) ŵ = 0.88 mm1
α = 109.376 (8)°T = 293 K
β = 95.783 (3)°Block, pale yellow
γ = 94.442 (4)°0.15 × 0.12 × 0.11 mm
V = 1211.79 (15) Å3
Data collection top
Bruker APEX
diffractometer
4904 independent reflections
Radiation source: fine-focus sealed tube3384 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 26.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1112
Tmin = 0.35, Tmax = 0.59k = 1412
8572 measured reflectionsl = 1411
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 0.89 w = 1/[σ2(Fo2) + (0.0385P)2]
where P = (Fo2 + 2Fc2)/3
4904 reflections(Δ/σ)max = 0.001
346 parametersΔρmax = 0.30 e Å3
6 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Ag2(C14H14N4)2](C12H7O4)2·4H2Oγ = 94.442 (4)°
Mr = 1194.74V = 1211.79 (15) Å3
Triclinic, P1Z = 1
a = 9.6644 (5) ÅMo Kα radiation
b = 11.3769 (12) ŵ = 0.88 mm1
c = 11.8255 (5) ÅT = 293 K
α = 109.376 (8)°0.15 × 0.12 × 0.11 mm
β = 95.783 (3)°
Data collection top
Bruker APEX
diffractometer
4904 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3384 reflections with I > 2σ(I)
Tmin = 0.35, Tmax = 0.59Rint = 0.023
8572 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0296 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 0.89Δρmax = 0.30 e Å3
4904 reflectionsΔρmin = 0.43 e Å3
346 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6791 (3)0.0550 (2)0.0091 (2)0.0501 (6)
H10.67100.11400.06840.060*
C20.6045 (3)0.0634 (2)0.0974 (2)0.0458 (6)
H20.53610.12790.09190.055*
C30.7469 (2)0.1091 (2)0.1643 (2)0.0424 (6)
H30.79370.18570.21570.051*
C40.5997 (3)0.0755 (2)0.3151 (2)0.0442 (6)
H4A0.53470.13740.32050.053*
H4B0.67900.11370.37740.053*
C50.5284 (2)0.0355 (2)0.33815 (18)0.0341 (5)
C60.3839 (2)0.0568 (2)0.3188 (2)0.0434 (6)
H60.33350.00340.29050.052*
C70.3121 (2)0.1558 (3)0.3405 (2)0.0479 (6)
H70.21470.16850.32660.058*
C80.3846 (3)0.2340 (2)0.3823 (2)0.0460 (6)
H80.33710.30080.39680.055*
C90.5289 (3)0.2138 (2)0.4032 (2)0.0420 (6)
H90.57800.26730.43240.050*
C100.6025 (2)0.1153 (2)0.38161 (18)0.0329 (5)
C110.7610 (2)0.0995 (2)0.4061 (2)0.0443 (6)
H11A0.79500.01100.44370.053*
H11B0.79030.14180.46180.053*
C120.9213 (2)0.0917 (2)0.2549 (2)0.0402 (6)
H120.96360.01040.29670.048*
C130.7869 (2)0.2677 (2)0.2088 (2)0.0465 (6)
H130.72100.33040.21170.056*
C140.8654 (3)0.2743 (2)0.1202 (2)0.0510 (7)
H140.86240.34320.05000.061*
C151.0338 (2)0.4758 (2)0.2815 (2)0.0376 (5)
C160.87617 (19)0.45208 (19)0.27283 (19)0.0296 (5)
C170.8186 (2)0.4650 (2)0.3765 (2)0.0392 (6)
H170.87610.49160.45030.047*
C180.6738 (2)0.4386 (2)0.3729 (2)0.0385 (5)
H180.63740.44260.44380.046*
C190.58560 (19)0.40728 (19)0.26764 (19)0.0294 (5)
C200.4319 (2)0.3805 (2)0.2734 (2)0.0353 (5)
C210.64007 (19)0.39844 (18)0.15716 (18)0.0255 (4)
C220.78814 (19)0.41758 (18)0.16013 (18)0.0246 (4)
C230.8428 (2)0.40779 (19)0.05138 (19)0.0314 (5)
H230.93930.41960.05270.038*
C240.7584 (2)0.3816 (2)0.0548 (2)0.0386 (5)
H240.79670.37650.12510.046*
C250.6131 (2)0.3624 (2)0.0577 (2)0.0417 (6)
H250.55510.34390.13060.050*
C260.5555 (2)0.3705 (2)0.04427 (19)0.0357 (5)
H260.45870.35750.04000.043*
O10.39354 (17)0.3166 (2)0.3301 (2)0.0755 (7)
O20.35024 (15)0.43133 (18)0.21712 (17)0.0592 (5)
H2A0.26890.41240.22460.089*
O1W1.0555 (2)0.7995 (2)0.5309 (2)0.0790 (6)
HW111.053 (4)0.725 (2)0.477 (3)0.119*
HW120.991 (3)0.788 (3)0.569 (3)0.119*
O31.09219 (15)0.38750 (17)0.21193 (16)0.0525 (4)
O2W0.1287 (2)0.1769 (2)0.2855 (3)0.0908 (7)
HW210.204 (3)0.224 (3)0.313 (4)0.136*
HW220.086 (4)0.210 (4)0.237 (3)0.136*
O41.09571 (17)0.57350 (19)0.35306 (17)0.0630 (5)
Ag10.91046 (2)0.11314 (2)0.04497 (2)0.05935 (10)
N10.64894 (18)0.04051 (16)0.19530 (16)0.0346 (4)
N20.7687 (2)0.05428 (19)0.05184 (18)0.0461 (5)
N30.82247 (17)0.15126 (17)0.29391 (16)0.0350 (4)
N40.95103 (19)0.16342 (18)0.14922 (18)0.0443 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0624 (17)0.0469 (16)0.0398 (14)0.0010 (14)0.0177 (12)0.0115 (12)
C20.0520 (15)0.0433 (15)0.0415 (14)0.0066 (12)0.0128 (11)0.0145 (12)
C30.0452 (14)0.0336 (13)0.0498 (16)0.0008 (11)0.0144 (12)0.0151 (12)
C40.0566 (15)0.0378 (14)0.0404 (14)0.0063 (12)0.0215 (12)0.0118 (11)
C50.0379 (13)0.0377 (13)0.0275 (12)0.0048 (10)0.0158 (10)0.0089 (10)
C60.0396 (13)0.0542 (16)0.0362 (13)0.0137 (12)0.0109 (11)0.0118 (12)
C70.0315 (13)0.0632 (18)0.0379 (14)0.0060 (12)0.0124 (11)0.0029 (13)
C80.0487 (15)0.0441 (15)0.0401 (14)0.0110 (13)0.0201 (12)0.0073 (12)
C90.0525 (15)0.0419 (14)0.0365 (13)0.0076 (12)0.0177 (11)0.0162 (11)
C100.0337 (12)0.0372 (13)0.0272 (11)0.0032 (10)0.0134 (9)0.0080 (10)
C110.0362 (13)0.0569 (16)0.0398 (14)0.0055 (12)0.0122 (11)0.0143 (12)
C120.0309 (12)0.0368 (13)0.0545 (16)0.0030 (10)0.0133 (11)0.0156 (12)
C130.0425 (14)0.0290 (13)0.0708 (18)0.0033 (11)0.0266 (13)0.0157 (13)
C140.0514 (15)0.0351 (14)0.0646 (17)0.0075 (12)0.0272 (13)0.0084 (13)
C150.0227 (11)0.0521 (15)0.0397 (14)0.0015 (11)0.0024 (10)0.0198 (12)
C160.0181 (10)0.0340 (12)0.0381 (13)0.0033 (9)0.0047 (9)0.0138 (10)
C170.0228 (11)0.0583 (16)0.0344 (13)0.0021 (11)0.0020 (9)0.0155 (12)
C180.0269 (11)0.0567 (15)0.0342 (13)0.0049 (11)0.0103 (10)0.0166 (11)
C190.0186 (10)0.0339 (12)0.0369 (13)0.0056 (9)0.0070 (9)0.0122 (10)
C200.0224 (11)0.0426 (14)0.0408 (13)0.0032 (10)0.0089 (10)0.0131 (11)
C210.0194 (10)0.0240 (11)0.0330 (12)0.0043 (8)0.0046 (9)0.0090 (9)
C220.0191 (10)0.0214 (10)0.0321 (12)0.0019 (8)0.0042 (8)0.0076 (9)
C230.0212 (10)0.0320 (12)0.0413 (13)0.0025 (9)0.0105 (10)0.0114 (10)
C240.0377 (13)0.0426 (14)0.0344 (13)0.0022 (11)0.0095 (10)0.0109 (11)
C250.0385 (13)0.0503 (15)0.0303 (13)0.0017 (11)0.0035 (10)0.0092 (11)
C260.0216 (11)0.0423 (14)0.0393 (13)0.0015 (10)0.0028 (10)0.0095 (11)
O10.0282 (9)0.1157 (17)0.1216 (18)0.0090 (10)0.0207 (10)0.0889 (15)
O20.0200 (8)0.0928 (14)0.0906 (14)0.0163 (9)0.0166 (9)0.0605 (12)
O1W0.0747 (15)0.0615 (14)0.0900 (17)0.0045 (12)0.0228 (12)0.0110 (12)
O30.0211 (8)0.0636 (12)0.0697 (12)0.0109 (8)0.0091 (8)0.0167 (10)
O2W0.0619 (14)0.0779 (17)0.146 (2)0.0041 (12)0.0282 (14)0.0553 (16)
O40.0303 (9)0.0721 (13)0.0657 (12)0.0156 (9)0.0044 (9)0.0014 (11)
Ag10.05254 (14)0.07269 (17)0.07007 (17)0.00896 (11)0.03247 (11)0.03988 (13)
N10.0398 (11)0.0306 (10)0.0364 (11)0.0028 (9)0.0122 (8)0.0139 (9)
N20.0498 (12)0.0460 (13)0.0540 (14)0.0089 (10)0.0240 (10)0.0268 (11)
N30.0284 (10)0.0357 (11)0.0442 (11)0.0057 (8)0.0121 (8)0.0155 (9)
N40.0412 (11)0.0414 (12)0.0590 (14)0.0097 (10)0.0258 (10)0.0221 (10)
Geometric parameters (Å, º) top
C1—C21.351 (3)C14—H140.9300
C1—N21.371 (3)C15—O41.217 (3)
C1—H10.9300C15—O31.279 (3)
C2—N11.355 (3)C15—C161.513 (3)
C2—H20.9300C16—C171.365 (3)
C3—N21.315 (3)C16—C221.424 (3)
C3—N11.336 (3)C17—C181.402 (3)
C3—H30.9300C17—H170.9300
C4—N11.477 (3)C18—C191.360 (3)
C4—C51.508 (3)C18—H180.9300
C4—H4A0.9700C19—C211.433 (3)
C4—H4B0.9700C19—C201.506 (3)
C5—C61.381 (3)C20—O11.203 (3)
C5—C101.393 (3)C20—O21.273 (3)
C6—C71.387 (3)C21—C261.417 (3)
C6—H60.9300C21—C221.426 (3)
C7—C81.359 (4)C22—C231.413 (3)
C7—H70.9300C23—C241.356 (3)
C8—C91.379 (3)C23—H230.9300
C8—H80.9300C24—C251.400 (3)
C9—C101.389 (3)C24—H240.9300
C9—H90.9300C25—C261.357 (3)
C10—C111.515 (3)C25—H250.9300
C11—N31.468 (3)C26—H260.9300
C11—H11A0.9700O2—H2A0.8200
C11—H11B0.9700O1W—HW110.874 (17)
C12—N41.320 (3)O1W—HW120.833 (17)
C12—N31.334 (3)O2W—HW210.838 (18)
C12—H120.9300O2W—HW220.882 (18)
C13—C141.340 (3)Ag1—N22.0783 (17)
C13—N31.364 (3)Ag1—N4i2.0787 (17)
C13—H130.9300N4—Ag1i2.0787 (17)
C14—N41.373 (3)
C2—C1—N2109.2 (2)O3—C15—C16115.7 (2)
C2—C1—H1125.4C17—C16—C22119.93 (18)
N2—C1—H1125.4C17—C16—C15118.49 (18)
C1—C2—N1106.6 (2)C22—C16—C15121.58 (17)
C1—C2—H2126.7C16—C17—C18120.8 (2)
N1—C2—H2126.7C16—C17—H17119.6
N2—C3—N1111.2 (2)C18—C17—H17119.6
N2—C3—H3124.4C19—C18—C17121.12 (19)
N1—C3—H3124.4C19—C18—H18119.4
N1—C4—C5112.57 (18)C17—C18—H18119.4
N1—C4—H4A109.1C18—C19—C21120.19 (17)
C5—C4—H4A109.1C18—C19—C20117.02 (18)
N1—C4—H4B109.1C21—C19—C20122.78 (18)
C5—C4—H4B109.1O1—C20—O2124.30 (19)
H4A—C4—H4B107.8O1—C20—C19120.2 (2)
C6—C5—C10118.62 (19)O2—C20—C19115.45 (18)
C6—C5—C4118.8 (2)C26—C21—C22117.74 (17)
C10—C5—C4122.5 (2)C26—C21—C19123.92 (17)
C5—C6—C7121.6 (2)C22—C21—C19118.34 (17)
C5—C6—H6119.2C23—C22—C16121.85 (17)
C7—C6—H6119.2C23—C22—C21118.69 (18)
C8—C7—C6119.7 (2)C16—C22—C21119.38 (17)
C8—C7—H7120.2C24—C23—C22121.85 (19)
C6—C7—H7120.2C24—C23—H23119.1
C7—C8—C9119.7 (2)C22—C23—H23119.1
C7—C8—H8120.2C23—C24—C25119.4 (2)
C9—C8—H8120.2C23—C24—H24120.3
C8—C9—C10121.4 (2)C25—C24—H24120.3
C8—C9—H9119.3C26—C25—C24121.0 (2)
C10—C9—H9119.3C26—C25—H25119.5
C9—C10—C5119.0 (2)C24—C25—H25119.5
C9—C10—C11118.4 (2)C25—C26—C21121.34 (19)
C5—C10—C11122.57 (19)C25—C26—H26119.3
N3—C11—C10111.23 (18)C21—C26—H26119.3
N3—C11—H11A109.4C20—O2—H2A109.5
C10—C11—H11A109.4HW11—O1W—HW12101 (2)
N3—C11—H11B109.4HW21—O2W—HW22103 (2)
C10—C11—H11B109.4N2—Ag1—N4i177.04 (8)
H11A—C11—H11B108.0C3—N1—C2107.41 (18)
N4—C12—N3111.1 (2)C3—N1—C4124.93 (19)
N4—C12—H12124.5C2—N1—C4127.65 (18)
N3—C12—H12124.5C3—N2—C1105.65 (18)
C14—C13—N3106.6 (2)C3—N2—Ag1128.88 (16)
C14—C13—H13126.7C1—N2—Ag1125.46 (16)
N3—C13—H13126.7C12—N3—C13107.32 (19)
C13—C14—N4109.5 (2)C12—N3—C11126.2 (2)
C13—C14—H14125.3C13—N3—C11126.49 (18)
N4—C14—H14125.3C12—N4—C14105.53 (18)
O4—C15—O3124.9 (2)C12—N4—Ag1i126.65 (15)
O4—C15—C16119.4 (2)C14—N4—Ag1i127.71 (16)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3ii0.821.692.496 (2)166
O1W—HW11···O40.87 (2)1.96 (2)2.814 (3)166 (3)
O1W—HW12···O2Wiii0.83 (2)2.12 (2)2.902 (3)158 (3)
O2W—HW21···O10.84 (2)1.99 (2)2.810 (3)164 (4)
O2W—HW22···O3ii0.88 (2)2.13 (3)2.841 (3)138 (3)
Symmetry codes: (ii) x1, y, z; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ag2(C14H14N4)2](C12H7O4)2·4H2O
Mr1194.74
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.6644 (5), 11.3769 (12), 11.8255 (5)
α, β, γ (°)109.376 (8), 95.783 (3), 94.442 (4)
V3)1211.79 (15)
Z1
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.15 × 0.12 × 0.11
Data collection
DiffractometerBruker APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.35, 0.59
No. of measured, independent and
observed [I > 2σ(I)] reflections
8572, 4904, 3384
Rint0.023
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.069, 0.89
No. of reflections4904
No. of parameters346
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.30, 0.43

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.821.692.496 (2)166
O1W—HW11···O40.874 (17)1.959 (18)2.814 (3)166 (3)
O1W—HW12···O2Wii0.833 (17)2.115 (19)2.902 (3)158 (3)
O2W—HW21···O10.838 (18)1.99 (2)2.810 (3)164 (4)
O2W—HW22···O3i0.882 (18)2.13 (3)2.841 (3)138 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Tonghua Normal University for financial support.

References

First citationBruker (1997). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, H.-Y., Chi, Y.-C. & Wang, G.-H. (2008). Acta Cryst. E64, m1071.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Y.-Y., Ma, J.-C., Zhang, L.-P. & Ma, J.-F. (2008). J. Coord. Chem. 61, 3583–3593.  CrossRef CAS Google Scholar
First citationLiu, H.-Y., Sun, H.-M. & Ma, J.-F. (2007). Acta Cryst. E63, m3109.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, H.-M., Chi, Y.-C. & Liu, H.-Y. (2009). Acta Cryst. E65, m1042–m1043.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationTan, H.-Y., Zhang, H.-X., Ou, H.-D. & Kang, B.-S. (2004). Inorg. Chim. Acta, 357, 869–874.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds