organic compounds
3-(4-Chlorobenzoyl)-4-(4-chlorophenyl)-1-phenethylpiperidin-4-ol
aDepartment of Science Education, Faculty of Education, Kastamonu University, 37200 Kastamonu, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Faculty of Sciences, Ataturk University, 25240 Erzurum, Turkey, and dDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, 25240 Erzurum, Turkey
*Correspondence e-mail: aaydin@kastamonu.edu.tr
In the title compound, C26H25Cl2NO2, the piperidine ring adopts a chair conformation with a cis configuration of the carbonyl and hydroxy substituents. The dihedral angle between the aromatic rings of the chlorobenzene groups is 24.3 (2)°. The phenyl ring forms dihedral angles of 59.4 (3) and 44.1 (3)° with the benzene rings. In the crystal, molecules are linked by intermolecular O—H⋯N and C—H⋯O hydrogen bonds and C—H⋯π interactions into layers parallel to the bc plane.
Related literature
For the synthesis and biological activity of Mannich bases, see: Dimmock et al. (1991); Dimmock & Kumar (1997); Gul et al. (2001, 2004, 2005); Atwal et al. (1969); Gul (2005); Erciyas et al. (1994); Porretta et al. (1995); Piscopo et al. (1986); Manavathu et al. (1998); Vashishtha et al. (1998); Canturk et al. (2008); Suleyman et al. (2007); Yogeeswari et al. (2005); Mete et al. (2010a,b) For MOPAC AM1 theoretical full-geometry optimization, see: Dewar et al. (1985); Stewart (1993). For bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku/MSC, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811018034/rz2590sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811018034/rz2590Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811018034/rz2590Isup3.cml
4'-Chloroacetophenone (10.00 g), paraformaldehyde (1.95 g) and phenylethylamine hydrochloride (5.12 g) in the molar ratio 2:2:1 were stirred and heated in an oil bath. When the temperature reached 365 K, the solid mixture started to melt. When heating continued, the reaction content solidified again totally. The reaction flask was quickly removed from the oil bath. The temperature of the reaction medium spontaneously increased to 377 K. Following the increase in temperature and removal of the flask from the oil bath, ethyl acetate (20 ml) was added to the reaction flask when the temperature had dropped to 338 K. Stirring was continued for 24 h. The formed precipitate was separated by filtration and crystallized from ethanol to obtain 1-(4-chlorophenyl)-3-phenethylamino-1-propanone hydrochloride. The ethyl acetate present in the reaction flask was removed under reduced pressure to obtain the title compound (I) as a viscous orange oil. The compound was purified by δ: 1.55 (br d, 1H, J = 13.6 Hz), 2.04–2.11 (m, 1H), 2.56–2.91 (m, 8H), 4.30 (dd, 1H, J = 11.0, 3.7 Hz), 4.96 (d, OH, J = 1.1 Hz), 7.15 (quasi d,2H, J = 8.8 Hz), 7.21–7.28 (m, 5H), 7.43 (quasi d, 2H, J = 8.8 Hz), 7.50 (quasi d, 2H, J = 8.4 Hz), 7.74 (quasi d, 2H, J = 8.8 Hz). 13C-NMR(DMSO) δ: 33.5, 39.6, 48.9, 51.3, 52.3, 60.2, 73.1, 126.5, 127.7, 128.3, 128.9, 129.3, 129.4, 130.7, 131.8, 136.0, 138.9, 141.1, 147.2, 202.5. Elemental analysis: C26H25Cl2NO2, Calc.(%) / Found (%): C: 68.72/68.76, H: 5.55/5.43, N: 3.08/3.27 (Mete et al., 2010b).
using a basic Al2O3 column with ethyl acetate/hexane (1:9 v/v) as (yield 18%; m. p. 405–407 K). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution. 1H-NMR(DMSO)H atoms were positioned geometrically, with O—H = 0.82 Å, C—H = 0.93(aromatic), 0.97(methylene) or 0.98 Å (methine), and refined as riding with Uiso(H) = 1.5Ueq(O) or 1.2Ueq(C). The rather high R value (0.0967) is due to the poor quality of the crystal.
Data collection: CrystalClear (Rigaku/MSC, 2005); cell
CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. | |
Fig. 2. Crystal packing of the title compound viewed down the a axis. H atoms not involved in hydrogen bonds (dashed lines) are omitted for clarity. | |
Fig. 3. A spatial view of the calculated molecule of the title compound. |
C26H25Cl2NO2 | F(000) = 952 |
Mr = 454.37 | Dx = 1.295 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5626 reflections |
a = 16.950 (4) Å | θ = 2.4–30.5° |
b = 12.863 (3) Å | µ = 0.30 mm−1 |
c = 10.792 (2) Å | T = 294 K |
β = 97.779 (13)° | Block, colourless |
V = 2331.3 (9) Å3 | 0.23 × 0.14 × 0.12 mm |
Z = 4 |
Rigaku R-AXIS RAPID-S diffractometer | 4830 independent reflections |
Radiation source: Sealed Tube | 1939 reflections with I > 2σ(I) |
Graphite Monochromator monochromator | Rint = 0.000 |
Detector resolution: 10.00 pixels mm-1 | θmax = 26.5°, θmin = 2.4° |
dtprofit.ref scans | h = −21→21 |
Absorption correction: multi-scan [XABS2 (Parkin et al., 1995); cubic fit to sin(θ)/λ - 24 parameters] | k = 0→16 |
Tmin = 0.934, Tmax = 0.965 | l = 0→13 |
4830 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.097 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.148 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0094P)2 + 1.4373P] where P = (Fo2 + 2Fc2)/3 |
4830 reflections | (Δ/σ)max < 0.001 |
282 parameters | Δρmax = 0.18 e Å−3 |
0 restraints | Δρmin = −0.13 e Å−3 |
C26H25Cl2NO2 | V = 2331.3 (9) Å3 |
Mr = 454.37 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 16.950 (4) Å | µ = 0.30 mm−1 |
b = 12.863 (3) Å | T = 294 K |
c = 10.792 (2) Å | 0.23 × 0.14 × 0.12 mm |
β = 97.779 (13)° |
Rigaku R-AXIS RAPID-S diffractometer | 4830 independent reflections |
Absorption correction: multi-scan [XABS2 (Parkin et al., 1995); cubic fit to sin(θ)/λ - 24 parameters] | 1939 reflections with I > 2σ(I) |
Tmin = 0.934, Tmax = 0.965 | Rint = 0.000 |
4830 measured reflections |
R[F2 > 2σ(F2)] = 0.097 | 0 restraints |
wR(F2) = 0.148 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.18 e Å−3 |
4830 reflections | Δρmin = −0.13 e Å−3 |
282 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.45921 (10) | 0.30278 (16) | 0.49332 (19) | 0.1484 (10) | |
Cl2 | 0.47453 (11) | 0.57277 (17) | 0.1905 (2) | 0.1803 (13) | |
O1 | 0.0660 (2) | 0.3454 (2) | 0.3384 (3) | 0.0716 (12) | |
O2 | 0.08304 (19) | 0.5228 (2) | 0.1541 (3) | 0.0769 (14) | |
N1 | −0.0050 (2) | 0.2257 (3) | 0.0508 (3) | 0.0590 (16) | |
C1 | −0.1997 (4) | 0.1029 (5) | −0.2619 (7) | 0.112 (3) | |
C2 | −0.2733 (7) | 0.1035 (6) | −0.3331 (8) | 0.146 (5) | |
C3 | −0.3396 (5) | 0.1102 (6) | −0.2802 (11) | 0.136 (5) | |
C4 | −0.3367 (5) | 0.1168 (5) | −0.1543 (9) | 0.128 (4) | |
C5 | −0.2612 (4) | 0.1186 (5) | −0.0817 (6) | 0.106 (3) | |
C6 | −0.1933 (3) | 0.1121 (4) | −0.1342 (6) | 0.074 (2) | |
C7 | −0.1130 (3) | 0.1128 (4) | −0.0571 (5) | 0.089 (3) | |
C8 | −0.0868 (3) | 0.2217 (3) | −0.0146 (4) | 0.0683 (17) | |
C9 | 0.0000 (3) | 0.1708 (4) | 0.1714 (4) | 0.0685 (17) | |
C10 | 0.0822 (3) | 0.1743 (3) | 0.2431 (4) | 0.0651 (17) | |
C11 | 0.1144 (3) | 0.2856 (3) | 0.2674 (4) | 0.0601 (17) | |
C12 | 0.1052 (2) | 0.3410 (3) | 0.1367 (4) | 0.0521 (17) | |
C13 | 0.0195 (2) | 0.3339 (3) | 0.0750 (4) | 0.0598 (17) | |
C14 | 0.1317 (3) | 0.4537 (4) | 0.1482 (4) | 0.0581 (17) | |
C15 | 0.2176 (3) | 0.4812 (4) | 0.1536 (4) | 0.0581 (17) | |
C16 | 0.2732 (3) | 0.4180 (4) | 0.1104 (4) | 0.070 (2) | |
C17 | 0.3525 (3) | 0.4459 (4) | 0.1192 (5) | 0.089 (2) | |
C18 | 0.3752 (3) | 0.5378 (5) | 0.1759 (6) | 0.096 (3) | |
C19 | 0.3223 (4) | 0.6037 (4) | 0.2184 (6) | 0.102 (3) | |
C20 | 0.2425 (3) | 0.5758 (4) | 0.2084 (5) | 0.082 (3) | |
C21 | 0.2001 (3) | 0.2836 (4) | 0.3290 (4) | 0.0582 (17) | |
C22 | 0.2562 (3) | 0.2166 (4) | 0.2909 (4) | 0.0733 (19) | |
C23 | 0.3354 (3) | 0.2222 (4) | 0.3407 (5) | 0.087 (3) | |
C24 | 0.3593 (3) | 0.2945 (5) | 0.4313 (5) | 0.084 (2) | |
C25 | 0.3063 (4) | 0.3599 (4) | 0.4732 (5) | 0.085 (3) | |
C26 | 0.2267 (3) | 0.3553 (4) | 0.4218 (4) | 0.0694 (19) | |
H1 | −0.15410 | 0.09610 | −0.30030 | 0.1340* | |
H1A | 0.05700 | 0.31190 | 0.39960 | 0.1070* | |
H2 | −0.27690 | 0.09920 | −0.41970 | 0.1750* | |
H3 | −0.38870 | 0.11030 | −0.33040 | 0.1630* | |
H4 | −0.38300 | 0.12010 | −0.11710 | 0.1540* | |
H5 | −0.25790 | 0.12430 | 0.00480 | 0.1270* | |
H7A | −0.07430 | 0.08360 | −0.10570 | 0.1070* | |
H7B | −0.11450 | 0.06910 | 0.01580 | 0.1070* | |
H8A | −0.09080 | 0.26700 | −0.08710 | 0.0820* | |
H8B | −0.12280 | 0.24810 | 0.04060 | 0.0820* | |
H9A | −0.01560 | 0.09880 | 0.15630 | 0.0820* | |
H9B | −0.03720 | 0.20210 | 0.22140 | 0.0820* | |
H10A | 0.11810 | 0.13630 | 0.19680 | 0.0780* | |
H10B | 0.08170 | 0.13950 | 0.32260 | 0.0780* | |
H12 | 0.13890 | 0.30470 | 0.08370 | 0.0620* | |
H13A | −0.01500 | 0.36600 | 0.12880 | 0.0720* | |
H13B | 0.01370 | 0.37200 | −0.00330 | 0.0720* | |
H16 | 0.25700 | 0.35460 | 0.07420 | 0.0840* | |
H17 | 0.38920 | 0.40320 | 0.08740 | 0.1060* | |
H19 | 0.33930 | 0.66710 | 0.25400 | 0.1220* | |
H20 | 0.20580 | 0.62000 | 0.23810 | 0.0990* | |
H22 | 0.24010 | 0.16680 | 0.23040 | 0.0880* | |
H23 | 0.37230 | 0.17720 | 0.31310 | 0.1040* | |
H25 | 0.32310 | 0.40760 | 0.53590 | 0.1020* | |
H26 | 0.19060 | 0.40100 | 0.45010 | 0.0830* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0835 (12) | 0.1827 (19) | 0.1682 (18) | −0.0113 (12) | −0.0226 (11) | −0.0167 (15) |
Cl2 | 0.1017 (14) | 0.190 (2) | 0.243 (3) | −0.0701 (14) | 0.0008 (15) | −0.0200 (18) |
O1 | 0.086 (2) | 0.076 (2) | 0.058 (2) | 0.0178 (19) | 0.0290 (18) | 0.0100 (17) |
O2 | 0.084 (2) | 0.063 (2) | 0.085 (3) | 0.0156 (19) | 0.016 (2) | −0.0046 (19) |
N1 | 0.063 (3) | 0.059 (3) | 0.056 (2) | −0.004 (2) | 0.012 (2) | 0.005 (2) |
C1 | 0.121 (6) | 0.112 (5) | 0.103 (6) | −0.018 (4) | 0.016 (5) | −0.025 (4) |
C2 | 0.192 (10) | 0.118 (6) | 0.113 (7) | −0.012 (7) | −0.033 (8) | −0.029 (5) |
C3 | 0.104 (7) | 0.109 (6) | 0.184 (10) | −0.020 (5) | −0.020 (7) | 0.010 (7) |
C4 | 0.100 (6) | 0.117 (6) | 0.171 (8) | −0.004 (4) | 0.032 (6) | 0.036 (6) |
C5 | 0.076 (4) | 0.131 (6) | 0.112 (5) | −0.012 (4) | 0.014 (4) | 0.029 (4) |
C6 | 0.077 (4) | 0.067 (3) | 0.079 (4) | −0.016 (3) | 0.014 (4) | 0.001 (3) |
C7 | 0.078 (4) | 0.074 (4) | 0.114 (5) | −0.015 (3) | 0.006 (4) | −0.002 (3) |
C8 | 0.070 (3) | 0.066 (3) | 0.070 (3) | −0.001 (3) | 0.013 (3) | 0.005 (3) |
C9 | 0.076 (3) | 0.065 (3) | 0.067 (3) | −0.003 (3) | 0.019 (3) | 0.014 (3) |
C10 | 0.073 (3) | 0.060 (3) | 0.064 (3) | 0.003 (3) | 0.015 (3) | 0.010 (3) |
C11 | 0.070 (3) | 0.063 (3) | 0.049 (3) | 0.012 (3) | 0.014 (3) | 0.002 (3) |
C12 | 0.059 (3) | 0.050 (3) | 0.049 (3) | 0.001 (2) | 0.014 (2) | 0.000 (2) |
C13 | 0.068 (3) | 0.059 (3) | 0.054 (3) | 0.003 (2) | 0.014 (2) | 0.002 (2) |
C14 | 0.074 (3) | 0.057 (3) | 0.045 (3) | −0.003 (3) | 0.014 (2) | 0.002 (2) |
C15 | 0.069 (3) | 0.051 (3) | 0.053 (3) | −0.007 (3) | 0.004 (3) | 0.010 (2) |
C16 | 0.061 (3) | 0.073 (4) | 0.076 (4) | −0.005 (3) | 0.007 (3) | −0.002 (3) |
C17 | 0.073 (4) | 0.094 (4) | 0.098 (4) | −0.016 (3) | 0.010 (3) | −0.004 (4) |
C18 | 0.079 (4) | 0.092 (5) | 0.109 (5) | −0.025 (4) | −0.014 (4) | 0.008 (4) |
C19 | 0.118 (6) | 0.068 (4) | 0.112 (5) | −0.031 (4) | −0.013 (4) | −0.004 (4) |
C20 | 0.101 (5) | 0.061 (4) | 0.082 (4) | −0.007 (3) | 0.003 (3) | 0.004 (3) |
C21 | 0.071 (3) | 0.060 (3) | 0.044 (3) | 0.009 (3) | 0.009 (2) | 0.006 (2) |
C22 | 0.064 (3) | 0.085 (4) | 0.070 (3) | 0.010 (3) | 0.006 (3) | −0.010 (3) |
C23 | 0.071 (4) | 0.101 (5) | 0.088 (4) | 0.018 (3) | 0.006 (3) | −0.007 (4) |
C24 | 0.066 (4) | 0.091 (4) | 0.091 (4) | 0.000 (3) | −0.002 (3) | 0.008 (4) |
C25 | 0.098 (5) | 0.078 (4) | 0.075 (4) | 0.000 (3) | −0.004 (4) | −0.001 (3) |
C26 | 0.087 (4) | 0.063 (3) | 0.060 (3) | 0.012 (3) | 0.017 (3) | 0.006 (3) |
Cl1—C24 | 1.738 (5) | C21—C22 | 1.386 (7) |
Cl2—C18 | 1.729 (6) | C22—C23 | 1.379 (7) |
O1—C11 | 1.422 (6) | C23—C24 | 1.370 (8) |
O2—C14 | 1.220 (6) | C24—C25 | 1.353 (8) |
O1—H1A | 0.8200 | C25—C26 | 1.389 (8) |
N1—C9 | 1.473 (6) | C1—H1 | 0.9300 |
N1—C13 | 1.466 (5) | C2—H2 | 0.9300 |
N1—C8 | 1.469 (6) | C3—H3 | 0.9300 |
C1—C2 | 1.374 (13) | C4—H4 | 0.9300 |
C1—C6 | 1.373 (10) | C5—H5 | 0.9300 |
C2—C3 | 1.330 (15) | C7—H7A | 0.9700 |
C3—C4 | 1.356 (15) | C7—H7B | 0.9700 |
C4—C5 | 1.407 (11) | C8—H8A | 0.9700 |
C5—C6 | 1.352 (9) | C8—H8B | 0.9700 |
C6—C7 | 1.496 (8) | C9—H9A | 0.9700 |
C7—C8 | 1.521 (7) | C9—H9B | 0.9700 |
C9—C10 | 1.500 (7) | C10—H10A | 0.9700 |
C10—C11 | 1.542 (6) | C10—H10B | 0.9700 |
C11—C12 | 1.569 (6) | C12—H12 | 0.9800 |
C11—C21 | 1.514 (7) | C13—H13A | 0.9700 |
C12—C14 | 1.518 (6) | C13—H13B | 0.9700 |
C12—C13 | 1.517 (5) | C16—H16 | 0.9300 |
C14—C15 | 1.492 (7) | C17—H17 | 0.9300 |
C15—C16 | 1.373 (7) | C19—H19 | 0.9300 |
C15—C20 | 1.393 (7) | C20—H20 | 0.9300 |
C16—C17 | 1.382 (7) | C22—H22 | 0.9300 |
C17—C18 | 1.362 (8) | C23—H23 | 0.9300 |
C18—C19 | 1.358 (8) | C25—H25 | 0.9300 |
C19—C20 | 1.389 (8) | C26—H26 | 0.9300 |
C21—C26 | 1.391 (7) | ||
C11—O1—H1A | 109.00 | C3—C2—H2 | 119.00 |
C8—N1—C9 | 110.2 (3) | C2—C3—H3 | 119.00 |
C8—N1—C13 | 110.2 (3) | C4—C3—H3 | 119.00 |
C9—N1—C13 | 108.5 (3) | C3—C4—H4 | 121.00 |
C2—C1—C6 | 120.2 (7) | C5—C4—H4 | 121.00 |
C1—C2—C3 | 121.1 (9) | C4—C5—H5 | 119.00 |
C2—C3—C4 | 121.1 (9) | C6—C5—H5 | 119.00 |
C3—C4—C5 | 117.8 (8) | C6—C7—H7A | 109.00 |
C4—C5—C6 | 121.8 (7) | C6—C7—H7B | 109.00 |
C1—C6—C5 | 118.0 (6) | C8—C7—H7A | 109.00 |
C1—C6—C7 | 120.1 (5) | C8—C7—H7B | 109.00 |
C5—C6—C7 | 121.9 (6) | H7A—C7—H7B | 108.00 |
C6—C7—C8 | 112.3 (4) | N1—C8—H8A | 109.00 |
N1—C8—C7 | 113.3 (4) | N1—C8—H8B | 109.00 |
N1—C9—C10 | 112.3 (4) | C7—C8—H8A | 109.00 |
C9—C10—C11 | 113.5 (4) | C7—C8—H8B | 109.00 |
O1—C11—C10 | 112.2 (4) | H8A—C8—H8B | 108.00 |
O1—C11—C12 | 104.1 (3) | N1—C9—H9A | 109.00 |
C10—C11—C12 | 106.2 (3) | N1—C9—H9B | 109.00 |
C10—C11—C21 | 110.8 (4) | C10—C9—H9A | 109.00 |
C12—C11—C21 | 112.0 (4) | C10—C9—H9B | 109.00 |
O1—C11—C21 | 111.2 (4) | H9A—C9—H9B | 108.00 |
C11—C12—C13 | 109.9 (3) | C9—C10—H10A | 109.00 |
C11—C12—C14 | 111.6 (3) | C9—C10—H10B | 109.00 |
C13—C12—C14 | 110.4 (3) | C11—C10—H10A | 109.00 |
N1—C13—C12 | 111.5 (3) | C11—C10—H10B | 109.00 |
O2—C14—C12 | 120.4 (4) | H10A—C10—H10B | 108.00 |
C12—C14—C15 | 120.4 (4) | C11—C12—H12 | 108.00 |
O2—C14—C15 | 119.2 (4) | C13—C12—H12 | 108.00 |
C14—C15—C16 | 123.9 (5) | C14—C12—H12 | 108.00 |
C14—C15—C20 | 117.5 (4) | N1—C13—H13A | 109.00 |
C16—C15—C20 | 118.6 (5) | N1—C13—H13B | 109.00 |
C15—C16—C17 | 121.9 (5) | C12—C13—H13A | 109.00 |
C16—C17—C18 | 118.0 (5) | C12—C13—H13B | 109.00 |
Cl2—C18—C19 | 119.1 (5) | H13A—C13—H13B | 108.00 |
C17—C18—C19 | 122.3 (5) | C15—C16—H16 | 119.00 |
Cl2—C18—C17 | 118.6 (4) | C17—C16—H16 | 119.00 |
C18—C19—C20 | 119.5 (5) | C16—C17—H17 | 121.00 |
C15—C20—C19 | 119.6 (5) | C18—C17—H17 | 121.00 |
C11—C21—C26 | 120.2 (4) | C18—C19—H19 | 120.00 |
C22—C21—C26 | 117.2 (5) | C20—C19—H19 | 120.00 |
C11—C21—C22 | 122.4 (4) | C15—C20—H20 | 120.00 |
C21—C22—C23 | 121.5 (5) | C19—C20—H20 | 120.00 |
C22—C23—C24 | 119.5 (5) | C21—C22—H22 | 119.00 |
Cl1—C24—C23 | 119.7 (4) | C23—C22—H22 | 119.00 |
Cl1—C24—C25 | 119.3 (5) | C22—C23—H23 | 120.00 |
C23—C24—C25 | 121.0 (5) | C24—C23—H23 | 120.00 |
C24—C25—C26 | 119.6 (5) | C24—C25—H25 | 120.00 |
C21—C26—C25 | 121.2 (5) | C26—C25—H25 | 120.00 |
C2—C1—H1 | 120.00 | C21—C26—H26 | 119.00 |
C6—C1—H1 | 120.00 | C25—C26—H26 | 119.00 |
C1—C2—H2 | 120.00 | ||
C9—N1—C13—C12 | 62.1 (4) | C10—C11—C12—C14 | 177.6 (4) |
C9—N1—C8—C7 | −67.4 (5) | C14—C12—C13—N1 | 174.0 (3) |
C13—N1—C8—C7 | 173.0 (4) | C11—C12—C14—O2 | −96.0 (5) |
C8—N1—C13—C12 | −177.2 (3) | C13—C12—C14—O2 | 26.5 (6) |
C13—N1—C9—C10 | −58.3 (5) | C13—C12—C14—C15 | −154.0 (4) |
C8—N1—C9—C10 | −179.0 (4) | C11—C12—C14—C15 | 83.5 (5) |
C2—C1—C6—C7 | −179.2 (6) | C11—C12—C13—N1 | −62.5 (4) |
C6—C1—C2—C3 | −1.8 (11) | O2—C14—C15—C16 | −159.1 (4) |
C2—C1—C6—C5 | 1.9 (9) | O2—C14—C15—C20 | 22.4 (6) |
C1—C2—C3—C4 | 0.1 (12) | C12—C14—C15—C16 | 21.5 (6) |
C2—C3—C4—C5 | 1.4 (11) | C12—C14—C15—C20 | −157.1 (4) |
C3—C4—C5—C6 | −1.2 (10) | C14—C15—C16—C17 | −178.9 (4) |
C4—C5—C6—C1 | −0.4 (9) | C20—C15—C16—C17 | −0.4 (7) |
C4—C5—C6—C7 | −179.3 (5) | C14—C15—C20—C19 | 178.4 (5) |
C1—C6—C7—C8 | 102.4 (6) | C16—C15—C20—C19 | −0.2 (7) |
C5—C6—C7—C8 | −78.7 (6) | C15—C16—C17—C18 | 1.9 (8) |
C6—C7—C8—N1 | −174.4 (4) | C16—C17—C18—Cl2 | 178.8 (4) |
N1—C9—C10—C11 | 56.4 (5) | C16—C17—C18—C19 | −2.9 (9) |
C9—C10—C11—C12 | −52.7 (5) | Cl2—C18—C19—C20 | −179.3 (5) |
C9—C10—C11—C21 | −174.6 (4) | C17—C18—C19—C20 | 2.4 (10) |
C9—C10—C11—O1 | 60.4 (5) | C18—C19—C20—C15 | −0.8 (9) |
C10—C11—C12—C13 | 54.7 (4) | C11—C21—C22—C23 | 174.2 (4) |
O1—C11—C12—C13 | −63.8 (4) | C26—C21—C22—C23 | −1.5 (7) |
O1—C11—C12—C14 | 59.0 (4) | C11—C21—C26—C25 | −175.3 (4) |
C21—C11—C12—C14 | −61.3 (5) | C22—C21—C26—C25 | 0.5 (7) |
O1—C11—C21—C22 | 168.5 (4) | C21—C22—C23—C24 | 1.0 (8) |
O1—C11—C21—C26 | −16.0 (6) | C22—C23—C24—Cl1 | −179.4 (4) |
C10—C11—C21—C22 | 43.0 (6) | C22—C23—C24—C25 | 0.5 (8) |
C10—C11—C21—C26 | −141.5 (4) | Cl1—C24—C25—C26 | 178.5 (4) |
C12—C11—C21—C22 | −75.4 (5) | C23—C24—C25—C26 | −1.4 (8) |
C12—C11—C21—C26 | 100.1 (5) | C24—C25—C26—C21 | 0.9 (8) |
C21—C11—C12—C13 | 175.9 (3) |
Cg2 and Cg3 are the centroids of the C15–C20 and C21–C26 benzene rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N1i | 0.82 | 2.11 | 2.879 (5) | 155 |
C13—H13B···O2ii | 0.97 | 2.54 | 3.372 (5) | 144 |
C2—H2···Cg2iii | 0.93 | 2.85 | 3.739 (9) | 159 |
C16—H16···Cg3iv | 0.93 | 2.85 | 3.646 (5) | 144 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x, −y+1, −z; (iii) −x, y−1/2, −z−1/2; (iv) x, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C26H25Cl2NO2 |
Mr | 454.37 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 294 |
a, b, c (Å) | 16.950 (4), 12.863 (3), 10.792 (2) |
β (°) | 97.779 (13) |
V (Å3) | 2331.3 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.30 |
Crystal size (mm) | 0.23 × 0.14 × 0.12 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID-S diffractometer |
Absorption correction | Multi-scan [XABS2 (Parkin et al., 1995); cubic fit to sin(θ)/λ - 24 parameters] |
Tmin, Tmax | 0.934, 0.965 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4830, 4830, 1939 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.097, 0.148, 1.07 |
No. of reflections | 4830 |
No. of parameters | 282 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.18, −0.13 |
Computer programs: CrystalClear (Rigaku/MSC, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).
Cg2 and Cg3 are the centroids of the C15–C20 and C21–C26 benzene rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···N1i | 0.82 | 2.11 | 2.879 (5) | 155 |
C13—H13B···O2ii | 0.97 | 2.54 | 3.372 (5) | 144 |
C2—H2···Cg2iii | 0.93 | 2.85 | 3.739 (9) | 159 |
C16—H16···Cg3iv | 0.93 | 2.85 | 3.646 (5) | 144 |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x, −y+1, −z; (iii) −x, y−1/2, −z−1/2; (iv) x, −y+1/2, z−1/2. |
X-ray | AM1 | X-ray | AM1 | |
Ring-2 | Ring-2 | Ring-3 | Ring-3 | |
Ring-1 | 59.5 (3) | 69.47 | 44.2 (3) | 89.21 |
Ring-2 | 24.4 (3) | 28.56 |
Ring-1 is the C1–C6 phenyl ring, Ring-2 is the C15–C20 benzene ring and Ring-3 is the C21–C26 benzene ring. |
Acknowledgements
The authors are indebted to the Department of Chemistry, Ataturk University, Erzurum, Turkey, for use of the X-ray diffractometer purchased under grant No. 2003/219 of the University Research Fund. In addition, this work was partly supported by a grant from the Ataturk University Research Fund (project No. 2006/96).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Atwal, M. S., Bauer, L., Dixit, S. N., Gearien, J. E., Megahy, M., Morris, R. & Pokorny, C. (1969). J. Med. Chem. 12, 994–997. CrossRef CAS PubMed Web of Science Google Scholar
Canturk, P., Kucukoglu, K., Topcu, Z., Gul, M. & Gul, H. I. (2008). Arzneim. Forschung. (Drug Res.), 58, 686–691. CAS Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dewar, M. J. S., Zoebish, E. G., Healy, E. F. & Stewart, J. J. P. (1985). J. Am. Chem. Soc. 107, 3902–3909. CrossRef CAS Web of Science Google Scholar
Dimmock, J. R. & Kumar, P. (1997). Curr. Med. Chem. 4, 1–22. CAS Google Scholar
Dimmock, J. R., Patil, S. A. & Shyam, K. (1991). Pharmazie, 46, 538–539. PubMed CAS Web of Science Google Scholar
Erciyas, E., Erkaleli, H. I. & Cosar, G. (1994). J. Pharm. Sci. 83, 545–548. CrossRef CAS PubMed Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gul, M. (2005). PhD thesis, University of Kuopio, Finland. Google Scholar
Gul, M., Atalay, M., Gul, H. I., Nakao, C., Lappalainen, J. & Hanninen, O. (2005). Toxicol. in Vitro, 19, 573–580. Web of Science CrossRef PubMed CAS Google Scholar
Gul, H. I., Calis, U. & Vepsalainen, J. (2004). Arzneim. Forschung. (Drug Res.), 54, 359–364. CAS Google Scholar
Gul, H. I., Ojanen, T., Vepsalainen, J., Gul, M., Erciyas, E. & Hanninen, O. (2001). Arzneim. Forschung. (Drug Res.), 51, 72–75. CAS Google Scholar
Manavathu, E. K., Vashishtha, S. C., Alangaden, G. J. & Dimmock, J. R. (1998). Can. J. Microbiol. 44, 74–79. Web of Science CrossRef CAS PubMed Google Scholar
Mete, E., Gul, H. I., Canturk, P., Topcu, Z., Pandit, B., Gul, M. & Li, P. K. (2010a). Z. Naturforsch. Teil C, 65, 647–652. CAS Google Scholar
Mete, E., Ozelgul, C., Kazaz, C., Yurdakul, D., Sahin, F. & Gul, H. I. (2010b). Arch. Pharm. Chem. Life Sci. 343, 291–300. CAS Google Scholar
Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56. CrossRef CAS Web of Science IUCr Journals Google Scholar
Piscopo, E., Diurno, M. V., Imperadrice, F. & Caliendo, V. (1986). Boll. Soc. Ital. Biol. Sper. 62, 1449–1455. CAS PubMed Google Scholar
Porretta, G. C., Biava, M., Fioravanti, R., Fischetti, M., Boccia, R., Villa, A. & Simonetti, N. (1995). IFarmaco, 50, 617–623. CAS Google Scholar
Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stewart, J. J. P. (1993). MOPAC7.0. QCPE Program No. 455. Quantum Chemistry Program Exchange, Department of Chemistry, Indiana University, Bloomington, IN, USA. Google Scholar
Suleyman, H., Gul, H. I., Gul, M., Alkan, M. & Gocer, F. (2007). Biol. Pharm. Bull. 30, 63–67. Web of Science CrossRef PubMed CAS Google Scholar
Vashishtha, S. C., Dimmock, J. R. & Manavathu, E. K. (1998). Pharmazie, 53, 499–500. Web of Science CAS PubMed Google Scholar
Yogeeswari, P., Sriram, D., Kavya, R. & Tiwari, S. (2005). Biomed. Pharmacother. 59, 501–510. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, C26H25Cl2NO2, is a semicyclic mono Mannich base. Mannich bases are generally formed by the reaction between a compound containing reactive hydrogen atom, formaldehyde, and a secondary amine. On occasion, aldehydes other than formaldehyde may be employed, and the secondary amine may be replaced by ammonia and primary amines. The process whereby these compounds are formed is known as the Mannich reaction (Dimmock & Kumar, 1997).
Mannich bases have several biological activities such as antimicrobial (Gul et al., 2001, Gul, 2005; Erciyas et al., 1994; Porretta et al., 1995; Piscopo et al., 1986; Manavathu et al., 1998; Vashishtha et al., 1998), analgesic (Atwal et al., 1969), anti-inflammatory (Gul, 2005; Suleyman et al., 2007) and anticonvulsant activities (Gul et al., 2004; Dimmock et al., 1991). Considerable anticancer activity was also attributed to Mannich bases (Dimmock & Kumar, 1997). It has been reported that these compounds have an inhibiting effect on DNA topoisomerase I (Canturk et al., 2008) and II (Yogeeswari et al., 2005).
The biological activities of Mannich bases were attributed to the thiol alkylation of α,β-unsaturated ketones produced from Mannich bases. Mannich bases which have at least one activated hydrogen atom at the β-position of amine can undergo deamination under simulated physiological condition in vitro or in vivo condition to produce α,β-unsaturated ketones which are biologically active species (Gul et al., 2005).
The title compound was tested against seven types of plant pathogenic fungi and three types of human pathogenic fungi using the agar dilution assay (Mete et al., 2010b). Cytotoxic activity of the title compound against androgen-independent prostate cancer cells (PC-3) and the biological activity on DNA topoisomerase I enzyme were also reported (Mete et al., 2010a).
The molecular structure of the title compound, (I), is shown in Fig. 1. Bond lengths (Allen et al., 1987) and angles are in normal ranges. The piperidine ring (N1/C9–C13) adopts a chair conformation [puckering parameters are QT = 0.590 (4) Å, θ = 4.4 (4) °, ϕ = 289 (5) ° (Cremer & Pople, 1975)], with atoms C9, C10, C12 and C13 occupying coplanar positions and atoms C11 and N1 on opposite sides of the plane. The carbonyl and hydroxy groups are cis configured. The C15–C20 and C21–C26 benzene rings form a dihedral angle of 24.3 (2)° with each other. The C1–C6 phenyl ring forms dihedral angles of 59.4 (3) and 44.1 (3)° with the C15–C20 and C21–C26 benzene rings, respectively. The crystal structure is stabilized by intermolecular O—H···N and C—H···O hydrogen bonds (Table 1, Fig. 2) and C—H···π interactions (Table 1), forming layer parallel to the bc plane.
We applied a semiempirical calculation AM1 of (I) with MOPAC (Dewar et al., 1985; Stewart, 1993). Figure 3 shows the conformation of the calculated molecule. The values of the structural parameters of (I) obtained by the results of the theoretical calculations (based on isolated molecules) and X-ray structural determinations in the solid state are almost identical within experimental error. The dihedral angles between the mean planes of the aromatic rings in (I) are listed in Table 2 for comparision. The calculated dipole moment of (I) is 2.119 D. The HOMO and LUMO energy levels are -9.22109 and -0.56402 eV, respectively. We may state that the theoretical calculation of (I) supports the suggestion that the present intermolecular interactions in (I) influence crystal packing.