organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1447-o1448

3-(4-Chloro­benzo­yl)-4-(4-chloro­phen­yl)-1-phenethyl­piperidin-4-ol

aDepartment of Science Education, Faculty of Education, Kastamonu University, 37200 Kastamonu, Turkey, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Faculty of Sciences, Ataturk University, 25240 Erzurum, Turkey, and dDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Ataturk University, 25240 Erzurum, Turkey
*Correspondence e-mail: aaydin@kastamonu.edu.tr

(Received 22 April 2011; accepted 12 May 2011; online 20 May 2011)

In the title compound, C26H25Cl2NO2, the piperidine ring adopts a chair conformation with a cis configuration of the carbonyl and hy­droxy substituents. The dihedral angle between the aromatic rings of the chloro­benzene groups is 24.3 (2)°. The phenyl ring forms dihedral angles of 59.4 (3) and 44.1 (3)° with the benzene rings. In the crystal, mol­ecules are linked by inter­molecular O—H⋯N and C—H⋯O hydrogen bonds and C—H⋯π inter­actions into layers parallel to the bc plane.

Related literature

For the synthesis and biological activity of Mannich bases, see: Dimmock et al. (1991[Dimmock, J. R., Patil, S. A. & Shyam, K. (1991). Pharmazie, 46, 538-539.]); Dimmock & Kumar (1997)[Dimmock, J. R. & Kumar, P. (1997). Curr. Med. Chem. 4, 1-22.]; Gul et al. (2001[Gul, H. I., Ojanen, T., Vepsalainen, J., Gul, M., Erciyas, E. & Hanninen, O. (2001). Arzneim. Forschung. (Drug Res.), 51, 72-75.], 2004[Gul, H. I., Calis, U. & Vepsalainen, J. (2004). Arzneim. Forschung. (Drug Res.), 54, 359-364.], 2005[Gul, M., Atalay, M., Gul, H. I., Nakao, C., Lappalainen, J. & Hanninen, O. (2005). Toxicol. in Vitro, 19, 573-580.]); Atwal et al. (1969[Atwal, M. S., Bauer, L., Dixit, S. N., Gearien, J. E., Megahy, M., Morris, R. & Pokorny, C. (1969). J. Med. Chem. 12, 994-997.]); Gul (2005[Gul, M. (2005). PhD thesis, University of Kuopio, Finland.]); Erciyas et al. (1994[Erciyas, E., Erkaleli, H. I. & Cosar, G. (1994). J. Pharm. Sci. 83, 545-548.]); Porretta et al. (1995[Porretta, G. C., Biava, M., Fioravanti, R., Fischetti, M., Boccia, R., Villa, A. & Simonetti, N. (1995). IFarmaco, 50, 617-623.]); Piscopo et al. (1986[Piscopo, E., Diurno, M. V., Imperadrice, F. & Caliendo, V. (1986). Boll. Soc. Ital. Biol. Sper. 62, 1449-1455.]); Manavathu et al. (1998[Manavathu, E. K., Vashishtha, S. C., Alangaden, G. J. & Dimmock, J. R. (1998). Can. J. Microbiol. 44, 74-79.]); Vashishtha et al. (1998[Vashishtha, S. C., Dimmock, J. R. & Manavathu, E. K. (1998). Pharmazie, 53, 499-500.]); Canturk et al. (2008[Canturk, P., Kucukoglu, K., Topcu, Z., Gul, M. & Gul, H. I. (2008). Arzneim. Forschung. (Drug Res.), 58, 686-691.]); Suleyman et al. (2007[Suleyman, H., Gul, H. I., Gul, M., Alkan, M. & Gocer, F. (2007). Biol. Pharm. Bull. 30, 63-67.]); Yogeeswari et al. (2005[Yogeeswari, P., Sriram, D., Kavya, R. & Tiwari, S. (2005). Biomed. Pharmacother. 59, 501-510.]); Mete et al. (2010a[Mete, E., Gul, H. I., Canturk, P., Topcu, Z., Pandit, B., Gul, M. & Li, P. K. (2010a). Z. Naturforsch. Teil C, 65, 647-652.],b[Mete, E., Ozelgul, C., Kazaz, C., Yurdakul, D., Sahin, F. & Gul, H. I. (2010b). Arch. Pharm. Chem. Life Sci. 343, 291-300.]) For MOPAC AM1 theoretical full-geometry optimization, see: Dewar et al. (1985[Dewar, M. J. S., Zoebish, E. G., Healy, E. F. & Stewart, J. J. P. (1985). J. Am. Chem. Soc. 107, 3902-3909.]); Stewart (1993[Stewart, J. J. P. (1993). MOPAC7.0. QCPE Program No. 455. Quantum Chemistry Program Exchange, Department of Chemistry, Indiana University, Bloomington, IN, USA.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C26H25Cl2NO2

  • Mr = 454.37

  • Monoclinic, P 21 /c

  • a = 16.950 (4) Å

  • b = 12.863 (3) Å

  • c = 10.792 (2) Å

  • β = 97.779 (13)°

  • V = 2331.3 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 294 K

  • 0.23 × 0.14 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: multi-scan [XABS2 (Parkin et al., 1995[Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.]); cubic fit to sin(θ)/λ, 24 parameters] Tmin = 0.934, Tmax = 0.965

  • 4830 measured reflections

  • 4830 independent reflections

  • 1939 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.097

  • wR(F2) = 0.148

  • S = 1.07

  • 4830 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C15–C20 and C21–C26 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯N1i 0.82 2.11 2.879 (5) 155
C13—H13B⋯O2ii 0.97 2.54 3.372 (5) 144
C2—H2⋯Cg2iii 0.93 2.85 3.739 (9) 159
C16—H16⋯Cg3iv 0.93 2.85 3.646 (5) 144
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x, -y+1, -z; (iii) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound, C26H25Cl2NO2, is a semicyclic mono Mannich base. Mannich bases are generally formed by the reaction between a compound containing reactive hydrogen atom, formaldehyde, and a secondary amine. On occasion, aldehydes other than formaldehyde may be employed, and the secondary amine may be replaced by ammonia and primary amines. The process whereby these compounds are formed is known as the Mannich reaction (Dimmock & Kumar, 1997).

Mannich bases have several biological activities such as antimicrobial (Gul et al., 2001, Gul, 2005; Erciyas et al., 1994; Porretta et al., 1995; Piscopo et al., 1986; Manavathu et al., 1998; Vashishtha et al., 1998), analgesic (Atwal et al., 1969), anti-inflammatory (Gul, 2005; Suleyman et al., 2007) and anticonvulsant activities (Gul et al., 2004; Dimmock et al., 1991). Considerable anticancer activity was also attributed to Mannich bases (Dimmock & Kumar, 1997). It has been reported that these compounds have an inhibiting effect on DNA topoisomerase I (Canturk et al., 2008) and II (Yogeeswari et al., 2005).

The biological activities of Mannich bases were attributed to the thiol alkylation of α,β-unsaturated ketones produced from Mannich bases. Mannich bases which have at least one activated hydrogen atom at the β-position of amine can undergo deamination under simulated physiological condition in vitro or in vivo condition to produce α,β-unsaturated ketones which are biologically active species (Gul et al., 2005).

The title compound was tested against seven types of plant pathogenic fungi and three types of human pathogenic fungi using the agar dilution assay (Mete et al., 2010b). Cytotoxic activity of the title compound against androgen-independent prostate cancer cells (PC-3) and the biological activity on DNA topoisomerase I enzyme were also reported (Mete et al., 2010a).

The molecular structure of the title compound, (I), is shown in Fig. 1. Bond lengths (Allen et al., 1987) and angles are in normal ranges. The piperidine ring (N1/C9–C13) adopts a chair conformation [puckering parameters are QT = 0.590 (4) Å, θ = 4.4 (4) °, ϕ = 289 (5) ° (Cremer & Pople, 1975)], with atoms C9, C10, C12 and C13 occupying coplanar positions and atoms C11 and N1 on opposite sides of the plane. The carbonyl and hydroxy groups are cis configured. The C15–C20 and C21–C26 benzene rings form a dihedral angle of 24.3 (2)° with each other. The C1–C6 phenyl ring forms dihedral angles of 59.4 (3) and 44.1 (3)° with the C15–C20 and C21–C26 benzene rings, respectively. The crystal structure is stabilized by intermolecular O—H···N and C—H···O hydrogen bonds (Table 1, Fig. 2) and C—H···π interactions (Table 1), forming layer parallel to the bc plane.

We applied a semiempirical calculation AM1 of (I) with MOPAC (Dewar et al., 1985; Stewart, 1993). Figure 3 shows the conformation of the calculated molecule. The values of the structural parameters of (I) obtained by the results of the theoretical calculations (based on isolated molecules) and X-ray structural determinations in the solid state are almost identical within experimental error. The dihedral angles between the mean planes of the aromatic rings in (I) are listed in Table 2 for comparision. The calculated dipole moment of (I) is 2.119 D. The HOMO and LUMO energy levels are -9.22109 and -0.56402 eV, respectively. We may state that the theoretical calculation of (I) supports the suggestion that the present intermolecular interactions in (I) influence crystal packing.

Related literature top

For the synthesis and biological activity of Mannich bases, see: Dimmock et al. (1991); Dimmock & Kumar (1997); Gul et al. (2001, 2004, 2005); Atwal et al. (1969); Gul (2005); Erciyas et al. (1994); Porretta et al. (1995); Piscopo et al. (1986); Manavathu et al. (1998); Vashishtha et al. (1998); Canturk et al. (2008); Suleyman et al. (2007); Yogeeswari et al. (2005); Mete et al. (2010a,b) For MOPAC AM1 theoretical full-geometry optimization, see: Dewar et al. (1985); Stewart (1993). For bond-length data, see: Allen et al. (1987). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

4'-Chloroacetophenone (10.00 g), paraformaldehyde (1.95 g) and phenylethylamine hydrochloride (5.12 g) in the molar ratio 2:2:1 were stirred and heated in an oil bath. When the temperature reached 365 K, the solid mixture started to melt. When heating continued, the reaction content solidified again totally. The reaction flask was quickly removed from the oil bath. The temperature of the reaction medium spontaneously increased to 377 K. Following the increase in temperature and removal of the flask from the oil bath, ethyl acetate (20 ml) was added to the reaction flask when the temperature had dropped to 338 K. Stirring was continued for 24 h. The formed precipitate was separated by filtration and crystallized from ethanol to obtain 1-(4-chlorophenyl)-3-phenethylamino-1-propanone hydrochloride. The ethyl acetate present in the reaction flask was removed under reduced pressure to obtain the title compound (I) as a viscous orange oil. The compound was purified by column chromatography using a basic Al2O3 column with ethyl acetate/hexane (1:9 v/v) as eluent (yield 18%; m. p. 405–407 K). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution. 1H-NMR(DMSO) δ: 1.55 (br d, 1H, J = 13.6 Hz), 2.04–2.11 (m, 1H), 2.56–2.91 (m, 8H), 4.30 (dd, 1H, J = 11.0, 3.7 Hz), 4.96 (d, OH, J = 1.1 Hz), 7.15 (quasi d,2H, J = 8.8 Hz), 7.21–7.28 (m, 5H), 7.43 (quasi d, 2H, J = 8.8 Hz), 7.50 (quasi d, 2H, J = 8.4 Hz), 7.74 (quasi d, 2H, J = 8.8 Hz). 13C-NMR(DMSO) δ: 33.5, 39.6, 48.9, 51.3, 52.3, 60.2, 73.1, 126.5, 127.7, 128.3, 128.9, 129.3, 129.4, 130.7, 131.8, 136.0, 138.9, 141.1, 147.2, 202.5. Elemental analysis: C26H25Cl2NO2, Calc.(%) / Found (%): C: 68.72/68.76, H: 5.55/5.43, N: 3.08/3.27 (Mete et al., 2010b).

Refinement top

H atoms were positioned geometrically, with O—H = 0.82 Å, C—H = 0.93(aromatic), 0.97(methylene) or 0.98 Å (methine), and refined as riding with Uiso(H) = 1.5Ueq(O) or 1.2Ueq(C). The rather high R value (0.0967) is due to the poor quality of the crystal.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed down the a axis. H atoms not involved in hydrogen bonds (dashed lines) are omitted for clarity.
[Figure 3] Fig. 3. A spatial view of the calculated molecule of the title compound.
3-(4-Chlorobenzoyl)-4-(4-chlorophenyl)-1-phenethylpiperidin-4-ol top
Crystal data top
C26H25Cl2NO2F(000) = 952
Mr = 454.37Dx = 1.295 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5626 reflections
a = 16.950 (4) Åθ = 2.4–30.5°
b = 12.863 (3) ŵ = 0.30 mm1
c = 10.792 (2) ÅT = 294 K
β = 97.779 (13)°Block, colourless
V = 2331.3 (9) Å30.23 × 0.14 × 0.12 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
4830 independent reflections
Radiation source: Sealed Tube1939 reflections with I > 2σ(I)
Graphite Monochromator monochromatorRint = 0.000
Detector resolution: 10.00 pixels mm-1θmax = 26.5°, θmin = 2.4°
dtprofit.ref scansh = 2121
Absorption correction: multi-scan
[XABS2 (Parkin et al., 1995); cubic fit to sin(θ)/λ - 24 parameters]
k = 016
Tmin = 0.934, Tmax = 0.965l = 013
4830 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.097Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0094P)2 + 1.4373P]
where P = (Fo2 + 2Fc2)/3
4830 reflections(Δ/σ)max < 0.001
282 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C26H25Cl2NO2V = 2331.3 (9) Å3
Mr = 454.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.950 (4) ŵ = 0.30 mm1
b = 12.863 (3) ÅT = 294 K
c = 10.792 (2) Å0.23 × 0.14 × 0.12 mm
β = 97.779 (13)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
4830 independent reflections
Absorption correction: multi-scan
[XABS2 (Parkin et al., 1995); cubic fit to sin(θ)/λ - 24 parameters]
1939 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.965Rint = 0.000
4830 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0970 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.07Δρmax = 0.18 e Å3
4830 reflectionsΔρmin = 0.13 e Å3
282 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.45921 (10)0.30278 (16)0.49332 (19)0.1484 (10)
Cl20.47453 (11)0.57277 (17)0.1905 (2)0.1803 (13)
O10.0660 (2)0.3454 (2)0.3384 (3)0.0716 (12)
O20.08304 (19)0.5228 (2)0.1541 (3)0.0769 (14)
N10.0050 (2)0.2257 (3)0.0508 (3)0.0590 (16)
C10.1997 (4)0.1029 (5)0.2619 (7)0.112 (3)
C20.2733 (7)0.1035 (6)0.3331 (8)0.146 (5)
C30.3396 (5)0.1102 (6)0.2802 (11)0.136 (5)
C40.3367 (5)0.1168 (5)0.1543 (9)0.128 (4)
C50.2612 (4)0.1186 (5)0.0817 (6)0.106 (3)
C60.1933 (3)0.1121 (4)0.1342 (6)0.074 (2)
C70.1130 (3)0.1128 (4)0.0571 (5)0.089 (3)
C80.0868 (3)0.2217 (3)0.0146 (4)0.0683 (17)
C90.0000 (3)0.1708 (4)0.1714 (4)0.0685 (17)
C100.0822 (3)0.1743 (3)0.2431 (4)0.0651 (17)
C110.1144 (3)0.2856 (3)0.2674 (4)0.0601 (17)
C120.1052 (2)0.3410 (3)0.1367 (4)0.0521 (17)
C130.0195 (2)0.3339 (3)0.0750 (4)0.0598 (17)
C140.1317 (3)0.4537 (4)0.1482 (4)0.0581 (17)
C150.2176 (3)0.4812 (4)0.1536 (4)0.0581 (17)
C160.2732 (3)0.4180 (4)0.1104 (4)0.070 (2)
C170.3525 (3)0.4459 (4)0.1192 (5)0.089 (2)
C180.3752 (3)0.5378 (5)0.1759 (6)0.096 (3)
C190.3223 (4)0.6037 (4)0.2184 (6)0.102 (3)
C200.2425 (3)0.5758 (4)0.2084 (5)0.082 (3)
C210.2001 (3)0.2836 (4)0.3290 (4)0.0582 (17)
C220.2562 (3)0.2166 (4)0.2909 (4)0.0733 (19)
C230.3354 (3)0.2222 (4)0.3407 (5)0.087 (3)
C240.3593 (3)0.2945 (5)0.4313 (5)0.084 (2)
C250.3063 (4)0.3599 (4)0.4732 (5)0.085 (3)
C260.2267 (3)0.3553 (4)0.4218 (4)0.0694 (19)
H10.154100.096100.300300.1340*
H1A0.057000.311900.399600.1070*
H20.276900.099200.419700.1750*
H30.388700.110300.330400.1630*
H40.383000.120100.117100.1540*
H50.257900.124300.004800.1270*
H7A0.074300.083600.105700.1070*
H7B0.114500.069100.015800.1070*
H8A0.090800.267000.087100.0820*
H8B0.122800.248100.040600.0820*
H9A0.015600.098800.156300.0820*
H9B0.037200.202100.221400.0820*
H10A0.118100.136300.196800.0780*
H10B0.081700.139500.322600.0780*
H120.138900.304700.083700.0620*
H13A0.015000.366000.128800.0720*
H13B0.013700.372000.003300.0720*
H160.257000.354600.074200.0840*
H170.389200.403200.087400.1060*
H190.339300.667100.254000.1220*
H200.205800.620000.238100.0990*
H220.240100.166800.230400.0880*
H230.372300.177200.313100.1040*
H250.323100.407600.535900.1020*
H260.190600.401000.450100.0830*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0835 (12)0.1827 (19)0.1682 (18)0.0113 (12)0.0226 (11)0.0167 (15)
Cl20.1017 (14)0.190 (2)0.243 (3)0.0701 (14)0.0008 (15)0.0200 (18)
O10.086 (2)0.076 (2)0.058 (2)0.0178 (19)0.0290 (18)0.0100 (17)
O20.084 (2)0.063 (2)0.085 (3)0.0156 (19)0.016 (2)0.0046 (19)
N10.063 (3)0.059 (3)0.056 (2)0.004 (2)0.012 (2)0.005 (2)
C10.121 (6)0.112 (5)0.103 (6)0.018 (4)0.016 (5)0.025 (4)
C20.192 (10)0.118 (6)0.113 (7)0.012 (7)0.033 (8)0.029 (5)
C30.104 (7)0.109 (6)0.184 (10)0.020 (5)0.020 (7)0.010 (7)
C40.100 (6)0.117 (6)0.171 (8)0.004 (4)0.032 (6)0.036 (6)
C50.076 (4)0.131 (6)0.112 (5)0.012 (4)0.014 (4)0.029 (4)
C60.077 (4)0.067 (3)0.079 (4)0.016 (3)0.014 (4)0.001 (3)
C70.078 (4)0.074 (4)0.114 (5)0.015 (3)0.006 (4)0.002 (3)
C80.070 (3)0.066 (3)0.070 (3)0.001 (3)0.013 (3)0.005 (3)
C90.076 (3)0.065 (3)0.067 (3)0.003 (3)0.019 (3)0.014 (3)
C100.073 (3)0.060 (3)0.064 (3)0.003 (3)0.015 (3)0.010 (3)
C110.070 (3)0.063 (3)0.049 (3)0.012 (3)0.014 (3)0.002 (3)
C120.059 (3)0.050 (3)0.049 (3)0.001 (2)0.014 (2)0.000 (2)
C130.068 (3)0.059 (3)0.054 (3)0.003 (2)0.014 (2)0.002 (2)
C140.074 (3)0.057 (3)0.045 (3)0.003 (3)0.014 (2)0.002 (2)
C150.069 (3)0.051 (3)0.053 (3)0.007 (3)0.004 (3)0.010 (2)
C160.061 (3)0.073 (4)0.076 (4)0.005 (3)0.007 (3)0.002 (3)
C170.073 (4)0.094 (4)0.098 (4)0.016 (3)0.010 (3)0.004 (4)
C180.079 (4)0.092 (5)0.109 (5)0.025 (4)0.014 (4)0.008 (4)
C190.118 (6)0.068 (4)0.112 (5)0.031 (4)0.013 (4)0.004 (4)
C200.101 (5)0.061 (4)0.082 (4)0.007 (3)0.003 (3)0.004 (3)
C210.071 (3)0.060 (3)0.044 (3)0.009 (3)0.009 (2)0.006 (2)
C220.064 (3)0.085 (4)0.070 (3)0.010 (3)0.006 (3)0.010 (3)
C230.071 (4)0.101 (5)0.088 (4)0.018 (3)0.006 (3)0.007 (4)
C240.066 (4)0.091 (4)0.091 (4)0.000 (3)0.002 (3)0.008 (4)
C250.098 (5)0.078 (4)0.075 (4)0.000 (3)0.004 (4)0.001 (3)
C260.087 (4)0.063 (3)0.060 (3)0.012 (3)0.017 (3)0.006 (3)
Geometric parameters (Å, º) top
Cl1—C241.738 (5)C21—C221.386 (7)
Cl2—C181.729 (6)C22—C231.379 (7)
O1—C111.422 (6)C23—C241.370 (8)
O2—C141.220 (6)C24—C251.353 (8)
O1—H1A0.8200C25—C261.389 (8)
N1—C91.473 (6)C1—H10.9300
N1—C131.466 (5)C2—H20.9300
N1—C81.469 (6)C3—H30.9300
C1—C21.374 (13)C4—H40.9300
C1—C61.373 (10)C5—H50.9300
C2—C31.330 (15)C7—H7A0.9700
C3—C41.356 (15)C7—H7B0.9700
C4—C51.407 (11)C8—H8A0.9700
C5—C61.352 (9)C8—H8B0.9700
C6—C71.496 (8)C9—H9A0.9700
C7—C81.521 (7)C9—H9B0.9700
C9—C101.500 (7)C10—H10A0.9700
C10—C111.542 (6)C10—H10B0.9700
C11—C121.569 (6)C12—H120.9800
C11—C211.514 (7)C13—H13A0.9700
C12—C141.518 (6)C13—H13B0.9700
C12—C131.517 (5)C16—H160.9300
C14—C151.492 (7)C17—H170.9300
C15—C161.373 (7)C19—H190.9300
C15—C201.393 (7)C20—H200.9300
C16—C171.382 (7)C22—H220.9300
C17—C181.362 (8)C23—H230.9300
C18—C191.358 (8)C25—H250.9300
C19—C201.389 (8)C26—H260.9300
C21—C261.391 (7)
C11—O1—H1A109.00C3—C2—H2119.00
C8—N1—C9110.2 (3)C2—C3—H3119.00
C8—N1—C13110.2 (3)C4—C3—H3119.00
C9—N1—C13108.5 (3)C3—C4—H4121.00
C2—C1—C6120.2 (7)C5—C4—H4121.00
C1—C2—C3121.1 (9)C4—C5—H5119.00
C2—C3—C4121.1 (9)C6—C5—H5119.00
C3—C4—C5117.8 (8)C6—C7—H7A109.00
C4—C5—C6121.8 (7)C6—C7—H7B109.00
C1—C6—C5118.0 (6)C8—C7—H7A109.00
C1—C6—C7120.1 (5)C8—C7—H7B109.00
C5—C6—C7121.9 (6)H7A—C7—H7B108.00
C6—C7—C8112.3 (4)N1—C8—H8A109.00
N1—C8—C7113.3 (4)N1—C8—H8B109.00
N1—C9—C10112.3 (4)C7—C8—H8A109.00
C9—C10—C11113.5 (4)C7—C8—H8B109.00
O1—C11—C10112.2 (4)H8A—C8—H8B108.00
O1—C11—C12104.1 (3)N1—C9—H9A109.00
C10—C11—C12106.2 (3)N1—C9—H9B109.00
C10—C11—C21110.8 (4)C10—C9—H9A109.00
C12—C11—C21112.0 (4)C10—C9—H9B109.00
O1—C11—C21111.2 (4)H9A—C9—H9B108.00
C11—C12—C13109.9 (3)C9—C10—H10A109.00
C11—C12—C14111.6 (3)C9—C10—H10B109.00
C13—C12—C14110.4 (3)C11—C10—H10A109.00
N1—C13—C12111.5 (3)C11—C10—H10B109.00
O2—C14—C12120.4 (4)H10A—C10—H10B108.00
C12—C14—C15120.4 (4)C11—C12—H12108.00
O2—C14—C15119.2 (4)C13—C12—H12108.00
C14—C15—C16123.9 (5)C14—C12—H12108.00
C14—C15—C20117.5 (4)N1—C13—H13A109.00
C16—C15—C20118.6 (5)N1—C13—H13B109.00
C15—C16—C17121.9 (5)C12—C13—H13A109.00
C16—C17—C18118.0 (5)C12—C13—H13B109.00
Cl2—C18—C19119.1 (5)H13A—C13—H13B108.00
C17—C18—C19122.3 (5)C15—C16—H16119.00
Cl2—C18—C17118.6 (4)C17—C16—H16119.00
C18—C19—C20119.5 (5)C16—C17—H17121.00
C15—C20—C19119.6 (5)C18—C17—H17121.00
C11—C21—C26120.2 (4)C18—C19—H19120.00
C22—C21—C26117.2 (5)C20—C19—H19120.00
C11—C21—C22122.4 (4)C15—C20—H20120.00
C21—C22—C23121.5 (5)C19—C20—H20120.00
C22—C23—C24119.5 (5)C21—C22—H22119.00
Cl1—C24—C23119.7 (4)C23—C22—H22119.00
Cl1—C24—C25119.3 (5)C22—C23—H23120.00
C23—C24—C25121.0 (5)C24—C23—H23120.00
C24—C25—C26119.6 (5)C24—C25—H25120.00
C21—C26—C25121.2 (5)C26—C25—H25120.00
C2—C1—H1120.00C21—C26—H26119.00
C6—C1—H1120.00C25—C26—H26119.00
C1—C2—H2120.00
C9—N1—C13—C1262.1 (4)C10—C11—C12—C14177.6 (4)
C9—N1—C8—C767.4 (5)C14—C12—C13—N1174.0 (3)
C13—N1—C8—C7173.0 (4)C11—C12—C14—O296.0 (5)
C8—N1—C13—C12177.2 (3)C13—C12—C14—O226.5 (6)
C13—N1—C9—C1058.3 (5)C13—C12—C14—C15154.0 (4)
C8—N1—C9—C10179.0 (4)C11—C12—C14—C1583.5 (5)
C2—C1—C6—C7179.2 (6)C11—C12—C13—N162.5 (4)
C6—C1—C2—C31.8 (11)O2—C14—C15—C16159.1 (4)
C2—C1—C6—C51.9 (9)O2—C14—C15—C2022.4 (6)
C1—C2—C3—C40.1 (12)C12—C14—C15—C1621.5 (6)
C2—C3—C4—C51.4 (11)C12—C14—C15—C20157.1 (4)
C3—C4—C5—C61.2 (10)C14—C15—C16—C17178.9 (4)
C4—C5—C6—C10.4 (9)C20—C15—C16—C170.4 (7)
C4—C5—C6—C7179.3 (5)C14—C15—C20—C19178.4 (5)
C1—C6—C7—C8102.4 (6)C16—C15—C20—C190.2 (7)
C5—C6—C7—C878.7 (6)C15—C16—C17—C181.9 (8)
C6—C7—C8—N1174.4 (4)C16—C17—C18—Cl2178.8 (4)
N1—C9—C10—C1156.4 (5)C16—C17—C18—C192.9 (9)
C9—C10—C11—C1252.7 (5)Cl2—C18—C19—C20179.3 (5)
C9—C10—C11—C21174.6 (4)C17—C18—C19—C202.4 (10)
C9—C10—C11—O160.4 (5)C18—C19—C20—C150.8 (9)
C10—C11—C12—C1354.7 (4)C11—C21—C22—C23174.2 (4)
O1—C11—C12—C1363.8 (4)C26—C21—C22—C231.5 (7)
O1—C11—C12—C1459.0 (4)C11—C21—C26—C25175.3 (4)
C21—C11—C12—C1461.3 (5)C22—C21—C26—C250.5 (7)
O1—C11—C21—C22168.5 (4)C21—C22—C23—C241.0 (8)
O1—C11—C21—C2616.0 (6)C22—C23—C24—Cl1179.4 (4)
C10—C11—C21—C2243.0 (6)C22—C23—C24—C250.5 (8)
C10—C11—C21—C26141.5 (4)Cl1—C24—C25—C26178.5 (4)
C12—C11—C21—C2275.4 (5)C23—C24—C25—C261.4 (8)
C12—C11—C21—C26100.1 (5)C24—C25—C26—C210.9 (8)
C21—C11—C12—C13175.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C15–C20 and C21–C26 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.822.112.879 (5)155
C13—H13B···O2ii0.972.543.372 (5)144
C2—H2···Cg2iii0.932.853.739 (9)159
C16—H16···Cg3iv0.932.853.646 (5)144
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x, y1/2, z1/2; (iv) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC26H25Cl2NO2
Mr454.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)16.950 (4), 12.863 (3), 10.792 (2)
β (°) 97.779 (13)
V3)2331.3 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.23 × 0.14 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID-S
diffractometer
Absorption correctionMulti-scan
[XABS2 (Parkin et al., 1995); cubic fit to sin(θ)/λ - 24 parameters]
Tmin, Tmax0.934, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
4830, 4830, 1939
Rint0.000
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.097, 0.148, 1.07
No. of reflections4830
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.13

Computer programs: CrystalClear (Rigaku/MSC, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C15–C20 and C21–C26 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
O1—H1A···N1i0.822.112.879 (5)155
C13—H13B···O2ii0.972.543.372 (5)144
C2—H2···Cg2iii0.932.853.739 (9)159
C16—H16···Cg3iv0.932.853.646 (5)144
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x, y1/2, z1/2; (iv) x, y+1/2, z1/2.
Dihedral angles (°) between the mean planes of the aromatic rings top
X-rayAM1X-rayAM1
Ring-2Ring-2Ring-3Ring-3
Ring-159.5 (3)69.4744.2 (3)89.21
Ring-224.4 (3)28.56
Ring-1 is the C1–C6 phenyl ring, Ring-2 is the C15–C20 benzene ring and Ring-3 is the C21–C26 benzene ring.
 

Acknowledgements

The authors are indebted to the Department of Chemistry, Ataturk University, Erzurum, Turkey, for use of the X-ray diffractometer purchased under grant No. 2003/219 of the University Research Fund. In addition, this work was partly supported by a grant from the Ataturk University Research Fund (project No. 2006/96).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAtwal, M. S., Bauer, L., Dixit, S. N., Gearien, J. E., Megahy, M., Morris, R. & Pokorny, C. (1969). J. Med. Chem. 12, 994–997.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCanturk, P., Kucukoglu, K., Topcu, Z., Gul, M. & Gul, H. I. (2008). Arzneim. Forschung. (Drug Res.), 58, 686–691.  CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDewar, M. J. S., Zoebish, E. G., Healy, E. F. & Stewart, J. J. P. (1985). J. Am. Chem. Soc. 107, 3902–3909.  CrossRef CAS Web of Science Google Scholar
First citationDimmock, J. R. & Kumar, P. (1997). Curr. Med. Chem. 4, 1–22.  CAS Google Scholar
First citationDimmock, J. R., Patil, S. A. & Shyam, K. (1991). Pharmazie, 46, 538–539.  PubMed CAS Web of Science Google Scholar
First citationErciyas, E., Erkaleli, H. I. & Cosar, G. (1994). J. Pharm. Sci. 83, 545–548.  CrossRef CAS PubMed Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGul, M. (2005). PhD thesis, University of Kuopio, Finland.  Google Scholar
First citationGul, M., Atalay, M., Gul, H. I., Nakao, C., Lappalainen, J. & Hanninen, O. (2005). Toxicol. in Vitro, 19, 573–580.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGul, H. I., Calis, U. & Vepsalainen, J. (2004). Arzneim. Forschung. (Drug Res.), 54, 359–364.  CAS Google Scholar
First citationGul, H. I., Ojanen, T., Vepsalainen, J., Gul, M., Erciyas, E. & Hanninen, O. (2001). Arzneim. Forschung. (Drug Res.), 51, 72–75.  CAS Google Scholar
First citationManavathu, E. K., Vashishtha, S. C., Alangaden, G. J. & Dimmock, J. R. (1998). Can. J. Microbiol. 44, 74–79.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMete, E., Gul, H. I., Canturk, P., Topcu, Z., Pandit, B., Gul, M. & Li, P. K. (2010a). Z. Naturforsch. Teil C, 65, 647–652.  CAS Google Scholar
First citationMete, E., Ozelgul, C., Kazaz, C., Yurdakul, D., Sahin, F. & Gul, H. I. (2010b). Arch. Pharm. Chem. Life Sci. 343, 291–300.  CAS Google Scholar
First citationParkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPiscopo, E., Diurno, M. V., Imperadrice, F. & Caliendo, V. (1986). Boll. Soc. Ital. Biol. Sper. 62, 1449–1455.  CAS PubMed Google Scholar
First citationPorretta, G. C., Biava, M., Fioravanti, R., Fischetti, M., Boccia, R., Villa, A. & Simonetti, N. (1995). IFarmaco, 50, 617–623.  CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStewart, J. J. P. (1993). MOPAC7.0. QCPE Program No. 455. Quantum Chemistry Program Exchange, Department of Chemistry, Indiana University, Bloomington, IN, USA.  Google Scholar
First citationSuleyman, H., Gul, H. I., Gul, M., Alkan, M. & Gocer, F. (2007). Biol. Pharm. Bull. 30, 63–67.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVashishtha, S. C., Dimmock, J. R. & Manavathu, E. K. (1998). Pharmazie, 53, 499–500.  Web of Science CAS PubMed Google Scholar
First citationYogeeswari, P., Sriram, D., Kavya, R. & Tiwari, S. (2005). Biomed. Pharmacother. 59, 501–510.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1447-o1448
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds