organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1331-o1332

2-[(E)-(2,4-Dihy­dr­oxy­benzyl­­idene)aza­nium­yl]-3-phenyl­propano­ate

aFaculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 26 April 2011; accepted 3 May 2011; online 7 May 2011)

The title compound, C16H15NO4, exists as a zwitterion in the solid state, with the carb­oxy­lic acid group being deprotonated and the imine N atom being protonated. The mol­ecule adopts an E configuration about the C=N double bond. The dihedral angle between the benzene rings is 46.34 (4)°. An intra­molecular N—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, adjacent mol­ecules are connected by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds, forming supra­molecular ribbons along the a axis.

Related literature

For details of Schiff bases and their applications, see: Dolaz et al. (2009[Dolaz, M., McKee, V., Golcu, A. & Tumer, M. (2009). Spectrochim. Acta Part A, 71, 1648-1654.]); Kumar et al. (2010[Kumar, G., Kumar, D., Devi, S., Johari, R. & Singh, C. P. (2010). Eur. J. Med. Chem. 45, 3056-3062.]); Qiao et al. (2011[Qiao, X., Ma, Z.-Y., Xie, C.-Z., Xue, F., Zhang, Y.-W., Xu, J.-Y., Qiang, Z.-Y., Lou, J.-S., Chen, G.-J. & Yan, S.-P. (2011). J. Inorg. Biochem. 105, 728-737.]); Sauri et al. (2009[Sauri, A. S. M., Kassim, K., Bahron, H., Yahya, M. Z. A. & Harun, M. K. (2009). Mat. Res. Innovat. 13, 305-309.]); Tamami & Ghasemi (2011[Tamami, B. & Ghasemi, S. (2011). Appl. Catal. A, 393, 242-250.]). For related structures, see: Bahron et al. (2010[Bahron, H., Bakar, S. N. A., Kassim, K., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o883.]); Hemamalini & Fun (2011[Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o435-o436.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15NO4

  • Mr = 285.29

  • Monoclinic, P 21 /c

  • a = 9.3943 (1) Å

  • b = 6.8946 (1) Å

  • c = 20.7251 (3) Å

  • β = 92.065 (1)°

  • V = 1341.49 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.34 × 0.27 × 0.17 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.982

  • 22479 measured reflections

  • 6007 independent reflections

  • 4783 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.125

  • S = 1.03

  • 6007 reflections

  • 202 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.56 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O4i 0.863 (15) 1.790 (14) 2.6302 (9) 163.9 (15)
N1—H1N1⋯O1 0.864 (14) 2.051 (15) 2.6810 (9) 129.1 (12)
O2—H1O2⋯O3ii 1.03 (2) 1.51 (2) 2.5310 (10) 179 (2)
C5—H5A⋯O2iii 0.95 2.56 3.3155 (10) 137
C12—H12A⋯O2iv 0.95 2.46 3.1781 (10) 132
Symmetry codes: (i) -x+1, -y+2, -z; (ii) x+1, y-1, z; (iii) x-1, y, z; (iv) -x+2, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Schiff bases have received considerable attention and remain important in the field of coordination chemistry vastly due to their simple synthesis and versatility. They are widely reported to have extensive potential applications in various biological and pharmaceutical fields (Dolaz et al., 2009) as antimicrobial (Kumar et al., 2010) and antitumor (Qiao et al., 2011) agents. They also display potential applications as corrosion inhibitors (Sauri et al., 2009) and catalysts (Tamami & Ghasemi, 2011). The title molecule, (I), is a Schiff base derived from DL-phenylalanine and 2,4-dihydroxybenzaldehyde using the procedure reported by Bahron et al. (2010). It crystallizes as a zwitterion in which the imine N is protonated. A similar zwitterionic structure was reported by Hemamalini & Fun (2011).

The asymmetric unit of the title compound is shown in Fig. 1. The molecule is a zwitterion in the crystal, with the carboxylic acid group deprotonated and the imine N atom protonated. It adopts an E configuration about the central C9N1 double bond [1.3045 (3) Å] with the torsion angle C10-C9-N1-C8 = -175.36 (7)°. The dihedral angle between the benzene (C10–C15) and phenyl (C1–C6) rings is 46.34 (4)°.

In the crystal structure (Fig. 2), an intramolecular N1—H1N1···O1 hydrogen bond (Table 1) generates an S(6) ring motif (Bernstein et al., 1995). Furthermore, adjacent molecules are connected by intermolecular O1—H1O1···O4, O2—H1O2···O3, C5—H5A···O2 and C12—H12A···O2 (Table 1) hydrogen bonds forming supramolecular ribbons along the a axis.

Related literature top

For details of Schiff bases and their applications, see: Dolaz et al. (2009); Kumar et al. (2010); Qiao et al. (2011); Sauri et al. (2009); Tamami & Ghasemi (2011). For related structures, see: Bahron et al. (2010); Hemamalini & Fun (2011). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

DL-phenylalanine (2 mmol, 0.330 g ) was dissolved in absolute ethanol (20 mL), into which 2,4-dihydroxybenzaldehyde (2 mmol, 0.276 g) was added, followed by refluxing for two hours. The solution was left to slowly cool to room temperature upon which pale orange crystals were produced. These were filtered off, washed with ice-cold ethanol and air dried (yield 68%). Melting point: 540–543 K. Analytical calculated for C16H15NO4 (%): C, 67.36; H, 5.30; N, 4.91. Found (%): C, 67.13; H, 5.49; N, 4.89. IR (cm-1): ν(CN) 1642.9 (m), ν(C–OH) 1243.7 (w), ν(CO) 1880.6 (w).

Refinement top

Atoms H1O1, H1N1 and H1O2 were located from a difference Fourier map and refined freely [N–H = 0.864 (16)Å; O–H = 0.863 (15)–1.025 (19)Å]. The remaining H atoms were positioned geometrically [C–H = 0.95–1.0 Å ] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids. The intramolecular hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound with hydrogen bonds shown as dashed lines. H atoms not involved in the intermolecular interactions have been omitted for clarity.
2-[(E)-(2,4-Dihydroxybenzylidene)azaniumyl]-3-phenylpropanoate top
Crystal data top
C16H15NO4F(000) = 600
Mr = 285.29Dx = 1.413 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9091 reflections
a = 9.3943 (1) Åθ = 3.0–35.3°
b = 6.8946 (1) ŵ = 0.10 mm1
c = 20.7251 (3) ÅT = 100 K
β = 92.065 (1)°Block, orange
V = 1341.49 (3) Å30.34 × 0.27 × 0.17 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6007 independent reflections
Radiation source: fine-focus sealed tube4783 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 35.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1513
Tmin = 0.966, Tmax = 0.982k = 811
22479 measured reflectionsl = 3332
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0674P)2 + 0.2835P]
where P = (Fo2 + 2Fc2)/3
6007 reflections(Δ/σ)max < 0.001
202 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C16H15NO4V = 1341.49 (3) Å3
Mr = 285.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3943 (1) ŵ = 0.10 mm1
b = 6.8946 (1) ÅT = 100 K
c = 20.7251 (3) Å0.34 × 0.27 × 0.17 mm
β = 92.065 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6007 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4783 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.982Rint = 0.025
22479 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.56 e Å3
6007 reflectionsΔρmin = 0.24 e Å3
202 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.60361 (6)0.80079 (9)0.04375 (3)0.01400 (12)
O20.97519 (6)0.33854 (10)0.05402 (3)0.01685 (13)
O30.03702 (7)0.98745 (10)0.07713 (4)0.01988 (14)
O40.26610 (7)1.04016 (9)0.05323 (3)0.01783 (13)
N10.34885 (7)0.69321 (10)0.08580 (3)0.01219 (12)
C10.33058 (10)0.53563 (14)0.25232 (4)0.01942 (16)
H1A0.39540.64010.25900.023*
C20.35367 (11)0.36077 (15)0.28493 (5)0.02434 (19)
H2A0.43370.34730.31390.029*
C30.26067 (12)0.20648 (14)0.27537 (5)0.02416 (19)
H3A0.27700.08750.29750.029*
C40.14316 (11)0.22715 (13)0.23307 (5)0.02018 (17)
H4A0.07920.12190.22620.024*
C50.11937 (9)0.40174 (13)0.20089 (4)0.01695 (15)
H5A0.03860.41500.17230.020*
C60.21269 (9)0.55797 (12)0.20999 (4)0.01422 (14)
C70.18457 (9)0.74664 (12)0.17511 (4)0.01563 (15)
H7A0.25050.84620.19330.019*
H7B0.08630.78910.18360.019*
C80.20180 (8)0.73766 (12)0.10126 (4)0.01250 (13)
H8A0.13590.63810.08170.015*
C90.40809 (8)0.52254 (11)0.09102 (4)0.01214 (13)
H9A0.34920.41730.10290.015*
C100.55370 (8)0.48144 (11)0.08037 (4)0.01121 (13)
C110.65246 (8)0.61982 (11)0.05775 (4)0.01132 (13)
C120.79342 (8)0.56952 (12)0.04987 (4)0.01286 (14)
H12A0.85910.66340.03540.015*
C130.83916 (8)0.37933 (12)0.06334 (4)0.01261 (14)
C140.74286 (8)0.23932 (12)0.08580 (4)0.01396 (14)
H14A0.77420.11130.09550.017*
C150.60318 (8)0.29109 (12)0.09343 (4)0.01367 (14)
H15A0.53810.19650.10790.016*
C160.16518 (8)0.93989 (12)0.07349 (4)0.01381 (14)
H1O10.6599 (16)0.855 (2)0.0171 (7)0.030 (4)*
H1N10.3969 (16)0.791 (2)0.0723 (7)0.033 (4)*
H1O20.999 (2)0.196 (3)0.0635 (8)0.052 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0131 (2)0.0096 (2)0.0195 (3)0.00209 (19)0.0036 (2)0.0038 (2)
O20.0113 (2)0.0159 (3)0.0236 (3)0.0048 (2)0.0034 (2)0.0040 (2)
O30.0129 (3)0.0170 (3)0.0299 (3)0.0054 (2)0.0033 (2)0.0064 (2)
O40.0165 (3)0.0150 (3)0.0223 (3)0.0018 (2)0.0054 (2)0.0063 (2)
N10.0109 (3)0.0108 (3)0.0150 (3)0.0021 (2)0.0019 (2)0.0017 (2)
C10.0211 (4)0.0189 (4)0.0182 (4)0.0017 (3)0.0009 (3)0.0003 (3)
C20.0292 (5)0.0244 (4)0.0191 (4)0.0075 (4)0.0044 (3)0.0027 (3)
C30.0371 (5)0.0170 (4)0.0186 (4)0.0083 (4)0.0039 (4)0.0047 (3)
C40.0267 (4)0.0136 (3)0.0207 (4)0.0006 (3)0.0076 (3)0.0013 (3)
C50.0179 (4)0.0155 (3)0.0176 (4)0.0011 (3)0.0031 (3)0.0011 (3)
C60.0165 (3)0.0127 (3)0.0137 (3)0.0024 (3)0.0043 (3)0.0011 (3)
C70.0192 (4)0.0125 (3)0.0156 (3)0.0028 (3)0.0048 (3)0.0018 (3)
C80.0104 (3)0.0113 (3)0.0160 (3)0.0027 (2)0.0022 (2)0.0023 (2)
C90.0118 (3)0.0110 (3)0.0137 (3)0.0016 (2)0.0013 (2)0.0010 (2)
C100.0102 (3)0.0100 (3)0.0135 (3)0.0013 (2)0.0013 (2)0.0009 (2)
C110.0118 (3)0.0098 (3)0.0123 (3)0.0016 (2)0.0009 (2)0.0002 (2)
C120.0108 (3)0.0117 (3)0.0162 (3)0.0016 (2)0.0015 (2)0.0011 (3)
C130.0114 (3)0.0129 (3)0.0136 (3)0.0029 (2)0.0003 (2)0.0007 (2)
C140.0129 (3)0.0108 (3)0.0182 (3)0.0027 (2)0.0014 (3)0.0020 (3)
C150.0125 (3)0.0107 (3)0.0179 (3)0.0013 (2)0.0021 (2)0.0022 (3)
C160.0136 (3)0.0122 (3)0.0157 (3)0.0028 (2)0.0017 (3)0.0029 (3)
Geometric parameters (Å, º) top
O1—C111.3572 (9)C5—H5A0.9500
O1—H1O10.863 (15)C6—C71.5068 (12)
O2—C131.3293 (10)C7—C81.5461 (12)
O2—H1O21.025 (19)C7—H7A0.9900
O3—C161.2527 (10)C7—H7B0.9900
O4—C161.2577 (10)C8—C161.5425 (11)
N1—C91.3045 (10)C8—H8A1.0000
N1—C81.4617 (10)C9—C101.4220 (11)
N1—H1N10.864 (16)C9—H9A0.9500
C1—C21.3952 (13)C10—C151.4152 (11)
C1—C61.3965 (12)C10—C111.4220 (11)
C1—H1A0.9500C11—C121.3842 (11)
C2—C31.3863 (16)C12—C131.4048 (11)
C2—H2A0.9500C12—H12A0.9500
C3—C41.3921 (15)C13—C141.4133 (11)
C3—H3A0.9500C14—C151.3745 (11)
C4—C51.3903 (13)C14—H14A0.9500
C4—H4A0.9500C15—H15A0.9500
C5—C61.3973 (12)
C11—O1—H1O1108.9 (10)N1—C8—C7111.03 (6)
C13—O2—H1O2112.1 (10)C16—C8—C7107.65 (6)
C9—N1—C8125.08 (7)N1—C8—H8A110.1
C9—N1—H1N1120.3 (10)C16—C8—H8A110.1
C8—N1—H1N1114.6 (10)C7—C8—H8A110.1
C2—C1—C6120.37 (9)N1—C9—C10125.23 (7)
C2—C1—H1A119.8N1—C9—H9A117.4
C6—C1—H1A119.8C10—C9—H9A117.4
C3—C2—C1120.51 (9)C15—C10—C9117.79 (7)
C3—C2—H2A119.7C15—C10—C11118.13 (7)
C1—C2—H2A119.7C9—C10—C11124.07 (7)
C2—C3—C4119.53 (9)O1—C11—C12121.51 (7)
C2—C3—H3A120.2O1—C11—C10117.88 (7)
C4—C3—H3A120.2C12—C11—C10120.60 (7)
C5—C4—C3120.06 (9)C11—C12—C13119.84 (7)
C5—C4—H4A120.0C11—C12—H12A120.1
C3—C4—H4A120.0C13—C12—H12A120.1
C4—C5—C6120.90 (8)O2—C13—C12117.22 (7)
C4—C5—H5A119.6O2—C13—C14122.24 (7)
C6—C5—H5A119.6C12—C13—C14120.54 (7)
C1—C6—C5118.64 (8)C15—C14—C13119.06 (7)
C1—C6—C7121.20 (8)C15—C14—H14A120.5
C5—C6—C7120.17 (8)C13—C14—H14A120.5
C6—C7—C8114.68 (7)C14—C15—C10121.81 (7)
C6—C7—H7A108.6C14—C15—H15A119.1
C8—C7—H7A108.6C10—C15—H15A119.1
C6—C7—H7B108.6O3—C16—O4127.87 (8)
C8—C7—H7B108.6O3—C16—C8114.59 (7)
H7A—C7—H7B107.6O4—C16—C8117.43 (7)
N1—C8—C16107.91 (6)
C6—C1—C2—C30.53 (15)C15—C10—C11—O1178.38 (7)
C1—C2—C3—C40.27 (15)C9—C10—C11—O11.95 (12)
C2—C3—C4—C50.22 (15)C15—C10—C11—C121.04 (11)
C3—C4—C5—C60.45 (14)C9—C10—C11—C12178.63 (8)
C2—C1—C6—C50.29 (13)O1—C11—C12—C13178.40 (7)
C2—C1—C6—C7179.02 (8)C10—C11—C12—C131.00 (12)
C4—C5—C6—C10.19 (13)C11—C12—C13—O2179.06 (7)
C4—C5—C6—C7179.51 (8)C11—C12—C13—C140.93 (12)
C1—C6—C7—C8112.09 (9)O2—C13—C14—C15179.07 (8)
C5—C6—C7—C868.61 (10)C12—C13—C14—C150.92 (12)
C9—N1—C8—C16166.85 (7)C13—C14—C15—C100.99 (13)
C9—N1—C8—C775.39 (10)C9—C10—C15—C14178.64 (8)
C6—C7—C8—N163.66 (9)C11—C10—C15—C141.05 (12)
C6—C7—C8—C16178.43 (7)N1—C8—C16—O3172.58 (7)
C8—N1—C9—C10175.36 (7)C7—C8—C16—O367.51 (9)
N1—C9—C10—C15174.78 (8)N1—C8—C16—O410.87 (10)
N1—C9—C10—C114.90 (13)C7—C8—C16—O4109.04 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O4i0.863 (15)1.790 (14)2.6302 (9)163.9 (15)
N1—H1N1···O10.864 (14)2.051 (15)2.6810 (9)129.1 (12)
O2—H1O2···O3ii1.03 (2)1.51 (2)2.5310 (10)179 (2)
C5—H5A···O2iii0.952.563.3155 (10)137
C12—H12A···O2iv0.952.463.1781 (10)132
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y1, z; (iii) x1, y, z; (iv) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H15NO4
Mr285.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.3943 (1), 6.8946 (1), 20.7251 (3)
β (°) 92.065 (1)
V3)1341.49 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.34 × 0.27 × 0.17
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.966, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
22479, 6007, 4783
Rint0.025
(sin θ/λ)max1)0.813
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.125, 1.03
No. of reflections6007
No. of parameters202
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O4i0.863 (15)1.790 (14)2.6302 (9)163.9 (15)
N1—H1N1···O10.864 (14)2.051 (15)2.6810 (9)129.1 (12)
O2—H1O2···O3ii1.03 (2)1.51 (2)2.5310 (10)179 (2)
C5—H5A···O2iii0.952.563.3155 (10)137
C12—H12A···O2iv0.952.463.1781 (10)132
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y1, z; (iii) x1, y, z; (iv) x+2, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: hadariah@salam.uitm.edu.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HB, FMF and KK wish to thank both Universiti Teknologi MARA (UiTM) and Universiti Sains Malaysia (USM) for research facilities, and the Malaysian Ministry of Higher Education for the research grant FRGS UiTM 5/3/FST/(12/2008). HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBahron, H., Bakar, S. N. A., Kassim, K., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDolaz, M., McKee, V., Golcu, A. & Tumer, M. (2009). Spectrochim. Acta Part A, 71, 1648–1654.  CrossRef Google Scholar
First citationHemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, o435–o436.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumar, G., Kumar, D., Devi, S., Johari, R. & Singh, C. P. (2010). Eur. J. Med. Chem. 45, 3056–3062.  Web of Science CrossRef CAS PubMed Google Scholar
First citationQiao, X., Ma, Z.-Y., Xie, C.-Z., Xue, F., Zhang, Y.-W., Xu, J.-Y., Qiang, Z.-Y., Lou, J.-S., Chen, G.-J. & Yan, S.-P. (2011). J. Inorg. Biochem. 105, 728–737.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSauri, A. S. M., Kassim, K., Bahron, H., Yahya, M. Z. A. & Harun, M. K. (2009). Mat. Res. Innovat. 13, 305–309.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTamami, B. & Ghasemi, S. (2011). Appl. Catal. A, 393, 242–250.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1331-o1332
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds