organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1521-o1522

(E)-3-[4-(Di­methyl­amino)­phen­yl]-1-(2-methyl-4-phenyl­quinolin-3-yl)prop-2-en-1-one 0.7-hydrate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bOrganic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, India
*Correspondence e-mail: hkfun@usm.my

(Received 5 May 2011; accepted 19 May 2011; online 25 May 2011)

In the title compound, C27H24N2O·0.7H2O, the quinoline ring system is approximately planar, with a maximum deviation of 0.011 (1) Å, and forms dihedral angles of 74.70 (4) and 80.14 (4)° with the phenyl and benzene rings, respectively. In the crystal, the mol­ecules are linked to the water mol­ecules via inter­molecular O—H⋯N hydrogen bonds and further stabilized by C—H⋯π inter­actions involving the centroid of the benzene ring of the quinoline group. This benzene ring is observed to form a ππ inter­action with an adjacent pyridine ring [centroid–centroid distance = 3.7120 (6) Å].

Related literature

For background to chalcone derivatives, see: Sarveswari & Vijayakumar (2011[Sarveswari, S. & Vijayakumar, V. (2011). Arab. J. Chem. doi:10.1016/j.arabjc.2011.01.032.]); Sarveswari et al. (2010[Sarveswari, S., Vijayakumar, V., Prasath, R., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o3284.]); Loh et al. (2010b[Loh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2010b). Acta Cryst. E66, o353-o354.]); Shahani et al. (2010[Shahani, T., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Ragavan, R. V. (2010). Acta Cryst. E66, o374.]). For related structures, see: Fun et al. (2009[Fun, H.-K., Loh, W.-S., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009). Acta Cryst. E65, o2688-o2689.]); Loh et al. (2010a[Loh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2010a). Acta Cryst. E66, o91-o92.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C27H24N2O·0.7H2O

  • Mr = 405.09

  • Triclinic, [P \overline 1]

  • a = 9.2653 (2) Å

  • b = 10.6076 (2) Å

  • c = 12.2347 (2) Å

  • α = 66.409 (1)°

  • β = 87.758 (1)°

  • γ = 80.308 (1)°

  • V = 1085.70 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.47 × 0.31 × 0.22 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.964, Tmax = 0.983

  • 28425 measured reflections

  • 8843 independent reflections

  • 6883 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.158

  • S = 1.05

  • 8843 reflections

  • 289 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯N1i 0.85 (2) 2.01 (2) 2.8650 (17) 176 (2)
C14—H14ACg1ii 0.95 2.81 3.6395 (14) 147
Symmetry codes: (i) x, y+1, z; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As part of our ongoing research on chalcones (Sarveswari & Vijayakumar, 2011; Sarveswari et al., 2010; Loh et al., 2010b; Shahani et al., 2010), herein we report the synthesis of new chalcone derivative.

The asymmetric unit of title compound, (Fig. 1), consists of one (E)-3-(4-(dimethylamino)phenyl)-1-(2-methyl-4-phenylquinolin-3-yl)prop-2-en-1-one molecule and one water molecule with the occupancy of 0.7. The quinoline ring system (C1–C9/N1) is approximately planar with a maximum deviation of 0.011 (1) Å at atom C9 and forms dihedral angles of 74.70 (4) and 80.14 (4)° with the benzene and phenyl rings (C10–C15 & C19–C24), respectively. Bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable to the related structures (Fun et al., 2009; Loh et al., 2010a).

In the crystal packing (Fig. 2), the molecules are linked to the water molecules via intermolecular O1W—H1W1···N1 hydrogen bonds (Table 1) and further stabilized by C—H···π interactions (Table 1), involving the centroids of the benzene ring (C1–C6; Cg1) of the quinoline unit. This benzene ring is observed to form a ππ interactions with an adjacent pyridine ring (N1/C1/C6–C9; Cg2) in the stabilization of the crystal structure, with the separation Cg1···Cg2iii = 3.7120 (6) Å [symmetry code: (iii) 1 - x, -y, -z].

Related literature top

For background to chalcone derivatives, see: Sarveswari & Vijayakumar (2011); Sarveswari et al. (2010); Loh et al. (2010b); Shahani et al. (2010). For related structures, see: Fun et al. (2009); Loh et al. (2010a). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 3-acetyl-2-methyl-4-phenylquinoline (2.6 g, 0.01 M) and N,N-dimethylamino-benzaldehyde (1.5 g 0.01 M) and a catalytic amount of KOH in 30 ml of distilled ethanol was stirred for about 24 h. The resulting mixture was concentrated to remove ethanol and then poured onto ice and neutralized with diluted acetic acid. The resultant solid was filtered, dried and purified by column chromatography using 1:1 v/v mixture of ethyl acetate and petroleum ether. Crystals suitable for X-ray analysis were obtained by slow evaporation of an acetone solution (yield: 60%). M.p.: 421–423 K.

Refinement top

H1W1 and H2W1 were located from the difference Fourier map [refined with Uiso(H) = 1.5 Ueq(O)] and their distances with the O1W atom were fixed to 0.85 (1) Å [O–H = 0.85 (1) and 0.846 (10) Å]. The remaining H atoms were positioned geometrically and refined with a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C) [C–H = 0.95 or 0.98 Å]. A rotating group model was applied to the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the showing the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
(E)-3-[4-(Dimethylamino)phenyl]-1-(2-methyl-4-phenylquinolin- 3-yl)prop-2-en-1-one 0.7-hydrate top
Crystal data top
C27H24N2O·0.7H2OZ = 2
Mr = 405.09F(000) = 430
Triclinic, P1Dx = 1.239 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2653 (2) ÅCell parameters from 9900 reflections
b = 10.6076 (2) Åθ = 2.2–34.1°
c = 12.2347 (2) ŵ = 0.08 mm1
α = 66.409 (1)°T = 100 K
β = 87.758 (1)°Block, yellow
γ = 80.308 (1)°0.47 × 0.31 × 0.22 mm
V = 1085.70 (4) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8843 independent reflections
Radiation source: fine-focus sealed tube6883 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 34.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1414
Tmin = 0.964, Tmax = 0.983k = 1615
28425 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0836P)2 + 0.2116P]
where P = (Fo2 + 2Fc2)/3
8843 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.45 e Å3
2 restraintsΔρmin = 0.25 e Å3
Crystal data top
C27H24N2O·0.7H2Oγ = 80.308 (1)°
Mr = 405.09V = 1085.70 (4) Å3
Triclinic, P1Z = 2
a = 9.2653 (2) ÅMo Kα radiation
b = 10.6076 (2) ŵ = 0.08 mm1
c = 12.2347 (2) ÅT = 100 K
α = 66.409 (1)°0.47 × 0.31 × 0.22 mm
β = 87.758 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
8843 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
6883 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.983Rint = 0.024
28425 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0512 restraints
wR(F2) = 0.158H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.45 e Å3
8843 reflectionsΔρmin = 0.25 e Å3
289 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.62190 (8)0.03973 (8)0.38342 (7)0.02981 (16)
N10.29814 (8)0.08211 (8)0.10561 (7)0.02176 (15)
N20.05122 (9)0.75572 (9)0.47082 (8)0.02510 (16)
C10.36984 (9)0.14337 (9)0.00267 (8)0.01954 (15)
C20.31833 (11)0.14074 (10)0.10394 (9)0.02472 (18)
H2A0.23520.09850.10250.030*
C30.38766 (12)0.19871 (11)0.20888 (9)0.0289 (2)
H3A0.35340.19500.27950.035*
C40.50996 (12)0.26408 (11)0.21278 (9)0.02809 (19)
H4A0.55650.30510.28620.034*
C50.56190 (10)0.26855 (10)0.11095 (8)0.02374 (17)
H5A0.64420.31250.11440.028*
C60.49338 (9)0.20786 (9)0.00065 (8)0.01872 (15)
C70.54149 (9)0.20946 (9)0.10795 (8)0.01787 (15)
C80.46772 (9)0.14656 (9)0.21066 (8)0.01906 (15)
C90.34569 (9)0.08271 (10)0.20584 (8)0.02138 (16)
C100.67008 (9)0.27639 (9)0.10986 (8)0.02043 (16)
C110.81131 (10)0.21074 (11)0.10215 (10)0.0292 (2)
H11A0.82560.12280.09640.035*
C120.93163 (11)0.27357 (14)0.10290 (11)0.0349 (2)
H12A1.02770.22860.09750.042*
C130.91096 (13)0.40165 (13)0.11151 (9)0.0345 (2)
H13A0.99310.44410.11240.041*
C140.77099 (13)0.46815 (12)0.11876 (10)0.0336 (2)
H14A0.75710.55620.12420.040*
C150.65074 (11)0.40541 (10)0.11806 (9)0.02625 (18)
H15A0.55480.45090.12320.031*
C160.52220 (9)0.13497 (10)0.32989 (8)0.02152 (16)
C170.45532 (10)0.23519 (10)0.37833 (8)0.02317 (17)
H17A0.49120.22590.45330.028*
C180.34498 (10)0.34062 (10)0.32226 (8)0.02172 (16)
H18A0.31120.34690.24760.026*
C190.27230 (10)0.44507 (9)0.36294 (8)0.02049 (16)
C200.31758 (10)0.45868 (11)0.46537 (8)0.02470 (18)
H20A0.40020.39640.51110.030*
C210.24580 (11)0.55967 (11)0.50161 (8)0.02482 (18)
H21A0.28020.56580.57120.030*
C220.12176 (9)0.65431 (9)0.43683 (8)0.02082 (16)
C230.07597 (12)0.64065 (12)0.33376 (10)0.0322 (2)
H23A0.00720.70180.28800.039*
C240.15050 (12)0.53970 (11)0.29894 (10)0.0304 (2)
H24A0.11780.53420.22860.037*
C250.09293 (15)0.76160 (15)0.58093 (11)0.0397 (3)
H25A0.19350.78040.57620.060*
H25B0.08720.67220.64740.060*
H25C0.02650.83620.59390.060*
C260.08338 (11)0.84364 (12)0.40942 (11)0.0312 (2)
H26A0.06560.89170.32440.047*
H26B0.11640.91270.44330.047*
H26C0.15900.78580.41920.047*
C270.26687 (12)0.00813 (13)0.31730 (10)0.0321 (2)
H27A0.16090.03350.30090.048*
H27B0.29250.03530.38080.048*
H27C0.29600.09290.34270.048*
O1W0.06296 (16)0.93446 (14)0.11443 (13)0.0424 (3)0.70
H1W10.135 (2)0.977 (3)0.109 (3)0.064*0.70
H2W10.098 (3)0.8490 (13)0.151 (2)0.064*0.70
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0246 (3)0.0346 (4)0.0280 (3)0.0048 (3)0.0033 (3)0.0136 (3)
N10.0185 (3)0.0224 (3)0.0260 (3)0.0063 (3)0.0013 (3)0.0103 (3)
N20.0228 (3)0.0263 (4)0.0284 (4)0.0008 (3)0.0004 (3)0.0144 (3)
C10.0191 (3)0.0179 (3)0.0234 (4)0.0040 (3)0.0004 (3)0.0097 (3)
C20.0263 (4)0.0240 (4)0.0273 (4)0.0065 (3)0.0041 (3)0.0125 (3)
C30.0350 (5)0.0304 (5)0.0247 (4)0.0075 (4)0.0037 (4)0.0131 (4)
C40.0325 (5)0.0314 (5)0.0219 (4)0.0093 (4)0.0025 (3)0.0108 (4)
C50.0246 (4)0.0256 (4)0.0226 (4)0.0083 (3)0.0027 (3)0.0097 (3)
C60.0184 (3)0.0181 (3)0.0213 (3)0.0042 (3)0.0009 (3)0.0092 (3)
C70.0159 (3)0.0172 (3)0.0219 (3)0.0033 (3)0.0007 (3)0.0091 (3)
C80.0162 (3)0.0203 (4)0.0220 (4)0.0031 (3)0.0013 (3)0.0099 (3)
C90.0171 (3)0.0232 (4)0.0249 (4)0.0057 (3)0.0027 (3)0.0100 (3)
C100.0192 (3)0.0219 (4)0.0207 (3)0.0072 (3)0.0002 (3)0.0076 (3)
C110.0195 (4)0.0294 (5)0.0389 (5)0.0063 (3)0.0017 (3)0.0128 (4)
C120.0196 (4)0.0456 (6)0.0367 (5)0.0117 (4)0.0001 (4)0.0109 (5)
C130.0335 (5)0.0451 (6)0.0253 (4)0.0249 (5)0.0020 (4)0.0070 (4)
C140.0413 (6)0.0308 (5)0.0329 (5)0.0193 (4)0.0028 (4)0.0116 (4)
C150.0276 (4)0.0245 (4)0.0292 (4)0.0093 (3)0.0013 (3)0.0113 (3)
C160.0182 (3)0.0252 (4)0.0219 (4)0.0039 (3)0.0018 (3)0.0101 (3)
C170.0231 (4)0.0262 (4)0.0212 (4)0.0029 (3)0.0010 (3)0.0110 (3)
C180.0220 (4)0.0229 (4)0.0218 (4)0.0049 (3)0.0011 (3)0.0101 (3)
C190.0210 (4)0.0211 (4)0.0201 (3)0.0043 (3)0.0004 (3)0.0086 (3)
C200.0244 (4)0.0276 (4)0.0207 (4)0.0018 (3)0.0026 (3)0.0103 (3)
C210.0264 (4)0.0284 (4)0.0194 (4)0.0007 (3)0.0023 (3)0.0111 (3)
C220.0193 (3)0.0211 (4)0.0227 (4)0.0043 (3)0.0017 (3)0.0092 (3)
C230.0309 (5)0.0315 (5)0.0374 (5)0.0071 (4)0.0151 (4)0.0203 (4)
C240.0322 (5)0.0308 (5)0.0320 (5)0.0035 (4)0.0122 (4)0.0186 (4)
C250.0451 (6)0.0470 (7)0.0294 (5)0.0091 (5)0.0026 (4)0.0241 (5)
C260.0239 (4)0.0297 (5)0.0414 (6)0.0015 (4)0.0031 (4)0.0177 (4)
C270.0274 (4)0.0424 (6)0.0286 (5)0.0164 (4)0.0079 (4)0.0127 (4)
O1W0.0475 (7)0.0369 (6)0.0544 (8)0.0256 (6)0.0242 (6)0.0250 (6)
Geometric parameters (Å, º) top
O1—C161.2273 (11)C14—C151.3926 (14)
N1—C91.3218 (12)C14—H14A0.9500
N1—C11.3692 (12)C15—H15A0.9500
N2—C221.3628 (12)C16—C171.4557 (13)
N2—C251.4437 (14)C17—C181.3499 (13)
N2—C261.4527 (13)C17—H17A0.9500
C1—C21.4185 (12)C18—C191.4466 (13)
C1—C61.4205 (12)C18—H18A0.9500
C2—C31.3695 (14)C19—C241.3974 (13)
C2—H2A0.9500C19—C201.4049 (13)
C3—C41.4146 (15)C20—C211.3798 (14)
C3—H3A0.9500C20—H20A0.9500
C4—C51.3741 (13)C21—C221.4152 (13)
C4—H4A0.9500C21—H21A0.9500
C5—C61.4191 (12)C22—C231.4142 (13)
C5—H5A0.9500C23—C241.3777 (15)
C6—C71.4253 (12)C23—H23A0.9500
C7—C81.3809 (12)C24—H24A0.9500
C7—C101.4914 (12)C25—H25A0.9800
C8—C91.4269 (12)C25—H25B0.9800
C8—C161.5136 (12)C25—H25C0.9800
C9—C271.5072 (13)C26—H26A0.9800
C10—C151.3933 (14)C26—H26B0.9800
C10—C111.3937 (13)C26—H26C0.9800
C11—C121.3939 (14)C27—H27A0.9800
C11—H11A0.9500C27—H27B0.9800
C12—C131.3853 (19)C27—H27C0.9800
C12—H12A0.9500O1W—H1W10.850 (10)
C13—C141.3858 (18)O1W—H2W10.846 (10)
C13—H13A0.9500
C9—N1—C1118.84 (7)C10—C15—H15A119.8
C22—N2—C25120.55 (8)O1—C16—C17121.86 (8)
C22—N2—C26120.61 (8)O1—C16—C8118.44 (8)
C25—N2—C26117.90 (9)C17—C16—C8119.71 (8)
N1—C1—C2118.17 (8)C18—C17—C16123.43 (8)
N1—C1—C6122.50 (8)C18—C17—H17A118.3
C2—C1—C6119.33 (8)C16—C17—H17A118.3
C3—C2—C1120.40 (9)C17—C18—C19127.37 (8)
C3—C2—H2A119.8C17—C18—H18A116.3
C1—C2—H2A119.8C19—C18—H18A116.3
C2—C3—C4120.44 (9)C24—C19—C20116.51 (8)
C2—C3—H3A119.8C24—C19—C18119.96 (8)
C4—C3—H3A119.8C20—C19—C18123.53 (8)
C5—C4—C3120.39 (9)C21—C20—C19122.04 (8)
C5—C4—H4A119.8C21—C20—H20A119.0
C3—C4—H4A119.8C19—C20—H20A119.0
C4—C5—C6120.41 (8)C20—C21—C22121.07 (8)
C4—C5—H5A119.8C20—C21—H21A119.5
C6—C5—H5A119.8C22—C21—H21A119.5
C5—C6—C1119.02 (8)N2—C22—C23121.45 (8)
C5—C6—C7123.16 (8)N2—C22—C21121.59 (8)
C1—C6—C7117.82 (8)C23—C22—C21116.95 (8)
C8—C7—C6118.59 (7)C24—C23—C22120.78 (9)
C8—C7—C10121.15 (8)C24—C23—H23A119.6
C6—C7—C10120.25 (7)C22—C23—H23A119.6
C7—C8—C9119.71 (8)C23—C24—C19122.64 (9)
C7—C8—C16120.54 (7)C23—C24—H24A118.7
C9—C8—C16119.57 (8)C19—C24—H24A118.7
N1—C9—C8122.52 (8)N2—C25—H25A109.5
N1—C9—C27116.52 (8)N2—C25—H25B109.5
C8—C9—C27120.93 (8)H25A—C25—H25B109.5
C15—C10—C11119.24 (8)N2—C25—H25C109.5
C15—C10—C7120.65 (8)H25A—C25—H25C109.5
C11—C10—C7120.11 (8)H25B—C25—H25C109.5
C10—C11—C12120.25 (10)N2—C26—H26A109.5
C10—C11—H11A119.9N2—C26—H26B109.5
C12—C11—H11A119.9H26A—C26—H26B109.5
C13—C12—C11119.95 (11)N2—C26—H26C109.5
C13—C12—H12A120.0H26A—C26—H26C109.5
C11—C12—H12A120.0H26B—C26—H26C109.5
C12—C13—C14120.31 (9)C9—C27—H27A109.5
C12—C13—H13A119.8C9—C27—H27B109.5
C14—C13—H13A119.8H27A—C27—H27B109.5
C13—C14—C15119.77 (11)C9—C27—H27C109.5
C13—C14—H14A120.1H27A—C27—H27C109.5
C15—C14—H14A120.1H27B—C27—H27C109.5
C14—C15—C10120.49 (10)H1W1—O1W—H2W1105 (3)
C14—C15—H15A119.8
C9—N1—C1—C2179.43 (8)C15—C10—C11—C120.13 (15)
C9—N1—C1—C60.10 (13)C7—C10—C11—C12179.46 (9)
N1—C1—C2—C3179.00 (9)C10—C11—C12—C130.09 (17)
C6—C1—C2—C30.54 (14)C11—C12—C13—C140.34 (17)
C1—C2—C3—C41.09 (16)C12—C13—C14—C150.37 (16)
C2—C3—C4—C50.88 (16)C13—C14—C15—C100.15 (16)
C3—C4—C5—C60.10 (16)C11—C10—C15—C140.10 (15)
C4—C5—C6—C10.43 (14)C7—C10—C15—C14179.43 (9)
C4—C5—C6—C7179.74 (9)C7—C8—C16—O181.63 (11)
N1—C1—C6—C5179.74 (8)C9—C8—C16—O193.64 (11)
C2—C1—C6—C50.22 (13)C7—C8—C16—C1798.80 (10)
N1—C1—C6—C70.92 (13)C9—C8—C16—C1785.93 (11)
C2—C1—C6—C7179.56 (8)O1—C16—C17—C18179.59 (9)
C5—C6—C7—C8179.58 (8)C8—C16—C17—C180.03 (14)
C1—C6—C7—C81.11 (12)C16—C17—C18—C19179.76 (9)
C5—C6—C7—C100.34 (13)C17—C18—C19—C24174.09 (10)
C1—C6—C7—C10179.65 (8)C17—C18—C19—C206.19 (15)
C6—C7—C8—C90.37 (12)C24—C19—C20—C210.20 (15)
C10—C7—C8—C9179.60 (8)C18—C19—C20—C21179.92 (9)
C6—C7—C8—C16174.89 (8)C19—C20—C21—C220.35 (15)
C10—C7—C8—C164.34 (13)C25—N2—C22—C23175.46 (11)
C1—N1—C9—C80.92 (13)C26—N2—C22—C236.80 (15)
C1—N1—C9—C27177.32 (8)C25—N2—C22—C215.80 (15)
C7—C8—C9—N10.70 (14)C26—N2—C22—C21174.47 (9)
C16—C8—C9—N1176.00 (8)C20—C21—C22—N2179.07 (9)
C7—C8—C9—C27177.47 (9)C20—C21—C22—C230.28 (15)
C16—C8—C9—C272.17 (13)N2—C22—C23—C24178.45 (10)
C8—C7—C10—C1575.46 (11)C21—C22—C23—C240.35 (16)
C6—C7—C10—C15105.32 (10)C22—C23—C24—C190.93 (19)
C8—C7—C10—C11105.21 (11)C20—C19—C24—C230.84 (16)
C6—C7—C10—C1174.01 (12)C18—C19—C24—C23179.43 (10)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···N1i0.85 (2)2.01 (2)2.8650 (17)176 (2)
C14—H14A···Cg1ii0.952.813.6395 (14)147
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC27H24N2O·0.7H2O
Mr405.09
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.2653 (2), 10.6076 (2), 12.2347 (2)
α, β, γ (°)66.409 (1), 87.758 (1), 80.308 (1)
V3)1085.70 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.47 × 0.31 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.964, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
28425, 8843, 6883
Rint0.024
(sin θ/λ)max1)0.789
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.158, 1.05
No. of reflections8843
No. of parameters289
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···N1i0.85 (2)2.01 (2)2.8650 (17)176 (2)
C14—H14A···Cg1ii0.952.813.6395 (14)147
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z.
 

Footnotes

Thomson Reuters ResearcherID: C-7581-2009.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and WSL thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a Research Fellowship. VV is grateful to the DST-India for funding through the Young Scientist Scheme (Fast Track Proposal).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Loh, W.-S., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009). Acta Cryst. E65, o2688–o2689.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLoh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2010a). Acta Cryst. E66, o91–o92.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLoh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2010b). Acta Cryst. E66, o353–o354.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarveswari, S. & Vijayakumar, V. (2011). Arab. J. Chem. doi:10.1016/j.arabjc.2011.01.032.  Google Scholar
First citationSarveswari, S., Vijayakumar, V., Prasath, R., Narasimhamurthy, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o3284.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahani, T., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Ragavan, R. V. (2010). Acta Cryst. E66, o374.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1521-o1522
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds