organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,7-Dimeth­­oxy­naphthalen-1-yl)(4-fluoro­phen­yl)methanone

aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp

(Received 7 May 2011; accepted 14 May 2011; online 20 May 2011)

In the title compound, C19H15FO3, the dihedral angle between the naphthalene ring system and the benzene ring is 80.46 (4)°. In the crystal, mol­ecules are linked by inter­molecular C—H⋯O hydrogen bonds into chains parallel to the b axis.

Related literature

For the formation reaction of aroylated naphthalene compounds via electrophilic aromatic aroylation of 2,7-dimeth­oxy­naphthalene, see: Okamoto & Yonezawa (2009[Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914-915.]). For related structures reported by our group, see: Kato et al. (2010[Kato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.]); Muto et al. (2010[Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.]); Watanabe, Nagasawa et al. (2010[Watanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o329.]); Watanabe, Nakaema, Muto et al. (2010[Watanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o403.]); Watanabe, Nakaema, Nishijima et al. (2010[Watanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o615.]).

[Scheme 1]

Experimental

Crystal data
  • C19H15FO3

  • Mr = 310.31

  • Monoclinic, P 21 /n

  • a = 10.9714 (2) Å

  • b = 7.51791 (14) Å

  • c = 18.7832 (3) Å

  • β = 99.917 (1)°

  • V = 1526.13 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.82 mm−1

  • T = 193 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (NUMABS; Higashi, 1999[Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.735, Tmax = 0.853

  • 26625 measured reflections

  • 2789 independent reflections

  • 2566 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.109

  • S = 1.01

  • 2789 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O1i 0.95 2.35 3.2139 (15) 151
Symmetry code: (i) x, y+1, z.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are twisted almost perpendicularly but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings. Recently, we reported the structures of 1,8-diaroyl-2,7-dimethoxynaphthalenes, i. e., (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorophenyl)dimethanone (Watanabe, Nagasawa et al., 2010), bis(4-bromophenyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone (Watanabe, Nakaema, Muto et al., 2010), and [2,7-dimethoxy-8-(4-methylbenzoyl)-1-naphthyl](4-methylphenyl)methanone (Muto et al., 2010). Furthermore, the crystal structures of 1-aroyl-2,7-dimethoxynaphthalenes, i. e., 2,7-dimethoxy-1-(4-nitrobenzoyl)naphthalene (Watanabe, Nakaema, Nishijima et al., 2010) and (2,7-dimethoxynaphthalen-1-yl)(phenyl)methanone (Kato et al., 2010), also exhibit essentially the same non-coplanar structure as the 1,8-diaroylated naphthalenes. As a part of our ongoing studies on the formation and the structure of the aroylated naphthalene derivatives, the synthesis and crystal structure of (I), a 1-monoaroylnaphthalene bearing fluoro group, is discussed in this report. (I) was prepared by electrophilic aromatic aroylation reaction of 2,7-dimethoxynaphthalene with 4-fluorobenzoyl chloride.

The molecular structure of (I) is displayed in Fig. 1. The interplanar angle between the benzene ring (C12—C17) and the naphthalene ring (C1—C10) is 80.46 (4)°. The torsion angle between the carbonyl group and the naphthalene ring [C10–C1–C11–O1 = -77.77 (13)°] is larger than that between the carbonyl group and fluorophenyl ring [O1–C11–C12–C17 = 4.20 (15)°].

In the crystal packing, the molecules are aligned consecutively in stacks along the b axis (Fig. 2). This stack of naphthalene rings occludes the adjacent counter part and vice versa. The crystal packing is stabilized by weak intermolecular C—H···O hydrogen bond between the hydrogen atom of the 4-fluorophenyl group and the carbonyl oxygen atom (Table 1; Fig. 3).

Related literature top

For the formation reaction of aroylated naphthalene compounds via electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, see: Okamoto & Yonezawa (2009). For related structures reported by our group, see: Kato et al. (2010); Muto et al. (2010); Watanabe, Nagasawa et al. (2010); Watanabe, Nakaema, Muto et al. (2010); Watanabe, Nakaema, Nishijima et al. (2010).

Experimental top

The title compound was prepared by treatment of a mixture of 2,7-dimethoxynaphthalene (75.29 mg, 0.4 mmol), 4-fluorobenzoyl chloride (69.77 mg, 0.44 mmol), CH2Cl2 (1 ml) with AlCl3 (0.48 mmol, 64.00 mg). After the reaction mixture was stirred at 273 K for 3 h, the mixture was poured into ice-cooled water and extracted with CHCl3 (10 ml × 3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The organic layer thus obtained was dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake. The crude product was purified by recrystallization from ethanol (isolated yield 76%). Colourless platelet single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (m.p. 381 K). Anal. Calcd for C19H15O3F: C, 73.54; H, 4.87. Found: C, 73.45; H, 4.83. Spectroscopic data:

1H NMR (300 MHz, CDCl3. p.p.m.) 3.67 (3H, s), 3.75 (3H, s), 6.79 (1H, d, J = 2.4 Hz), 6.70 (1H, dd, J = 9.0, 2.4 Hz), 7.07 (2H, dd, J = 9.0, 9.0 Hz), 7.12 (1H, d, J = 9.0 Hz), 7.69 (1H, d, J = 9.0 Hz), 7.83 (1H, d, J = 9.0 Hz), 7.87 (2H, dd, J = 5.7, 8.7 Hz);

13C NMR (75.0 MHz, CDCl3, p.p.m.); 55.2945, 56.4131, 102.1511, 110.2777, 115.7894 (JC–F = 22.39 Hz), 117.2283, 121.4923, 124.5039, 129.8388, 131.2824, 132.3007 (JC–F = 9.39 Hz), 133.0798, 134.6669 (JC–F = 2.88 Hz), 155.0597, 159.0656, 166.0784 (JC–F = 255.03 Hz), 196.5529;

IR (KBr, cm-1): 1662, 1627, 1597, 1513, 1279, 1242;

Refinement top

All the H atoms were found in difference maps and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The alignment of the molecules in the crystal structure, viewed down the b axis.
[Figure 3] Fig. 3. C–H···O interaction between hydrogen atom of fluorophenyl ring and carbonyl oxygen atom.
(2,7-Dimethoxynaphthalen-1-yl)(4-fluorophenyl)methanone top
Crystal data top
C19H15FO3F(000) = 648
Mr = 310.31Dx = 1.351 Mg m3
Monoclinic, P21/nMelting point: 381 K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54187 Å
a = 10.9714 (2) ÅCell parameters from 24946 reflections
b = 7.51791 (14) Åθ = 4.1–68.3°
c = 18.7832 (3) ŵ = 0.82 mm1
β = 99.917 (1)°T = 193 K
V = 1526.13 (5) Å3Platelet, colourless
Z = 40.40 × 0.30 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2789 independent reflections
Radiation source: fine-focus sealed tube2566 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 10.00 pixels mm-1θmax = 68.3°, θmin = 4.4°
ω scansh = 1313
Absorption correction: numerical
(NUMABS; Higashi, 1999)
k = 99
Tmin = 0.735, Tmax = 0.853l = 2222
26625 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0726P)2 + 0.253P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2789 reflectionsΔρmax = 0.23 e Å3
211 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0116 (8)
Crystal data top
C19H15FO3V = 1526.13 (5) Å3
Mr = 310.31Z = 4
Monoclinic, P21/nCu Kα radiation
a = 10.9714 (2) ŵ = 0.82 mm1
b = 7.51791 (14) ÅT = 193 K
c = 18.7832 (3) Å0.40 × 0.30 × 0.20 mm
β = 99.917 (1)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2789 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 1999)
2566 reflections with I > 2σ(I)
Tmin = 0.735, Tmax = 0.853Rint = 0.036
26625 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.01Δρmax = 0.23 e Å3
2789 reflectionsΔρmin = 0.15 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.88989 (8)1.11551 (11)0.39053 (4)0.0625 (3)
O10.83508 (8)0.41722 (11)0.56528 (4)0.0452 (2)
O20.56864 (7)0.61906 (13)0.58208 (4)0.0467 (3)
O31.18714 (7)0.58367 (13)0.78977 (5)0.0485 (3)
C10.76748 (10)0.61523 (14)0.64820 (6)0.0316 (3)
C20.64274 (10)0.63620 (15)0.64810 (6)0.0366 (3)
C30.59851 (10)0.67163 (16)0.71271 (6)0.0407 (3)
H30.51240.68630.71230.049*
C40.68059 (11)0.68475 (15)0.77614 (6)0.0391 (3)
H40.65040.70930.81960.047*
C50.80873 (10)0.66282 (14)0.77862 (6)0.0345 (3)
C60.89515 (11)0.67527 (16)0.84395 (6)0.0403 (3)
H60.86630.70230.88760.048*
C71.01804 (11)0.64943 (17)0.84565 (6)0.0426 (3)
H71.07420.65700.89010.051*
C81.06219 (10)0.61110 (15)0.78062 (6)0.0374 (3)
C90.98303 (10)0.60226 (14)0.71590 (6)0.0332 (3)
H91.01430.57970.67260.040*
C100.85384 (10)0.62683 (13)0.71348 (5)0.0312 (3)
C110.81034 (9)0.57083 (14)0.57830 (5)0.0317 (3)
C120.82601 (9)0.71631 (14)0.52758 (5)0.0315 (3)
C130.79565 (10)0.89121 (15)0.54125 (6)0.0391 (3)
H130.76100.91790.58300.047*
C140.81544 (11)1.02663 (16)0.49468 (7)0.0450 (3)
H140.79401.14610.50340.054*
C150.86713 (11)0.98285 (17)0.43532 (6)0.0435 (3)
C160.89914 (10)0.81228 (17)0.42000 (6)0.0425 (3)
H160.93520.78740.37860.051*
C170.87757 (10)0.67828 (16)0.46618 (6)0.0367 (3)
H170.89790.55900.45630.044*
C180.43866 (11)0.6376 (2)0.57767 (8)0.0608 (4)
H18A0.39770.62100.52750.073*
H18B0.42000.75670.59410.073*
H18C0.40870.54800.60840.073*
C191.23927 (11)0.5406 (2)0.72769 (7)0.0501 (3)
H19A1.32810.51870.74210.060*
H19B1.22640.63990.69340.060*
H19C1.19920.43360.70480.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0694 (5)0.0562 (5)0.0572 (5)0.0178 (4)0.0021 (4)0.0216 (4)
O10.0652 (6)0.0331 (5)0.0399 (5)0.0095 (4)0.0167 (4)0.0010 (3)
O20.0323 (4)0.0658 (6)0.0400 (5)0.0059 (4)0.0003 (3)0.0088 (4)
O30.0354 (4)0.0644 (6)0.0426 (5)0.0001 (4)0.0025 (3)0.0037 (4)
C10.0346 (5)0.0299 (5)0.0307 (5)0.0018 (4)0.0066 (4)0.0017 (4)
C20.0355 (6)0.0369 (6)0.0367 (6)0.0024 (4)0.0038 (4)0.0040 (4)
C30.0346 (6)0.0434 (6)0.0464 (6)0.0019 (5)0.0133 (5)0.0059 (5)
C40.0453 (6)0.0375 (6)0.0375 (6)0.0000 (5)0.0154 (5)0.0052 (5)
C50.0423 (6)0.0294 (5)0.0326 (5)0.0016 (4)0.0091 (4)0.0014 (4)
C60.0523 (7)0.0396 (6)0.0299 (5)0.0029 (5)0.0092 (5)0.0032 (4)
C70.0487 (7)0.0451 (7)0.0307 (6)0.0029 (5)0.0027 (5)0.0017 (5)
C80.0362 (6)0.0367 (6)0.0379 (6)0.0031 (4)0.0019 (4)0.0004 (4)
C90.0355 (6)0.0330 (6)0.0313 (5)0.0018 (4)0.0062 (4)0.0003 (4)
C100.0363 (6)0.0262 (5)0.0313 (5)0.0012 (4)0.0064 (4)0.0004 (4)
C110.0297 (5)0.0342 (6)0.0299 (5)0.0030 (4)0.0013 (4)0.0033 (4)
C120.0281 (5)0.0345 (6)0.0300 (5)0.0016 (4)0.0002 (4)0.0020 (4)
C130.0412 (6)0.0367 (6)0.0381 (6)0.0033 (4)0.0032 (5)0.0040 (5)
C140.0483 (7)0.0324 (6)0.0500 (7)0.0001 (5)0.0038 (5)0.0006 (5)
C150.0399 (6)0.0454 (7)0.0407 (6)0.0092 (5)0.0061 (5)0.0116 (5)
C160.0400 (6)0.0542 (7)0.0327 (6)0.0020 (5)0.0044 (4)0.0036 (5)
C170.0359 (5)0.0410 (6)0.0323 (5)0.0044 (4)0.0036 (4)0.0012 (4)
C180.0351 (7)0.0828 (11)0.0602 (8)0.0114 (6)0.0034 (6)0.0184 (8)
C190.0356 (6)0.0621 (8)0.0513 (7)0.0045 (5)0.0038 (5)0.0006 (6)
Geometric parameters (Å, º) top
F1—C151.3554 (13)C8—C91.3685 (15)
O1—C111.2207 (13)C9—C101.4223 (15)
O2—C21.3668 (13)C9—H90.9500
O2—C181.4210 (14)C11—C121.4798 (15)
O3—C81.3676 (13)C12—C131.3912 (15)
O3—C191.4217 (15)C12—C171.3988 (15)
C1—C21.3773 (15)C13—C141.3835 (17)
C1—C101.4173 (15)C13—H130.9500
C1—C111.5063 (14)C14—C151.3752 (18)
C2—C31.4078 (16)C14—H140.9500
C3—C41.3676 (17)C15—C161.3731 (18)
C3—H30.9500C16—C171.3762 (17)
C4—C51.4083 (16)C16—H160.9500
C4—H40.9500C17—H170.9500
C5—C61.4188 (16)C18—H18A0.9800
C5—C101.4227 (15)C18—H18B0.9800
C6—C71.3572 (17)C18—H18C0.9800
C6—H60.9500C19—H19A0.9800
C7—C81.4189 (16)C19—H19B0.9800
C7—H70.9500C19—H19C0.9800
C2—O2—C18118.54 (10)O1—C11—C1119.86 (9)
C8—O3—C19117.86 (9)C12—C11—C1119.06 (9)
C2—C1—C10120.68 (10)C13—C12—C17119.28 (10)
C2—C1—C11118.92 (9)C13—C12—C11121.45 (10)
C10—C1—C11120.34 (9)C17—C12—C11119.21 (10)
O2—C2—C1115.21 (9)C14—C13—C12120.68 (11)
O2—C2—C3124.09 (10)C14—C13—H13119.7
C1—C2—C3120.70 (10)C12—C13—H13119.7
C4—C3—C2119.44 (10)C15—C14—C13117.91 (11)
C4—C3—H3120.3C15—C14—H14121.0
C2—C3—H3120.3C13—C14—H14121.0
C3—C4—C5121.61 (10)F1—C15—C16118.42 (11)
C3—C4—H4119.2F1—C15—C14118.23 (12)
C5—C4—H4119.2C16—C15—C14123.33 (11)
C4—C5—C6122.38 (10)C15—C16—C17118.27 (11)
C4—C5—C10119.14 (10)C15—C16—H16120.9
C6—C5—C10118.48 (10)C17—C16—H16120.9
C7—C6—C5121.60 (10)C16—C17—C12120.52 (11)
C7—C6—H6119.2C16—C17—H17119.7
C5—C6—H6119.2C12—C17—H17119.7
C6—C7—C8119.60 (10)O2—C18—H18A109.5
C6—C7—H7120.2O2—C18—H18B109.5
C8—C7—H7120.2H18A—C18—H18B109.5
O3—C8—C9124.99 (10)O2—C18—H18C109.5
O3—C8—C7113.94 (10)H18A—C18—H18C109.5
C9—C8—C7121.07 (10)H18B—C18—H18C109.5
C8—C9—C10119.91 (10)O3—C19—H19A109.5
C8—C9—H9120.0O3—C19—H19B109.5
C10—C9—H9120.0H19A—C19—H19B109.5
C1—C10—C5118.42 (10)O3—C19—H19C109.5
C1—C10—C9122.26 (9)H19A—C19—H19C109.5
C5—C10—C9119.31 (10)H19B—C19—H19C109.5
O1—C11—C12121.05 (9)
C18—O2—C2—C1179.54 (11)C4—C5—C10—C10.29 (15)
C18—O2—C2—C30.10 (18)C6—C5—C10—C1179.72 (10)
C10—C1—C2—O2178.91 (9)C4—C5—C10—C9179.17 (10)
C11—C1—C2—O21.87 (15)C6—C5—C10—C90.82 (15)
C10—C1—C2—C30.74 (17)C8—C9—C10—C1178.60 (10)
C11—C1—C2—C3177.78 (10)C8—C9—C10—C50.85 (15)
O2—C2—C3—C4179.43 (11)C2—C1—C11—O199.28 (12)
C1—C2—C3—C40.19 (18)C10—C1—C11—O177.78 (13)
C2—C3—C4—C50.31 (18)C2—C1—C11—C1282.89 (13)
C3—C4—C5—C6179.74 (11)C10—C1—C11—C12100.06 (11)
C3—C4—C5—C100.25 (17)O1—C11—C12—C13178.65 (10)
C4—C5—C6—C7178.35 (11)C1—C11—C12—C133.54 (14)
C10—C5—C6—C71.64 (17)O1—C11—C12—C174.20 (15)
C5—C6—C7—C80.78 (18)C1—C11—C12—C17173.60 (9)
C19—O3—C8—C90.77 (18)C17—C12—C13—C140.30 (16)
C19—O3—C8—C7178.67 (11)C11—C12—C13—C14177.44 (10)
C6—C7—C8—O3178.50 (11)C12—C13—C14—C150.74 (17)
C6—C7—C8—C90.96 (18)C13—C14—C15—F1178.23 (10)
O3—C8—C9—C10177.64 (10)C13—C14—C15—C160.37 (17)
C7—C8—C9—C101.76 (17)F1—C15—C16—C17179.06 (10)
C2—C1—C10—C50.78 (16)C14—C15—C16—C170.45 (17)
C11—C1—C10—C5177.78 (9)C15—C16—C17—C120.91 (16)
C2—C1—C10—C9178.67 (10)C13—C12—C17—C160.55 (15)
C11—C1—C10—C91.66 (16)C11—C12—C17—C16176.65 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O1i0.952.353.2139 (15)151
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H15FO3
Mr310.31
Crystal system, space groupMonoclinic, P21/n
Temperature (K)193
a, b, c (Å)10.9714 (2), 7.51791 (14), 18.7832 (3)
β (°) 99.917 (1)
V3)1526.13 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.82
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 1999)
Tmin, Tmax0.735, 0.853
No. of measured, independent and
observed [I > 2σ(I)] reflections
26625, 2789, 2566
Rint0.036
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.109, 1.01
No. of reflections2789
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.15

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O1i0.952.353.2139 (15)151
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors would express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for his technical advice. This work was partially supported by the Mukai Science and Technology Foundation, Tokyo, Japan.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.  Google Scholar
First citationHigashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o329.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o403.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWatanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o615.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds