organic compounds
(2,7-Dimethoxynaphthalen-1-yl)(4-fluorophenyl)methanone
aDepartment of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture & Technology, Koganei, Tokyo 184-8588, Japan
*Correspondence e-mail: aokamoto@cc.tuat.ac.jp
In the title compound, C19H15FO3, the dihedral angle between the naphthalene ring system and the benzene ring is 80.46 (4)°. In the crystal, molecules are linked by intermolecular C—H⋯O hydrogen bonds into chains parallel to the b axis.
Related literature
For the formation reaction of aroylated naphthalene compounds via electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, see: Okamoto & Yonezawa (2009). For related structures reported by our group, see: Kato et al. (2010); Muto et al. (2010); Watanabe, Nagasawa et al. (2010); Watanabe, Nakaema, Muto et al. (2010); Watanabe, Nakaema, Nishijima et al. (2010).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811018332/rz2596sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811018332/rz2596Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811018332/rz2596Isup3.cml
The title compound was prepared by treatment of a mixture of 2,7-dimethoxynaphthalene (75.29 mg, 0.4 mmol), 4-fluorobenzoyl chloride (69.77 mg, 0.44 mmol), CH2Cl2 (1 ml) with AlCl3 (0.48 mmol, 64.00 mg). After the reaction mixture was stirred at 273 K for 3 h, the mixture was poured into ice-cooled water and extracted with CHCl3 (10 ml × 3). The combined extracts were washed with 2 M aqueous NaOH followed by washing with brine. The organic layer thus obtained was dried over anhydrous MgSO4. The solvent was removed under reduced pressure to give cake. The crude product was purified by recrystallization from ethanol (isolated yield 76%). Colourless platelet single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution (m.p. 381 K). Anal. Calcd for C19H15O3F: C, 73.54; H, 4.87. Found: C, 73.45; H, 4.83. Spectroscopic data:
1H NMR (300 MHz, CDCl3. p.p.m.) 3.67 (3H, s), 3.75 (3H, s), 6.79 (1H, d, J = 2.4 Hz), 6.70 (1H, dd, J = 9.0, 2.4 Hz), 7.07 (2H, dd, J = 9.0, 9.0 Hz), 7.12 (1H, d, J = 9.0 Hz), 7.69 (1H, d, J = 9.0 Hz), 7.83 (1H, d, J = 9.0 Hz), 7.87 (2H, dd, J = 5.7, 8.7 Hz);
13C NMR (75.0 MHz, CDCl3, p.p.m.); 55.2945, 56.4131, 102.1511, 110.2777, 115.7894 (JC–F = 22.39 Hz), 117.2283, 121.4923, 124.5039, 129.8388, 131.2824, 132.3007 (JC–F = 9.39 Hz), 133.0798, 134.6669 (JC–F = 2.88 Hz), 155.0597, 159.0656, 166.0784 (JC–F = 255.03 Hz), 196.5529;
IR (KBr, cm-1): 1662, 1627, 1597, 1513, 1279, 1242;
All the H atoms were found in difference maps and were subsequently refined as riding atoms, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å, and Uiso(H) = 1.2Ueq(C).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C19H15FO3 | F(000) = 648 |
Mr = 310.31 | Dx = 1.351 Mg m−3 |
Monoclinic, P21/n | Melting point: 381 K |
Hall symbol: -P 2yn | Cu Kα radiation, λ = 1.54187 Å |
a = 10.9714 (2) Å | Cell parameters from 24946 reflections |
b = 7.51791 (14) Å | θ = 4.1–68.3° |
c = 18.7832 (3) Å | µ = 0.82 mm−1 |
β = 99.917 (1)° | T = 193 K |
V = 1526.13 (5) Å3 | Platelet, colourless |
Z = 4 | 0.40 × 0.30 × 0.20 mm |
Rigaku R-AXIS RAPID diffractometer | 2789 independent reflections |
Radiation source: fine-focus sealed tube | 2566 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
Detector resolution: 10.00 pixels mm-1 | θmax = 68.3°, θmin = 4.4° |
ω scans | h = −13→13 |
Absorption correction: numerical (NUMABS; Higashi, 1999) | k = −9→9 |
Tmin = 0.735, Tmax = 0.853 | l = −22→22 |
26625 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.109 | w = 1/[σ2(Fo2) + (0.0726P)2 + 0.253P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = 0.001 |
2789 reflections | Δρmax = 0.23 e Å−3 |
211 parameters | Δρmin = −0.15 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0116 (8) |
C19H15FO3 | V = 1526.13 (5) Å3 |
Mr = 310.31 | Z = 4 |
Monoclinic, P21/n | Cu Kα radiation |
a = 10.9714 (2) Å | µ = 0.82 mm−1 |
b = 7.51791 (14) Å | T = 193 K |
c = 18.7832 (3) Å | 0.40 × 0.30 × 0.20 mm |
β = 99.917 (1)° |
Rigaku R-AXIS RAPID diffractometer | 2789 independent reflections |
Absorption correction: numerical (NUMABS; Higashi, 1999) | 2566 reflections with I > 2σ(I) |
Tmin = 0.735, Tmax = 0.853 | Rint = 0.036 |
26625 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.23 e Å−3 |
2789 reflections | Δρmin = −0.15 e Å−3 |
211 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
F1 | 0.88989 (8) | 1.11551 (11) | 0.39053 (4) | 0.0625 (3) | |
O1 | 0.83508 (8) | 0.41722 (11) | 0.56528 (4) | 0.0452 (2) | |
O2 | 0.56864 (7) | 0.61906 (13) | 0.58208 (4) | 0.0467 (3) | |
O3 | 1.18714 (7) | 0.58367 (13) | 0.78977 (5) | 0.0485 (3) | |
C1 | 0.76748 (10) | 0.61523 (14) | 0.64820 (6) | 0.0316 (3) | |
C2 | 0.64274 (10) | 0.63620 (15) | 0.64810 (6) | 0.0366 (3) | |
C3 | 0.59851 (10) | 0.67163 (16) | 0.71271 (6) | 0.0407 (3) | |
H3 | 0.5124 | 0.6863 | 0.7123 | 0.049* | |
C4 | 0.68059 (11) | 0.68475 (15) | 0.77614 (6) | 0.0391 (3) | |
H4 | 0.6504 | 0.7093 | 0.8196 | 0.047* | |
C5 | 0.80873 (10) | 0.66282 (14) | 0.77862 (6) | 0.0345 (3) | |
C6 | 0.89515 (11) | 0.67527 (16) | 0.84395 (6) | 0.0403 (3) | |
H6 | 0.8663 | 0.7023 | 0.8876 | 0.048* | |
C7 | 1.01804 (11) | 0.64943 (17) | 0.84565 (6) | 0.0426 (3) | |
H7 | 1.0742 | 0.6570 | 0.8901 | 0.051* | |
C8 | 1.06219 (10) | 0.61110 (15) | 0.78062 (6) | 0.0374 (3) | |
C9 | 0.98303 (10) | 0.60226 (14) | 0.71590 (6) | 0.0332 (3) | |
H9 | 1.0143 | 0.5797 | 0.6726 | 0.040* | |
C10 | 0.85384 (10) | 0.62683 (13) | 0.71348 (5) | 0.0312 (3) | |
C11 | 0.81034 (9) | 0.57083 (14) | 0.57830 (5) | 0.0317 (3) | |
C12 | 0.82601 (9) | 0.71631 (14) | 0.52758 (5) | 0.0315 (3) | |
C13 | 0.79565 (10) | 0.89121 (15) | 0.54125 (6) | 0.0391 (3) | |
H13 | 0.7610 | 0.9179 | 0.5830 | 0.047* | |
C14 | 0.81544 (11) | 1.02663 (16) | 0.49468 (7) | 0.0450 (3) | |
H14 | 0.7940 | 1.1461 | 0.5034 | 0.054* | |
C15 | 0.86713 (11) | 0.98285 (17) | 0.43532 (6) | 0.0435 (3) | |
C16 | 0.89914 (10) | 0.81228 (17) | 0.42000 (6) | 0.0425 (3) | |
H16 | 0.9352 | 0.7874 | 0.3786 | 0.051* | |
C17 | 0.87757 (10) | 0.67828 (16) | 0.46618 (6) | 0.0367 (3) | |
H17 | 0.8979 | 0.5590 | 0.4563 | 0.044* | |
C18 | 0.43866 (11) | 0.6376 (2) | 0.57767 (8) | 0.0608 (4) | |
H18A | 0.3977 | 0.6210 | 0.5275 | 0.073* | |
H18B | 0.4200 | 0.7567 | 0.5941 | 0.073* | |
H18C | 0.4087 | 0.5480 | 0.6084 | 0.073* | |
C19 | 1.23927 (11) | 0.5406 (2) | 0.72769 (7) | 0.0501 (3) | |
H19A | 1.3281 | 0.5187 | 0.7421 | 0.060* | |
H19B | 1.2264 | 0.6399 | 0.6934 | 0.060* | |
H19C | 1.1992 | 0.4336 | 0.7048 | 0.060* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0694 (5) | 0.0562 (5) | 0.0572 (5) | −0.0178 (4) | −0.0021 (4) | 0.0216 (4) |
O1 | 0.0652 (6) | 0.0331 (5) | 0.0399 (5) | 0.0095 (4) | 0.0167 (4) | −0.0010 (3) |
O2 | 0.0323 (4) | 0.0658 (6) | 0.0400 (5) | 0.0059 (4) | 0.0003 (3) | −0.0088 (4) |
O3 | 0.0354 (4) | 0.0644 (6) | 0.0426 (5) | −0.0001 (4) | −0.0025 (3) | −0.0037 (4) |
C1 | 0.0346 (5) | 0.0299 (5) | 0.0307 (5) | 0.0018 (4) | 0.0066 (4) | −0.0017 (4) |
C2 | 0.0355 (6) | 0.0369 (6) | 0.0367 (6) | 0.0024 (4) | 0.0038 (4) | −0.0040 (4) |
C3 | 0.0346 (6) | 0.0434 (6) | 0.0464 (6) | 0.0019 (5) | 0.0133 (5) | −0.0059 (5) |
C4 | 0.0453 (6) | 0.0375 (6) | 0.0375 (6) | 0.0000 (5) | 0.0154 (5) | −0.0052 (5) |
C5 | 0.0423 (6) | 0.0294 (5) | 0.0326 (5) | −0.0016 (4) | 0.0091 (4) | −0.0014 (4) |
C6 | 0.0523 (7) | 0.0396 (6) | 0.0299 (5) | −0.0029 (5) | 0.0092 (5) | −0.0032 (4) |
C7 | 0.0487 (7) | 0.0451 (7) | 0.0307 (6) | −0.0029 (5) | −0.0027 (5) | −0.0017 (5) |
C8 | 0.0362 (6) | 0.0367 (6) | 0.0379 (6) | −0.0031 (4) | 0.0019 (4) | 0.0004 (4) |
C9 | 0.0355 (6) | 0.0330 (6) | 0.0313 (5) | −0.0018 (4) | 0.0062 (4) | −0.0003 (4) |
C10 | 0.0363 (6) | 0.0262 (5) | 0.0313 (5) | −0.0012 (4) | 0.0064 (4) | −0.0004 (4) |
C11 | 0.0297 (5) | 0.0342 (6) | 0.0299 (5) | 0.0030 (4) | 0.0013 (4) | −0.0033 (4) |
C12 | 0.0281 (5) | 0.0345 (6) | 0.0300 (5) | 0.0016 (4) | −0.0002 (4) | −0.0020 (4) |
C13 | 0.0412 (6) | 0.0367 (6) | 0.0381 (6) | 0.0033 (4) | 0.0032 (5) | −0.0040 (5) |
C14 | 0.0483 (7) | 0.0324 (6) | 0.0500 (7) | −0.0001 (5) | −0.0038 (5) | 0.0006 (5) |
C15 | 0.0399 (6) | 0.0454 (7) | 0.0407 (6) | −0.0092 (5) | −0.0061 (5) | 0.0116 (5) |
C16 | 0.0400 (6) | 0.0542 (7) | 0.0327 (6) | −0.0020 (5) | 0.0044 (4) | 0.0036 (5) |
C17 | 0.0359 (5) | 0.0410 (6) | 0.0323 (5) | 0.0044 (4) | 0.0036 (4) | −0.0012 (4) |
C18 | 0.0351 (7) | 0.0828 (11) | 0.0602 (8) | 0.0114 (6) | −0.0034 (6) | −0.0184 (8) |
C19 | 0.0356 (6) | 0.0621 (8) | 0.0513 (7) | 0.0045 (5) | 0.0038 (5) | −0.0006 (6) |
F1—C15 | 1.3554 (13) | C8—C9 | 1.3685 (15) |
O1—C11 | 1.2207 (13) | C9—C10 | 1.4223 (15) |
O2—C2 | 1.3668 (13) | C9—H9 | 0.9500 |
O2—C18 | 1.4210 (14) | C11—C12 | 1.4798 (15) |
O3—C8 | 1.3676 (13) | C12—C13 | 1.3912 (15) |
O3—C19 | 1.4217 (15) | C12—C17 | 1.3988 (15) |
C1—C2 | 1.3773 (15) | C13—C14 | 1.3835 (17) |
C1—C10 | 1.4173 (15) | C13—H13 | 0.9500 |
C1—C11 | 1.5063 (14) | C14—C15 | 1.3752 (18) |
C2—C3 | 1.4078 (16) | C14—H14 | 0.9500 |
C3—C4 | 1.3676 (17) | C15—C16 | 1.3731 (18) |
C3—H3 | 0.9500 | C16—C17 | 1.3762 (17) |
C4—C5 | 1.4083 (16) | C16—H16 | 0.9500 |
C4—H4 | 0.9500 | C17—H17 | 0.9500 |
C5—C6 | 1.4188 (16) | C18—H18A | 0.9800 |
C5—C10 | 1.4227 (15) | C18—H18B | 0.9800 |
C6—C7 | 1.3572 (17) | C18—H18C | 0.9800 |
C6—H6 | 0.9500 | C19—H19A | 0.9800 |
C7—C8 | 1.4189 (16) | C19—H19B | 0.9800 |
C7—H7 | 0.9500 | C19—H19C | 0.9800 |
C2—O2—C18 | 118.54 (10) | O1—C11—C1 | 119.86 (9) |
C8—O3—C19 | 117.86 (9) | C12—C11—C1 | 119.06 (9) |
C2—C1—C10 | 120.68 (10) | C13—C12—C17 | 119.28 (10) |
C2—C1—C11 | 118.92 (9) | C13—C12—C11 | 121.45 (10) |
C10—C1—C11 | 120.34 (9) | C17—C12—C11 | 119.21 (10) |
O2—C2—C1 | 115.21 (9) | C14—C13—C12 | 120.68 (11) |
O2—C2—C3 | 124.09 (10) | C14—C13—H13 | 119.7 |
C1—C2—C3 | 120.70 (10) | C12—C13—H13 | 119.7 |
C4—C3—C2 | 119.44 (10) | C15—C14—C13 | 117.91 (11) |
C4—C3—H3 | 120.3 | C15—C14—H14 | 121.0 |
C2—C3—H3 | 120.3 | C13—C14—H14 | 121.0 |
C3—C4—C5 | 121.61 (10) | F1—C15—C16 | 118.42 (11) |
C3—C4—H4 | 119.2 | F1—C15—C14 | 118.23 (12) |
C5—C4—H4 | 119.2 | C16—C15—C14 | 123.33 (11) |
C4—C5—C6 | 122.38 (10) | C15—C16—C17 | 118.27 (11) |
C4—C5—C10 | 119.14 (10) | C15—C16—H16 | 120.9 |
C6—C5—C10 | 118.48 (10) | C17—C16—H16 | 120.9 |
C7—C6—C5 | 121.60 (10) | C16—C17—C12 | 120.52 (11) |
C7—C6—H6 | 119.2 | C16—C17—H17 | 119.7 |
C5—C6—H6 | 119.2 | C12—C17—H17 | 119.7 |
C6—C7—C8 | 119.60 (10) | O2—C18—H18A | 109.5 |
C6—C7—H7 | 120.2 | O2—C18—H18B | 109.5 |
C8—C7—H7 | 120.2 | H18A—C18—H18B | 109.5 |
O3—C8—C9 | 124.99 (10) | O2—C18—H18C | 109.5 |
O3—C8—C7 | 113.94 (10) | H18A—C18—H18C | 109.5 |
C9—C8—C7 | 121.07 (10) | H18B—C18—H18C | 109.5 |
C8—C9—C10 | 119.91 (10) | O3—C19—H19A | 109.5 |
C8—C9—H9 | 120.0 | O3—C19—H19B | 109.5 |
C10—C9—H9 | 120.0 | H19A—C19—H19B | 109.5 |
C1—C10—C5 | 118.42 (10) | O3—C19—H19C | 109.5 |
C1—C10—C9 | 122.26 (9) | H19A—C19—H19C | 109.5 |
C5—C10—C9 | 119.31 (10) | H19B—C19—H19C | 109.5 |
O1—C11—C12 | 121.05 (9) | ||
C18—O2—C2—C1 | 179.54 (11) | C4—C5—C10—C1 | 0.29 (15) |
C18—O2—C2—C3 | −0.10 (18) | C6—C5—C10—C1 | −179.72 (10) |
C10—C1—C2—O2 | −178.91 (9) | C4—C5—C10—C9 | −179.17 (10) |
C11—C1—C2—O2 | −1.87 (15) | C6—C5—C10—C9 | 0.82 (15) |
C10—C1—C2—C3 | 0.74 (17) | C8—C9—C10—C1 | −178.60 (10) |
C11—C1—C2—C3 | 177.78 (10) | C8—C9—C10—C5 | 0.85 (15) |
O2—C2—C3—C4 | 179.43 (11) | C2—C1—C11—O1 | −99.28 (12) |
C1—C2—C3—C4 | −0.19 (18) | C10—C1—C11—O1 | 77.78 (13) |
C2—C3—C4—C5 | −0.31 (18) | C2—C1—C11—C12 | 82.89 (13) |
C3—C4—C5—C6 | −179.74 (11) | C10—C1—C11—C12 | −100.06 (11) |
C3—C4—C5—C10 | 0.25 (17) | O1—C11—C12—C13 | 178.65 (10) |
C4—C5—C6—C7 | 178.35 (11) | C1—C11—C12—C13 | −3.54 (14) |
C10—C5—C6—C7 | −1.64 (17) | O1—C11—C12—C17 | −4.20 (15) |
C5—C6—C7—C8 | 0.78 (18) | C1—C11—C12—C17 | 173.60 (9) |
C19—O3—C8—C9 | −0.77 (18) | C17—C12—C13—C14 | 0.30 (16) |
C19—O3—C8—C7 | 178.67 (11) | C11—C12—C13—C14 | 177.44 (10) |
C6—C7—C8—O3 | −178.50 (11) | C12—C13—C14—C15 | −0.74 (17) |
C6—C7—C8—C9 | 0.96 (18) | C13—C14—C15—F1 | −178.23 (10) |
O3—C8—C9—C10 | 177.64 (10) | C13—C14—C15—C16 | 0.37 (17) |
C7—C8—C9—C10 | −1.76 (17) | F1—C15—C16—C17 | 179.06 (10) |
C2—C1—C10—C5 | −0.78 (16) | C14—C15—C16—C17 | 0.45 (17) |
C11—C1—C10—C5 | −177.78 (9) | C15—C16—C17—C12 | −0.91 (16) |
C2—C1—C10—C9 | 178.67 (10) | C13—C12—C17—C16 | 0.55 (15) |
C11—C1—C10—C9 | 1.66 (16) | C11—C12—C17—C16 | −176.65 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14···O1i | 0.95 | 2.35 | 3.2139 (15) | 151 |
Symmetry code: (i) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C19H15FO3 |
Mr | 310.31 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 193 |
a, b, c (Å) | 10.9714 (2), 7.51791 (14), 18.7832 (3) |
β (°) | 99.917 (1) |
V (Å3) | 1526.13 (5) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 0.82 |
Crystal size (mm) | 0.40 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Numerical (NUMABS; Higashi, 1999) |
Tmin, Tmax | 0.735, 0.853 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 26625, 2789, 2566 |
Rint | 0.036 |
(sin θ/λ)max (Å−1) | 0.602 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.109, 1.01 |
No. of reflections | 2789 |
No. of parameters | 211 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.15 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP (Burnett & Johnson, 1996).
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14···O1i | 0.95 | 2.35 | 3.2139 (15) | 151 |
Symmetry code: (i) x, y+1, z. |
Acknowledgements
The authors would express their gratitude to Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture & Technology, for his technical advice. This work was partially supported by the Mukai Science and Technology Foundation, Tokyo, Japan.
References
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA. Google Scholar
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan. Google Scholar
Kato, Y., Nagasawa, A., Hijikata, D., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2659. Web of Science CSD CrossRef IUCr Journals Google Scholar
Muto, T., Kato, Y., Nagasawa, A., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o2752. Web of Science CSD CrossRef IUCr Journals Google Scholar
Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915. Web of Science CrossRef CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Watanabe, S., Nagasawa, A., Okamoto, A., Noguchi, K. & Yonezawa, N. (2010). Acta Cryst. E66, o329. Web of Science CSD CrossRef IUCr Journals Google Scholar
Watanabe, S., Nakaema, K., Muto, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o403. Web of Science CSD CrossRef IUCr Journals Google Scholar
Watanabe, S., Nakaema, K., Nishijima, T., Okamoto, A. & Yonezawa, N. (2010). Acta Cryst. E66, o615. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the course of our study on electrophilic aromatic aroylation of 2,7-dimethoxynaphthalene, peri-aroylnaphthalene compounds have proven to be formed regioselectively with the aid of suitable acidic mediators (Okamoto & Yonezawa, 2009). The aroyl groups at the 1,8-positions of the naphthalene rings in these compounds are twisted almost perpendicularly but the benzene ring moieties of the aroyl groups tilt slightly toward the exo sides of the naphthalene rings. Recently, we reported the structures of 1,8-diaroyl-2,7-dimethoxynaphthalenes, i. e., (2,7-dimethoxynaphthalene-1,8-diyl)bis(4-fluorophenyl)dimethanone (Watanabe, Nagasawa et al., 2010), bis(4-bromophenyl)(2,7-dimethoxynaphthalene-1,8-diyl)dimethanone (Watanabe, Nakaema, Muto et al., 2010), and [2,7-dimethoxy-8-(4-methylbenzoyl)-1-naphthyl](4-methylphenyl)methanone (Muto et al., 2010). Furthermore, the crystal structures of 1-aroyl-2,7-dimethoxynaphthalenes, i. e., 2,7-dimethoxy-1-(4-nitrobenzoyl)naphthalene (Watanabe, Nakaema, Nishijima et al., 2010) and (2,7-dimethoxynaphthalen-1-yl)(phenyl)methanone (Kato et al., 2010), also exhibit essentially the same non-coplanar structure as the 1,8-diaroylated naphthalenes. As a part of our ongoing studies on the formation and the structure of the aroylated naphthalene derivatives, the synthesis and crystal structure of (I), a 1-monoaroylnaphthalene bearing fluoro group, is discussed in this report. (I) was prepared by electrophilic aromatic aroylation reaction of 2,7-dimethoxynaphthalene with 4-fluorobenzoyl chloride.
The molecular structure of (I) is displayed in Fig. 1. The interplanar angle between the benzene ring (C12—C17) and the naphthalene ring (C1—C10) is 80.46 (4)°. The torsion angle between the carbonyl group and the naphthalene ring [C10–C1–C11–O1 = -77.77 (13)°] is larger than that between the carbonyl group and fluorophenyl ring [O1–C11–C12–C17 = 4.20 (15)°].
In the crystal packing, the molecules are aligned consecutively in stacks along the b axis (Fig. 2). This stack of naphthalene rings occludes the adjacent counter part and vice versa. The crystal packing is stabilized by weak intermolecular C—H···O hydrogen bond between the hydrogen atom of the 4-fluorophenyl group and the carbonyl oxygen atom (Table 1; Fig. 3).