organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1519-o1520

Methyl 4′-iso­butyl-2,2′-di­methyl-1,3-dioxo-2,3-di­hydro-1H,4′H-spiro­[iso­quinoline-4,5′-oxazole]-4′-carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
*Correspondence e-mail: hkfun@usm.my

(Received 10 May 2011; accepted 19 May 2011; online 25 May 2011)

In the isoquinoline ring system of the title mol­ecule, C19H22N2O5, the N-heterocyclic ring is in a half-boat conformation. The dioxa-2-aza­spiro ring is essentially planar [maximum deviation = 0.042 (1) Å] and forms a dihedral angle of 81.85 (4)° with the benzene ring. In the crystal, the mol­ecules are linked via inter­molecular C—H⋯O hydrogen bonds into chains along [010].

Related literature

For general background to and the potential biological activity of the title compound, see: Pollers-Wieers et al. (1981[Pollers-Wieers, C., Vekemans, J., Toppet, S. & Hoornaert, G. (1981). Tetrahedron 37, 4321-4326.]); Malamas et al. (1994[Malamas, M. S., Hohman, T. C. & Millen, J. (1994). J. Med. Chem. 37, 2043-2058.]); Yu et al. (2010[Yu, H., Li, J., Kou, Z., Du, X., Wei, Y., Fun, H.-K., Xu, J. & Zhang, Y. (2010). J. Org. Chem. 75, 2989-3001.]); Mitchell et al. (1995[Mitchell, G., Clarke, E. D., Ridley, S. M., Greenhow, D. T., Gillen, K. J., Vohra, S. K. & Wardman, P. (1995). Pestic. Sci. 44, 49-58.], 2000[Mitchell, G., Clarke, E. D., Ridley, S. M., Bartlett, D. W., Gillen, K. J., Vohra, S. K., Greenhow, D. T., Ormrod, J. C. & Wardman, P. (2000). Pest. Manag. Sci. 56, 120-126.]); Badillo et al. (2010[Badillo, J. J., Hanhan, N. V. & Franz, A. K. (2010). Curr. Opin. Drug Discovery Dev. 13, 758-766.]); Wang et al. (2010[Wang, L., Huang, Y. C., Liu, Y., Fun, H.-K., Zhang, Y. & Xu, J. H. (2010). J. Org. Chem. 75, 7757-7768.]); Nair et al. (2002[Nair, V., Sethumadhavan, D., Nair, S. M., Viji, S. & Rath, P. (2002). Tetrahedron, 58, 3003-3007.]); Huang et al. (2011[Huang, C., Yu, H., Miao, Z., Zhou, J., Wang, S., Fun, H.-K., Xu, J. & Zhang, Y. (2011). Org. Biomol. Chem. 9, 3629-3631.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For related structures, see: Fun et al. (2011a[Fun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011a). Acta Cryst. E67, o1271-o1272.],b[Fun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011b). Acta Cryst. E67, o1273-o1274.],c[Fun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011c). Acta Cryst. E67, o1311-o1312.],d[Fun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011d). Acta Cryst. E67, o1340-o1341.]).

[Scheme 1]

Experimental

Crystal data
  • C19H22N2O5

  • Mr = 358.39

  • Triclinic, [P \overline 1]

  • a = 8.6764 (1) Å

  • b = 8.9366 (1) Å

  • c = 12.0684 (2) Å

  • α = 93.495 (1)°

  • β = 109.892 (1)°

  • γ = 98.426 (1)°

  • V = 864.22 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.40 × 0.29 × 0.18 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.961, Tmax = 0.982

  • 25638 measured reflections

  • 6231 independent reflections

  • 5381 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.113

  • S = 1.05

  • 6231 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O4i 0.93 2.56 3.4353 (11) 158
C4—H4A⋯O2ii 0.93 2.56 3.2878 (11) 136
C12—H12C⋯O4i 0.96 2.59 3.3600 (11) 138
Symmetry codes: (i) -x+2, -y, -z; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Isoquinolines are often found in bioactive natural products. They have been used to build blocks of benzo[c]phenanthridine alkaloids. (Pollers-Wieers et al., 1981; Malamas et al., 1994; Yu et al., 2010). Isoquinoline-1,3,4-trione and its derivatives have been reported to be redox mediators of photosystems I and have been used as herbicides (Mitchell et al., 2000; 1995). Oxazole rings are also found in some bioactive natural products such as Annuloline and Ostreogrycin A. Spirooxazoles have emerged as attractive synthetic targets because of their potent bioactivity (Badillo et al., 2011; Wang et al.; 2010; Nair et al., 2002). The title compound, which was derived from isoquinoline-1,3,4-trione and oxazoles (Huang et al., 2011), may has a potential use in biochemical and pharmaceutical fields. Due to the importance of the isoquinoline-1,3,4-trione derivatives, we report in this paper the crystal structure of the title compound with a relative configuration of (4S*, 4'S*).

In the title racemic compound, Fig. 1, atoms C9 and C10 are the stereo centers. The isoquinoline ring system (N1/C1-C9) is not completely planar, the N-heterocyclic ring (N1/C1/C6-C9) being distorted towards a half-boat conformation with atom C9 deviating by 0.167 (1) Å from the mean plane through the remaining atoms, puckering parameters (Cremer & Pople, 1975) Q = 0.2505 (9) Å, Θ = 114.3 (2)° and ϕ = 73.8 (2)°. The dioxa-2-azaspiro ring (N2/O3/C9-C11) is essentially planar [maximum deviation of 0.042 (1) Å at atoms C9 and C10] and it inclines at a dihedral angle of 81.85 (4)° with the benzene ring (C1-C6). Bond lengths (Allen et al., 1987) and angles are within normal ranges and comparable to related structures (Fun et al., 2011a,b,c,d).

In the crystal packing (Fig. 2), the molecules are linked via intermolecular C2–H2A···O4, C12–H12C···O4 and C4–H4A···O2 hydrogen bonds (Table 1) into one-dimensional chains along [010].

Related literature top

For general background to and the potential biological activity of the title compound, see: Pollers-Wieers et al. (1981); Malamas et al. (1994); Yu et al. (2010); Mitchell et al. (1995, 2000); Badillo et al. (2010); Wang et al. (2010); Nair et al. (2002); Huang et al. (2011). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For standard bond-length data, see: Allen et al. (1987). For ring conformations, see: Cremer & Pople (1975). For related structures, see: Fun et al. (2011a,b,c,d).

Experimental top

The title compound was the main product from the acid-catalyzed transformation of the photocycloadduct of isoquinoline-1,3,4-trione and 4-isobutyl-5-methoxy-2-methyloxazole. The compound was purified by flash column chromatography with ethyl acetate/petroleum ether (1:4 v/v) as eluents. X-ray quality crystals of the title compound were obtained from slow evaporation of an acetone/petroleum ether solution (1:5 v/v). M.p. 421-423 K.

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 - 0.97 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups. The highest residual electron density peak is located at 0.75 Å from C17 and the deepest hole is located at 0.53 Å from C11.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the c axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
Methyl 4'-isobutyl-2,2'-dimethyl-1,3-dioxo-2,3-dihydro-1H,4'H- spiro[isoquinoline-4,5'-oxazole]-4'-carboxylate top
Crystal data top
C19H22N2O5Z = 2
Mr = 358.39F(000) = 380
Triclinic, P1Dx = 1.377 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6764 (1) ÅCell parameters from 9993 reflections
b = 8.9366 (1) Åθ = 2.3–35.1°
c = 12.0684 (2) ŵ = 0.10 mm1
α = 93.495 (1)°T = 100 K
β = 109.892 (1)°Block, colourless
γ = 98.426 (1)°0.40 × 0.29 × 0.18 mm
V = 864.22 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6231 independent reflections
Radiation source: fine-focus sealed tube5381 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 32.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.961, Tmax = 0.982k = 1313
25638 measured reflectionsl = 1618
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0637P)2 + 0.1577P]
where P = (Fo2 + 2Fc2)/3
6231 reflections(Δ/σ)max = 0.001
240 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C19H22N2O5γ = 98.426 (1)°
Mr = 358.39V = 864.22 (2) Å3
Triclinic, P1Z = 2
a = 8.6764 (1) ÅMo Kα radiation
b = 8.9366 (1) ŵ = 0.10 mm1
c = 12.0684 (2) ÅT = 100 K
α = 93.495 (1)°0.40 × 0.29 × 0.18 mm
β = 109.892 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6231 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5381 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.982Rint = 0.027
25638 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.05Δρmax = 0.46 e Å3
6231 reflectionsΔρmin = 0.24 e Å3
240 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.56369 (10)0.13923 (8)0.36689 (7)0.02808 (16)
O20.61673 (8)0.30662 (7)0.21139 (6)0.01906 (13)
O30.70178 (7)0.17637 (7)0.03819 (5)0.01584 (12)
O41.13223 (8)0.01941 (7)0.19476 (6)0.02001 (13)
O51.02241 (8)0.00373 (7)0.33903 (6)0.01843 (13)
N10.60176 (9)0.08767 (8)0.29574 (6)0.01547 (13)
N20.98015 (8)0.26379 (8)0.11623 (6)0.01398 (13)
C10.71382 (9)0.05589 (9)0.12763 (7)0.01375 (14)
C20.75196 (10)0.12948 (9)0.03755 (7)0.01669 (15)
H2A0.79130.07290.01260.020*
C30.73110 (11)0.28759 (10)0.02283 (8)0.01903 (16)
H3A0.75560.33640.03780.023*
C40.67396 (11)0.37359 (10)0.09800 (8)0.01860 (16)
H4A0.66210.47920.08840.022*
C50.63485 (10)0.30090 (9)0.18736 (7)0.01695 (15)
H5A0.59610.35780.23760.020*
C60.65376 (10)0.14210 (9)0.20173 (7)0.01444 (14)
C70.60524 (10)0.06867 (10)0.29540 (7)0.01696 (15)
C80.64684 (9)0.17845 (9)0.21858 (7)0.01427 (14)
C90.74719 (9)0.11548 (9)0.15004 (7)0.01297 (13)
C100.94372 (9)0.18962 (9)0.21130 (7)0.01221 (13)
C110.84438 (10)0.25402 (9)0.02944 (7)0.01396 (14)
C120.81958 (11)0.31809 (10)0.08488 (7)0.01760 (15)
H12A0.92260.37740.08230.026*
H12B0.73660.38180.09760.026*
H12C0.78340.23650.14860.026*
C130.98781 (9)0.30600 (9)0.32243 (7)0.01391 (14)
H13A0.93910.39500.29790.017*
H13B0.93620.26120.37530.017*
C141.17540 (9)0.35881 (9)0.39278 (7)0.01424 (14)
H14A1.22780.26820.40530.017*
C151.19883 (11)0.43954 (11)0.51412 (8)0.02220 (17)
H15A1.31560.46770.55970.033*
H15B1.14640.37230.55510.033*
H15C1.14920.52930.50390.033*
C161.26352 (11)0.46363 (11)0.32908 (8)0.02157 (17)
H16A1.37760.49800.37940.032*
H16B1.20910.54990.31100.032*
H16C1.25930.40890.25680.032*
C171.04488 (9)0.06210 (9)0.24456 (7)0.01415 (14)
C181.10003 (13)0.12653 (12)0.37361 (10)0.0282 (2)
H18A1.09430.14920.44900.042*
H18B1.21450.10440.37980.042*
H18C1.04290.21270.31510.042*
C190.52591 (11)0.15905 (10)0.37250 (8)0.02020 (16)
H19A0.60160.24770.41980.030*
H19B0.50240.08780.42350.030*
H19C0.42430.18830.32430.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0440 (4)0.0228 (3)0.0276 (4)0.0051 (3)0.0250 (3)0.0085 (3)
O20.0179 (3)0.0170 (3)0.0230 (3)0.0048 (2)0.0072 (2)0.0034 (2)
O30.0145 (2)0.0189 (3)0.0129 (2)0.0007 (2)0.0035 (2)0.0058 (2)
O40.0199 (3)0.0196 (3)0.0222 (3)0.0068 (2)0.0083 (2)0.0017 (2)
O50.0200 (3)0.0176 (3)0.0172 (3)0.0030 (2)0.0053 (2)0.0072 (2)
N10.0155 (3)0.0164 (3)0.0166 (3)0.0018 (2)0.0087 (2)0.0016 (2)
N20.0163 (3)0.0142 (3)0.0129 (3)0.0018 (2)0.0071 (2)0.0031 (2)
C10.0132 (3)0.0142 (3)0.0124 (3)0.0001 (2)0.0037 (2)0.0014 (2)
C20.0182 (3)0.0171 (3)0.0141 (3)0.0007 (3)0.0067 (3)0.0000 (3)
C30.0200 (4)0.0180 (4)0.0177 (4)0.0003 (3)0.0070 (3)0.0026 (3)
C40.0186 (4)0.0141 (3)0.0204 (4)0.0007 (3)0.0047 (3)0.0002 (3)
C50.0171 (3)0.0153 (3)0.0170 (3)0.0005 (3)0.0048 (3)0.0039 (3)
C60.0141 (3)0.0152 (3)0.0133 (3)0.0007 (3)0.0045 (3)0.0021 (3)
C70.0185 (3)0.0176 (4)0.0161 (3)0.0015 (3)0.0083 (3)0.0031 (3)
C80.0115 (3)0.0163 (3)0.0144 (3)0.0009 (2)0.0044 (2)0.0022 (3)
C90.0130 (3)0.0140 (3)0.0115 (3)0.0010 (2)0.0042 (2)0.0030 (2)
C100.0122 (3)0.0130 (3)0.0117 (3)0.0016 (2)0.0048 (2)0.0021 (2)
C110.0173 (3)0.0121 (3)0.0136 (3)0.0020 (3)0.0071 (3)0.0022 (2)
C120.0227 (4)0.0172 (3)0.0137 (3)0.0033 (3)0.0070 (3)0.0048 (3)
C130.0127 (3)0.0157 (3)0.0129 (3)0.0015 (2)0.0048 (2)0.0007 (3)
C140.0126 (3)0.0153 (3)0.0140 (3)0.0012 (2)0.0044 (2)0.0002 (3)
C150.0170 (4)0.0295 (4)0.0163 (4)0.0015 (3)0.0046 (3)0.0045 (3)
C160.0175 (4)0.0252 (4)0.0199 (4)0.0029 (3)0.0065 (3)0.0034 (3)
C170.0137 (3)0.0130 (3)0.0135 (3)0.0005 (2)0.0028 (3)0.0014 (2)
C180.0264 (4)0.0233 (4)0.0332 (5)0.0066 (4)0.0054 (4)0.0157 (4)
C190.0194 (4)0.0222 (4)0.0224 (4)0.0029 (3)0.0126 (3)0.0004 (3)
Geometric parameters (Å, º) top
O1—C71.2178 (10)C9—C101.6262 (11)
O2—C81.2133 (10)C10—C171.5295 (11)
O3—C111.3675 (10)C10—C131.5462 (11)
O3—C91.4365 (9)C11—C121.4859 (11)
O4—C171.2033 (10)C12—H12A0.9600
O5—C171.3431 (10)C12—H12B0.9600
O5—C181.4424 (11)C12—H12C0.9600
N1—C81.3875 (10)C13—C141.5422 (11)
N1—C71.4016 (11)C13—H13A0.9700
N1—C191.4711 (11)C13—H13B0.9700
N2—C111.2694 (10)C14—C161.5268 (12)
N2—C101.4608 (10)C14—C151.5270 (12)
C1—C21.3948 (11)C14—H14A0.9800
C1—C61.3958 (11)C15—H15A0.9600
C1—C91.5062 (11)C15—H15B0.9600
C2—C31.3904 (12)C15—H15C0.9600
C2—H2A0.9300C16—H16A0.9600
C3—C41.3925 (12)C16—H16B0.9600
C3—H3A0.9300C16—H16C0.9600
C4—C51.3886 (12)C18—H18A0.9600
C4—H4A0.9300C18—H18B0.9600
C5—C61.3976 (11)C18—H18C0.9600
C5—H5A0.9300C19—H19A0.9600
C6—C71.4833 (12)C19—H19B0.9600
C8—C91.5284 (11)C19—H19C0.9600
C11—O3—C9107.44 (6)C11—C12—H12A109.5
C17—O5—C18115.39 (7)C11—C12—H12B109.5
C8—N1—C7124.82 (7)H12A—C12—H12B109.5
C8—N1—C19116.23 (7)C11—C12—H12C109.5
C7—N1—C19118.50 (7)H12A—C12—H12C109.5
C11—N2—C10108.20 (6)H12B—C12—H12C109.5
C2—C1—C6119.53 (7)C14—C13—C10115.65 (6)
C2—C1—C9120.39 (7)C14—C13—H13A108.4
C6—C1—C9119.97 (7)C10—C13—H13A108.4
C3—C2—C1119.87 (8)C14—C13—H13B108.4
C3—C2—H2A120.1C10—C13—H13B108.4
C1—C2—H2A120.1H13A—C13—H13B107.4
C2—C3—C4120.66 (8)C16—C14—C15109.57 (7)
C2—C3—H3A119.7C16—C14—C13113.42 (7)
C4—C3—H3A119.7C15—C14—C13109.33 (7)
C5—C4—C3119.68 (8)C16—C14—H14A108.1
C5—C4—H4A120.2C15—C14—H14A108.1
C3—C4—H4A120.2C13—C14—H14A108.1
C4—C5—C6119.92 (8)C14—C15—H15A109.5
C4—C5—H5A120.0C14—C15—H15B109.5
C6—C5—H5A120.0H15A—C15—H15B109.5
C1—C6—C5120.33 (8)C14—C15—H15C109.5
C1—C6—C7121.22 (7)H15A—C15—H15C109.5
C5—C6—C7118.43 (7)H15B—C15—H15C109.5
O1—C7—N1120.23 (8)C14—C16—H16A109.5
O1—C7—C6122.86 (8)C14—C16—H16B109.5
N1—C7—C6116.85 (7)H16A—C16—H16B109.5
O2—C8—N1121.17 (8)C14—C16—H16C109.5
O2—C8—C9121.21 (7)H16A—C16—H16C109.5
N1—C8—C9117.46 (7)H16B—C16—H16C109.5
O3—C9—C1109.04 (6)O4—C17—O5124.41 (7)
O3—C9—C8106.82 (6)O4—C17—C10125.85 (7)
C1—C9—C8113.48 (6)O5—C17—C10109.73 (7)
O3—C9—C10102.23 (6)O5—C18—H18A109.5
C1—C9—C10113.79 (6)O5—C18—H18B109.5
C8—C9—C10110.63 (6)H18A—C18—H18B109.5
N2—C10—C17110.09 (6)O5—C18—H18C109.5
N2—C10—C13110.48 (6)H18A—C18—H18C109.5
C17—C10—C13108.90 (6)H18B—C18—H18C109.5
N2—C10—C9103.04 (6)N1—C19—H19A109.5
C17—C10—C9109.24 (6)N1—C19—H19B109.5
C13—C10—C9114.95 (6)H19A—C19—H19B109.5
N2—C11—O3118.54 (7)N1—C19—H19C109.5
N2—C11—C12127.35 (7)H19A—C19—H19C109.5
O3—C11—C12114.11 (7)H19B—C19—H19C109.5
C6—C1—C2—C30.47 (12)O2—C8—C9—C1156.00 (7)
C9—C1—C2—C3175.68 (7)N1—C8—C9—C128.49 (9)
C1—C2—C3—C40.65 (13)O2—C8—C9—C1074.70 (9)
C2—C3—C4—C51.05 (13)N1—C8—C9—C10100.81 (8)
C3—C4—C5—C60.31 (12)C11—N2—C10—C17122.44 (7)
C2—C1—C6—C51.20 (12)C11—N2—C10—C13117.25 (7)
C9—C1—C6—C5174.97 (7)C11—N2—C10—C96.03 (8)
C2—C1—C6—C7177.48 (7)O3—C9—C10—N27.21 (7)
C9—C1—C6—C76.35 (11)C1—C9—C10—N2110.20 (7)
C4—C5—C6—C10.81 (12)C8—C9—C10—N2120.67 (7)
C4—C5—C6—C7177.91 (7)O3—C9—C10—C17124.22 (6)
C8—N1—C7—O1179.82 (8)C1—C9—C10—C176.82 (9)
C19—N1—C7—O18.22 (12)C8—C9—C10—C17122.32 (7)
C8—N1—C7—C62.85 (12)O3—C9—C10—C13113.04 (7)
C19—N1—C7—C6169.11 (7)C1—C9—C10—C13129.55 (7)
C1—C6—C7—O1174.64 (8)C8—C9—C10—C130.41 (9)
C5—C6—C7—O16.66 (13)C10—N2—C11—O32.63 (10)
C1—C6—C7—N18.11 (11)C10—N2—C11—C12177.58 (8)
C5—C6—C7—N1170.60 (7)C9—O3—C11—N22.67 (10)
C7—N1—C8—O2168.43 (8)C9—O3—C11—C12177.15 (7)
C19—N1—C8—O23.69 (11)N2—C10—C13—C1472.97 (8)
C7—N1—C8—C916.05 (11)C17—C10—C13—C1448.05 (9)
C19—N1—C8—C9171.82 (7)C9—C10—C13—C14170.96 (6)
C11—O3—C9—C1114.79 (7)C10—C13—C14—C1671.60 (9)
C11—O3—C9—C8122.21 (7)C10—C13—C14—C15165.79 (7)
C11—O3—C9—C105.96 (8)C18—O5—C17—O45.16 (12)
C2—C1—C9—O340.97 (9)C18—O5—C17—C10174.99 (7)
C6—C1—C9—O3142.90 (7)N2—C10—C17—O45.43 (11)
C2—C1—C9—C8159.89 (7)C13—C10—C17—O4126.69 (8)
C6—C1—C9—C823.97 (10)C9—C10—C17—O4107.03 (9)
C2—C1—C9—C1072.42 (9)N2—C10—C17—O5174.42 (6)
C6—C1—C9—C10103.71 (8)C13—C10—C17—O553.16 (8)
O2—C8—C9—O335.81 (10)C9—C10—C17—O573.12 (8)
N1—C8—C9—O3148.68 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O4i0.932.563.4353 (11)158
C4—H4A···O2ii0.932.563.2878 (11)136
C12—H12C···O4i0.962.593.3600 (11)138
Symmetry codes: (i) x+2, y, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC19H22N2O5
Mr358.39
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.6764 (1), 8.9366 (1), 12.0684 (2)
α, β, γ (°)93.495 (1), 109.892 (1), 98.426 (1)
V3)864.22 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.29 × 0.18
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.961, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
25638, 6231, 5381
Rint0.027
(sin θ/λ)max1)0.756
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.113, 1.05
No. of reflections6231
No. of parameters240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O4i0.932.563.4353 (11)158
C4—H4A···O2ii0.932.563.2878 (11)136
C12—H12C···O4i0.962.593.3600 (11)138
Symmetry codes: (i) x+2, y, z; (ii) x, y1, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160). Financial support from the Program for New Century Excellent Talents in Universities (NCET-08-0271) of China is also acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBadillo, J. J., Hanhan, N. V. & Franz, A. K. (2010). Curr. Opin. Drug Discovery Dev. 13, 758–766.  CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011a). Acta Cryst. E67, o1271–o1272.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011b). Acta Cryst. E67, o1273–o1274.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011c). Acta Cryst. E67, o1311–o1312.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Huang, C. & Yu, H. (2011d). Acta Cryst. E67, o1340–o1341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, C., Yu, H., Miao, Z., Zhou, J., Wang, S., Fun, H.-K., Xu, J. & Zhang, Y. (2011). Org. Biomol. Chem. 9, 3629–3631.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMalamas, M. S., Hohman, T. C. & Millen, J. (1994). J. Med. Chem. 37, 2043–2058.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationMitchell, G., Clarke, E. D., Ridley, S. M., Bartlett, D. W., Gillen, K. J., Vohra, S. K., Greenhow, D. T., Ormrod, J. C. & Wardman, P. (2000). Pest. Manag. Sci. 56, 120–126.  CrossRef CAS Google Scholar
First citationMitchell, G., Clarke, E. D., Ridley, S. M., Greenhow, D. T., Gillen, K. J., Vohra, S. K. & Wardman, P. (1995). Pestic. Sci. 44, 49–58.  CrossRef CAS Web of Science Google Scholar
First citationNair, V., Sethumadhavan, D., Nair, S. M., Viji, S. & Rath, P. (2002). Tetrahedron, 58, 3003–3007.  Web of Science CSD CrossRef CAS Google Scholar
First citationPollers-Wieers, C., Vekemans, J., Toppet, S. & Hoornaert, G. (1981). Tetrahedron 37, 4321–4326.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, L., Huang, Y. C., Liu, Y., Fun, H.-K., Zhang, Y. & Xu, J. H. (2010). J. Org. Chem. 75, 7757–7768.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYu, H., Li, J., Kou, Z., Du, X., Wei, Y., Fun, H.-K., Xu, J. & Zhang, Y. (2010). J. Org. Chem. 75, 2989–3001.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1519-o1520
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds