organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1485-o1486

3-Chloro-4-di­methyl­amino-5-[(1R,2S,5R)-2-iso­propyl-5-methyl­cyclo­hex­yl­oxy]furan-2(5H)-one

aResearch Center of Chemistry & Materials, Zhanjiang Normal College, People's Republic of China, bDevelopment Center for New Materials Engineering &, Technology in Universities of Guangdong, People's Republic of China, cChemistry Science & Technology School, Zhanjiang Normal College, Zhanjiang 524048, People's Republic of China, dSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China, and eResearch Institute of Tsinghua University in Shenzhen, Shenzhen 518055, People's Republic of China
*Correspondence e-mail: sxmfn@163.com

(Received 5 April 2011; accepted 25 April 2011; online 20 May 2011)

The title compound, C16H26ClNO3 contains one almost planar furan­one ring [maximum deviation of 0.021 (2) Å for the O atom] with a stereogenic center (S) and one cyclo­hexane ring which displays a chair conformation and has three stereogenic centers [S at the C atom bearing the isopropyl group, R at the C atom attached to the O atom and R at the C atom bearing the methyl group].

Related literature

For natural products containing a 2(5H)-furan­one subunit, see: Ming et al. (2002[Ming, D. S., Lopez, A., Hilhouse, B. J., French, C. J., Hudson, J. B. & Towers, G. H. N. (2002). J. Nat. Prod. 65, 1412-1416.]). For biologically active 2(5H)-furan­ones, see: Bailly et al. (2008[Bailly, F., Queffélec, C., Mbemba, G., Mouscadet, J. F., Pommery, N., Pommery, J., Hénichart, J. P. & Cotelle, P. (2008). Eur. J. Med. Chem. 43, 1222-1229.]). For the synthesis of 2(5H)-furan­ones with substituents in positions 3 and 4, see: Van Oeveren et al. (1994[Van Oeveren, A., Jansen, J. F. G. A. & Feringa, B. L. (1994). J. Org. Chem. 59, 5999-6007.]); For related structures, see: Chen et al. (1995[Chen, Q.-H., Geng, Z. & Huang, B. (1995). Tetrahedron Asymmetry, 6, 401-404.]); Martín & Mateo (1995[Martín, M. R. & Mateo, A. I. (1995). Tetrahedron Asymmetry, 6, 1621-1632.]); Gawronski et al. (1997[Gawronski, J. K., Chen, Q.-H., Geng, Z., Huang, B., Martin, M. R., Mateo, A. I., Brzostowska, M., Chlewska, R. R. & Feringa, B. L. (1997). Chirality, 9, 537-544.]). For the use of benzimidazoles in organic synthesis, see: Mao et al. (2010[Mao, Z.-Z., Wang, Z.-Y., Li, J.-N., Song, X.-M. & Lou, Y.-F. (2010). Synth. Commun. 40, 1963-1977.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19. ]); Orpen et al. (1989[Orpen, G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1-83.]). For the structures of heterosubstituted 2(5H)-furan­ones, see: Gawronski et al. (1997[Gawronski, J. K., Chen, Q.-H., Geng, Z., Huang, B., Martin, M. R., Mateo, A. I., Brzostowska, M., Chlewska, R. R. & Feringa, B. L. (1997). Chirality, 9, 537-544.]). For the synthesis and structure of optically pure 5-(l-menth­yloxy)-3,4-dichloro-2(5H)-furan­one, see: Chen & Geng (1993[Chen, Q.-H. & Geng, Z. (1993). Acta Chim. Sinica, 51, 622-624.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C16H26ClNO3

  • Mr = 315.83

  • Orthorhombic, P 21 21 21

  • a = 7.5438 (5) Å

  • b = 8.1631 (5) Å

  • c = 28.5953 (17) Å

  • V = 1760.92 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.23 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.950, Tmax = 0.958

  • 9112 measured reflections

  • 2922 independent reflections

  • 1951 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.117

  • S = 1.02

  • 2922 reflections

  • 196 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1066 Friedel pairs

  • Flack parameter: −0.05 (9)

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

2(5H)-Furanones, also known as crotonolactones or butenolides, have attracted increasing attention of many organic chemists due to their presence as a subunit in many natural products (Ming et al., 2002). This core unit is the key structure to induce a variety of biological phenomena like antifungal, anti-inflamatory, antibacterial, and HIV-1 anti-integrase (Bailly et al., 2008). In recent years, chiral 2(5H)-furanones with substituents in positions 3 and 4 have been synthesized in several laboratories (Van Oeveren et al., 1994) and their crystal structures have been reported (Chen et al., 1995; Martín & Mateo, 1995; Gawronski et al., 1997).

Meanwhile, benzimidazoles were widely used in various areas, especially serving as key intermediate in organic synthesis (Mao et al., 2010). In our initial study, we focused on the Michael addition-elimination reaction of 3,4-dichloro-5-(S)-(l-menthyloxy)-2(5H)-furanone and nucleophilic reagent imidazole. On the basis of the experiment, no target molecule was obtained, but the unexpected product, 3-chloro-4-N,N-dimethyl-5-(S)-(l-menthyloxy)-2(5H)-furanone that came from reaction of 3,4-dichloro-5-(S)-(l-menthyloxy)-2(5H)-furanone and the solvent N,N-dimethylformamide was given.

In the title compound (Fig. 1), the cyclohexane ring displays a chair conformation and has three stereogenic centers (C2(S), C3(R), C5(R)), and the planar core structure subunit, the furanone ring exhibits a C16(S) center with a maximum deviation of 0.021 (2) Å of O2 from the mean plane of the five atoms defining the plane, r.m.s deviation is 0.0158 Å.

Cl substitution at C14 causes significant torsion around the C13—N1 bond. The C14—C13—N1—C12 torsion angle amounts to 5.2 (5)°, this indicates a significant twist around the C13—N1 bond resulting from Cl substitution at C14.

At the same time, N1 is only 0.034 (5) Å from the furanone ring plane. This is one manifestation of the extensive conjugation of the N1 lone pair, the C13C14 double bond and the C15 carbonyl bond. The geometrical consequence is a shortening of the N1—C13 bond to an value of 1.331 (3) Å, which might be compared with the average value of 1.355 (14) Å for the C—N bond in CC—N—(C)2 system (Orpen et al., 1989; Gawronski et al., 1997). The shortening of the N1—C13 bond is accompanied by the lengthening of the formally C13C14 double bond to an value of 1.354 (3) Å, as compared with the value of 1.323 (13) Å quoted for cyclopentene and with 1.340 (13) Å in conjugated systems (Orpen et al., 1989).

And the most striking geometrical change due to conjugation is found in the furanone ring. Comparison with the non-fused furanones which contain oxygen function at C(4) (22 observations subtracted from the Cambridge Structural Database 14) (Allen, 2002) reveals significant shortening of the formally single C(sp2)—C(sp2) bond to an value of 1.428 (4) Å and simultaneous lengthening of the C(carbonyl)—O bond to an value of 1.373 (3) Å. In non-fused furanones the two bonds have the mean values of 1.466 (26) Å and 1.362 (16) Å, respectively (Allen et al., 1987; Gawronski et al., 1997). This might indicate that the essential part of the electron delocalization is concentrated in the N1, C13, C14, C15 and O3 region, and takes place at the expense of delocalization within the ester function.

Related literature top

For natural products containing a 2(5H)-furanone subunit, see: Ming et al. (2002). For biologically active 2(5H)-furanones, see: Bailly et al. (2008). For the synthesis of 2(5H)-furanones with substituents in positions 3 and 4, see: Van Oeveren et al. (1994); For related structures, see: Chen et al. (1995); Martín & Mateo (1995); Gawronski et al. (1997). For the use of benzimidazoles in organic synthesis, see: Mao et al. (2010). For standard bond lengths, see: Allen et al. (1987); Orpen et al. (1989). For the structures of heterosubstituted 2(5H)-furanones, see: Gawronski et al. (1997). For the synthesis and structure of optically pure 5-(l-menthyloxy)-3,4-dichloro-2(5H)-furanone, see: Chen & Geng (1993). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The optically pure precursor 3,4-dichloro-5-(S)-(l-menthyloxy)-2(5H)-furanone was prepared according to the literature procedure (Chen & Geng, 1993).

The title compond, 3-chloro-4-N,N-dimethyl-5-(S)-(l-menthyloxy)-2(5H)-furanone, was prepared by reaction of 3,4-dichloro-5-(S)-(l-menthyloxy)-2(5H)-furanone (3 mmol) and DMF (1 ml) at 80 °C, catalyzed by sodium ethanol (3 mmol) under N2 atmosphere. After stirring for 24 h, ice water was added to the mixture and then extracted by dichloromethane. The solvent was evaporated in vacuo and the precipitate was purified by silica gel column chromatography with gradient mixture of petroleum ether and ethyl acetate (Yield 21.3%). Single crystals of the title compound were obtained by slow evaporation of a solution in acetonitrile at room temperature.

Data for (I): m.p.161.0–163.0 °C; IR (KBr) ν: 2953.73, 748.40, 1630.61 cm-1; 1H NMR (400 MHz, CDCl3, TMS): 0.762 (3H, d, J = 6.8 Hz, CH3-7), 0.820–0.858 (1H, m, CH-8), 0.909 (3H, s, CH3-9), 0.926 (3H, s, CH3-10), 0.956–1.170 (2H, m, CH2-6), 1.290–1.427 (2H, m, CH-2, CH-5), 1.633–1.695 (2H, m, CH2-1), 2.171–2.211 (2H, m, CH2-4), 3.186 (6H, s, CH3-11, CH3-12), 3.532–3.845 (1H, ddd, J = 4.4 Hz, 4.4 Hz, 4.4 Hz, CH-3), 5.757 (1H, s, CH-16).

Refinement top

All H atoms were positioned in calculated positions (C—H = 0.96 Å or 0.97 Å or 0.98 Å) and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C) for methylene or methine H atoms and Uiso(H) = 1.5 Ueq(C) for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids drawn at the 30% probability level, hydrogen atoms have been omitted for clarity.
3-Chloro-4-dimethylamino-5-[(1R,2S,5R)-2-isopropyl- 5-methylcyclohexyloxy]furan-2(5H)-one top
Crystal data top
C16H26ClNO3F(000) = 680
Mr = 315.83Dx = 1.191 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3099 reflections
a = 7.5438 (5) Åθ = 2.8–20.5°
b = 8.1631 (5) ŵ = 0.23 mm1
c = 28.5953 (17) ÅT = 296 K
V = 1760.92 (19) Å3Block, colourless
Z = 40.23 × 0.22 × 0.19 mm
Data collection top
Bruker APEXII area-detector
diffractometer
2922 independent reflections
Radiation source: fine-focus sealed tube1951 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 25.2°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 87
Tmin = 0.950, Tmax = 0.958k = 96
9112 measured reflectionsl = 2334
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.047 w = 1/[σ2(Fo2) + (0.055P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.117(Δ/σ)max < 0.001
S = 1.02Δρmax = 0.15 e Å3
2922 reflectionsΔρmin = 0.14 e Å3
196 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.016 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1066 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.05 (9)
Crystal data top
C16H26ClNO3V = 1760.92 (19) Å3
Mr = 315.83Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.5438 (5) ŵ = 0.23 mm1
b = 8.1631 (5) ÅT = 296 K
c = 28.5953 (17) Å0.23 × 0.22 × 0.19 mm
Data collection top
Bruker APEXII area-detector
diffractometer
2922 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1951 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.958Rint = 0.049
9112 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.117Δρmax = 0.15 e Å3
S = 1.02Δρmin = 0.14 e Å3
2922 reflectionsAbsolute structure: Flack (1983), 1066 Friedel pairs
196 parametersAbsolute structure parameter: 0.05 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4580 (5)0.8674 (4)0.45480 (10)0.0785 (11)
H1A0.39340.78270.47140.094*
H1B0.57400.87730.46910.094*
C20.4806 (4)0.8152 (4)0.40327 (9)0.0628 (9)
H20.54910.90200.38800.075*
C30.2995 (4)0.8133 (3)0.37990 (9)0.0525 (8)
H30.22720.72700.39420.063*
C40.2051 (5)0.9754 (3)0.38525 (9)0.0701 (10)
H4A0.08950.96850.37050.084*
H4B0.27241.05990.36930.084*
C50.1815 (6)1.0237 (4)0.43669 (11)0.0804 (11)
H50.11120.93790.45190.096*
C60.3610 (7)1.0271 (4)0.45991 (11)0.0893 (12)
H6A0.43161.11400.44620.107*
H6B0.34621.05140.49290.107*
C70.0799 (7)1.1841 (5)0.44127 (12)0.1207 (16)
H7A0.07131.21370.47370.181*
H7B0.03691.17100.42850.181*
H7C0.14131.26880.42450.181*
C80.5869 (5)0.6562 (4)0.39706 (11)0.0718 (10)
H80.57750.62570.36400.086*
C90.5161 (5)0.5122 (4)0.42518 (12)0.0989 (14)
H9A0.52930.53450.45800.148*
H9B0.58140.41510.41730.148*
H9C0.39300.49600.41810.148*
C100.7855 (5)0.6823 (6)0.40726 (13)0.1098 (14)
H10A0.82760.77520.38990.165*
H10B0.85070.58650.39810.165*
H10C0.80190.70160.44010.165*
C110.2476 (5)0.4116 (4)0.31317 (11)0.0793 (11)
H11A0.36200.39660.32720.119*
H11B0.19230.30690.30870.119*
H11C0.17510.47770.33330.119*
C120.3298 (6)0.3891 (4)0.23027 (11)0.0928 (12)
H12A0.23550.37260.20820.139*
H12B0.36700.28530.24260.139*
H12C0.42800.44110.21490.139*
C130.2303 (4)0.6503 (3)0.26159 (9)0.0495 (7)
C140.2256 (4)0.7458 (3)0.22286 (9)0.0530 (8)
C150.1758 (4)0.9092 (4)0.23489 (11)0.0588 (8)
C160.1844 (4)0.7605 (3)0.30258 (10)0.0529 (8)
H160.08180.71800.31980.063*
Cl10.26385 (14)0.70164 (12)0.16516 (3)0.0940 (4)
N10.2678 (3)0.4928 (3)0.26825 (8)0.0609 (7)
O10.3317 (3)0.7719 (2)0.33142 (6)0.0524 (5)
O20.1456 (3)0.9169 (2)0.28218 (6)0.0627 (6)
O30.1584 (3)1.0295 (3)0.21086 (7)0.0817 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.098 (3)0.095 (3)0.0424 (19)0.022 (2)0.0045 (19)0.0019 (18)
C20.075 (3)0.077 (2)0.0371 (18)0.022 (2)0.0020 (17)0.0055 (15)
C30.062 (2)0.0594 (16)0.0362 (16)0.0128 (16)0.0064 (15)0.0012 (12)
C40.095 (3)0.0667 (18)0.0485 (18)0.0030 (19)0.0067 (19)0.0073 (14)
C50.116 (4)0.075 (2)0.050 (2)0.001 (2)0.010 (2)0.0140 (16)
C60.137 (4)0.086 (2)0.045 (2)0.017 (3)0.002 (2)0.0115 (18)
C70.174 (4)0.106 (3)0.082 (3)0.036 (3)0.010 (3)0.038 (2)
C80.070 (3)0.093 (3)0.053 (2)0.005 (2)0.0094 (19)0.0014 (18)
C90.118 (4)0.096 (3)0.083 (3)0.003 (3)0.010 (3)0.025 (2)
C100.069 (3)0.178 (4)0.083 (3)0.002 (3)0.016 (2)0.003 (3)
C110.090 (3)0.0654 (17)0.082 (2)0.004 (2)0.013 (2)0.0145 (17)
C120.101 (3)0.078 (2)0.099 (3)0.025 (2)0.005 (2)0.029 (2)
C130.047 (2)0.0554 (16)0.0464 (16)0.0003 (15)0.0049 (16)0.0037 (14)
C140.052 (2)0.0640 (17)0.0426 (18)0.0003 (15)0.0025 (15)0.0071 (14)
C150.052 (2)0.0674 (19)0.057 (2)0.0010 (17)0.0063 (18)0.0047 (17)
C160.057 (2)0.0535 (16)0.0482 (17)0.0012 (15)0.0009 (17)0.0027 (14)
Cl10.1203 (10)0.1131 (7)0.0485 (5)0.0028 (6)0.0062 (5)0.0091 (4)
N10.065 (2)0.0527 (13)0.0646 (16)0.0081 (13)0.0033 (15)0.0077 (12)
O10.0491 (14)0.0721 (11)0.0360 (10)0.0039 (10)0.0030 (10)0.0042 (9)
O20.0772 (17)0.0524 (11)0.0586 (14)0.0124 (11)0.0053 (12)0.0035 (10)
O30.0903 (19)0.0725 (13)0.0823 (16)0.0021 (13)0.0102 (15)0.0247 (12)
Geometric parameters (Å, º) top
C1—C61.502 (5)C9—H9A0.9600
C1—C21.544 (4)C9—H9B0.9600
C1—H1A0.9700C9—H9C0.9600
C1—H1B0.9700C10—H10A0.9600
C2—C31.521 (4)C10—H10B0.9600
C2—C81.536 (5)C10—H10C0.9600
C2—H20.9800C11—N11.453 (3)
C3—O11.447 (3)C11—H11A0.9600
C3—C41.511 (4)C11—H11B0.9600
C3—H30.9800C11—H11C0.9600
C4—C51.533 (4)C12—N11.454 (4)
C4—H4A0.9700C12—H12A0.9600
C4—H4B0.9700C12—H12B0.9600
C5—C61.509 (6)C12—H12C0.9600
C5—C71.523 (5)C13—N11.331 (3)
C5—H50.9800C13—C141.354 (3)
C6—H6A0.9700C13—C161.518 (4)
C6—H6B0.9700C14—C151.428 (4)
C7—H7A0.9600C14—Cl11.713 (3)
C7—H7B0.9600C15—O31.205 (3)
C7—H7C0.9600C15—O21.373 (3)
C8—C91.521 (4)C16—O11.387 (3)
C8—C101.541 (5)C16—O21.434 (3)
C8—H80.9800C16—H160.9800
C6—C1—C2112.7 (3)C2—C8—H8106.8
C6—C1—H1A109.0C10—C8—H8106.8
C2—C1—H1A109.0C8—C9—H9A109.5
C6—C1—H1B109.0C8—C9—H9B109.5
C2—C1—H1B109.0H9A—C9—H9B109.5
H1A—C1—H1B107.8C8—C9—H9C109.5
C3—C2—C8114.2 (3)H9A—C9—H9C109.5
C3—C2—C1108.8 (3)H9B—C9—H9C109.5
C8—C2—C1113.7 (3)C8—C10—H10A109.5
C3—C2—H2106.5C8—C10—H10B109.5
C8—C2—H2106.5H10A—C10—H10B109.5
C1—C2—H2106.5C8—C10—H10C109.5
O1—C3—C4112.3 (2)H10A—C10—H10C109.5
O1—C3—C2105.8 (2)H10B—C10—H10C109.5
C4—C3—C2111.7 (3)N1—C11—H11A109.5
O1—C3—H3109.0N1—C11—H11B109.5
C4—C3—H3109.0H11A—C11—H11B109.5
C2—C3—H3109.0N1—C11—H11C109.5
C3—C4—C5112.1 (2)H11A—C11—H11C109.5
C3—C4—H4A109.2H11B—C11—H11C109.5
C5—C4—H4A109.2N1—C12—H12A109.5
C3—C4—H4B109.2N1—C12—H12B109.5
C5—C4—H4B109.2H12A—C12—H12B109.5
H4A—C4—H4B107.9N1—C12—H12C109.5
C6—C5—C7113.5 (3)H12A—C12—H12C109.5
C6—C5—C4108.8 (3)H12B—C12—H12C109.5
C7—C5—C4111.2 (3)N1—C13—C14132.7 (3)
C6—C5—H5107.7N1—C13—C16120.7 (2)
C7—C5—H5107.7C14—C13—C16106.5 (2)
C4—C5—H5107.7C13—C14—C15110.3 (2)
C1—C6—C5112.2 (3)C13—C14—Cl1131.5 (2)
C1—C6—H6A109.2C15—C14—Cl1118.2 (2)
C5—C6—H6A109.2O3—C15—O2120.4 (3)
C1—C6—H6B109.2O3—C15—C14130.7 (3)
C5—C6—H6B109.2O2—C15—C14108.9 (2)
H6A—C6—H6B107.9O1—C16—O2110.2 (2)
C5—C7—H7A109.5O1—C16—C13108.4 (2)
C5—C7—H7B109.5O2—C16—C13105.1 (2)
H7A—C7—H7B109.5O1—C16—H16111.0
C5—C7—H7C109.5O2—C16—H16111.0
H7A—C7—H7C109.5C13—C16—H16111.0
H7B—C7—H7C109.5C13—N1—C11123.0 (2)
C9—C8—C2114.1 (3)C13—N1—C12121.6 (3)
C9—C8—C10110.4 (3)C11—N1—C12115.4 (2)
C2—C8—C10111.6 (3)C16—O1—C3116.8 (2)
C9—C8—H8106.8C15—O2—C16109.0 (2)

Experimental details

Crystal data
Chemical formulaC16H26ClNO3
Mr315.83
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)7.5438 (5), 8.1631 (5), 28.5953 (17)
V3)1760.92 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.23 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.950, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
9112, 2922, 1951
Rint0.049
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.117, 1.02
No. of reflections2922
No. of parameters196
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.14
Absolute structureFlack (1983), 1066 Friedel pairs
Absolute structure parameter0.05 (9)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The work was supported by the National Natural Science Foundation of China (grant No. 20772035) and the Natural Science Foundation of Guangdong Province, China (grant No. 5300082).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.   CrossRef Google Scholar
First citationBailly, F., Queffélec, C., Mbemba, G., Mouscadet, J. F., Pommery, N., Pommery, J., Hénichart, J. P. & Cotelle, P. (2008). Eur. J. Med. Chem. 43, 1222–1229.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin USA.  Google Scholar
First citationChen, Q.-H. & Geng, Z. (1993). Acta Chim. Sinica, 51, 622–624.  CAS Google Scholar
First citationChen, Q.-H., Geng, Z. & Huang, B. (1995). Tetrahedron Asymmetry, 6, 401–404.  CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGawronski, J. K., Chen, Q.-H., Geng, Z., Huang, B., Martin, M. R., Mateo, A. I., Brzostowska, M., Chlewska, R. R. & Feringa, B. L. (1997). Chirality, 9, 537–544.  CrossRef CAS Google Scholar
First citationMao, Z.-Z., Wang, Z.-Y., Li, J.-N., Song, X.-M. & Lou, Y.-F. (2010). Synth. Commun. 40, 1963–1977.  CrossRef CAS Google Scholar
First citationMartín, M. R. & Mateo, A. I. (1995). Tetrahedron Asymmetry, 6, 1621–1632.  Google Scholar
First citationMing, D. S., Lopez, A., Hilhouse, B. J., French, C. J., Hudson, J. B. & Towers, G. H. N. (2002). J. Nat. Prod. 65, 1412–1416.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOrpen, G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–83.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVan Oeveren, A., Jansen, J. F. G. A. & Feringa, B. L. (1994). J. Org. Chem. 59, 5999–6007.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1485-o1486
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds