metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[μ-aqua-aqua­(μ-benzene-1,2,4,5-tetra­carboxyl­ato)gadolinate(III)potassium(I)]

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China
*Correspondence e-mail: gxy@hpu.edu.cn

(Received 11 April 2011; accepted 29 April 2011; online 11 May 2011)

In the title compound, [KGd(C10H2O8)(H2O)2]n, the Gd3+ ion is nine-coordinated by eight O atoms from five individual benzene-1,2,4,5-tetra­carboxyl­ate (btec) ligands and one water mol­ecule, and the K+ ion is eight-coordinated by six O atoms from five individual btec ligands and two water mol­ecules. In the crystal, the btec half-mol­ecules are completed by crystallographic inversion symmetry. GdO9 and KO8 polyhedra are connected, forming layers in the ab plane, which are further inter­connected by μ8- or μ12-bridging btec ligands, forming a three-dimensional structure.

Related literature

For structures based on H4btec ligand, see: Huang et al. (2009[Huang, R. Y., Xu, H. M., Zhu, K., Liu, G. X. & Ren, X. M. (2009). Chin. J. Struct. Chem. 28, 1661-1665.]); Lu et al. (2005[Lu, K. L., Chen, Y. F., Liu, Y. H., Cheng, Y. W., Liao, R. T. & Wen, Y. S. (2005). Cryst. Growth Des. 5, 403-407.]); Wu et al. (2001[Wu, C. D., Lu, C. Z., Wu, D. M., Zhuang, H. H. & Huang, J. S. (2001). Inorg. Chem. Commun. 4, 561-564.]); Zhang et al. (2005[Zhang, L. J., Yu, J. H., Xu, J. Q., Lu, J., Bie, H. Y. & Zhang, X. (2005). Inorg. Chem. Commun. 8, 638-642.]). For the isotypic neodymium(III) compound, see: Dai et al. (2008[Dai, Y. M., Tang, E., Wang, X. Q., Huang, J. F., Wang, L. H. & Huang, X. D. (2008). Chin. J. Struct. Chem. 27, 1031-1034.]).

[Scheme 1]

Experimental

Crystal data
  • [KGd(C10H2O8)(H2O)2]

  • Mr = 482.50

  • Monoclinic, P 21 /c

  • a = 8.9003 (1) Å

  • b = 7.7816 (1) Å

  • c = 17.5150 (3) Å

  • β = 91.857 (1)°

  • V = 1212.43 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.87 mm−1

  • T = 296 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.386, Tmax = 0.591

  • 14043 measured reflections

  • 3002 independent reflections

  • 2588 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.051

  • S = 1.04

  • 3002 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.91 e Å−3

  • Δρmin = −1.29 e Å−3

Table 1
Selected bond lengths (Å)

Gd1—O6i 2.337 (3)
Gd1—O7ii 2.376 (2)
Gd1—O8 2.433 (2)
Gd1—O3 2.441 (2)
Gd1—O1 2.447 (3)
Gd1—O5iii 2.451 (2)
Gd1—O4iii 2.503 (2)
Gd1—O9 2.520 (3)
Gd1—O2 2.604 (2)
K1—O2 2.714 (3)
K1—O6 2.783 (3)
K1—O8 2.795 (3)
K1—O10 2.842 (3)
K1—O1iv 2.860 (3)
K1—O4iv 2.875 (3)
K1—O7i 2.891 (3)
K1—O9v 2.893 (3)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y-1, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The btec ligand is a remarkably versatile building block for the construction of supramolecular architectures due to its four rigid carboxyl groups and various coordination modes in the self-assembly reaction (Huang et al., 2009; Lu et al., 2005; Wu et al., 2001; Zhang et al., 2005). Furthermore, they can provide directional conformation of network structures via noncovalent contacts like hydrogen bonding and aromatic stacking. In this paper, we report the preparation and crystal structure of a new potassium(I)-gadolinium(III) complex, [KGd(btec)(H2O)2]n, where btec = benzene-1,2,4,5-tetracarboxylate. The crystal structures of a Ndiiianalogue has been reported recently (Dai et al., 2008).

As shown in Fig. 1, the asymmetric building unit of title compound comprises one GdIII atom, one KI atom, two coordinated water molecules and two btec ligands. The two crystallographic distinct btec ligands occupy inversion symmetry in the structure. One of them acts as a µ12-bridge linking six GdIII and six KI atoms, while the other one acts as a µ8-bridge linking four GdIII and four KI atoms. Considering the linking environment of the gadolinium(III) and potassium(I) atoms, GdIII is nine-coordinated by eight O atoms from five individual btec ligands and one water molecule, while the KI atom is eight-coordinated by six O atoms from five individual btec ligands and two water molecules, as listed in Tab. 1. As shown in Fig. 2, when C and H atoms are omitted, a two-dimensional Gd—K—O framework is emerged in the ab plane. Furthermore, these two-dimensional layers are integrated by C atoms of btec ligands into a three-dimensional framework.

Related literature top

For structures based on H4btec ligand, see: Huang et al. (2009); Lu et al. (2005); Wu et al. (2001); Zhang et al. (2005). For the isotypic neodymium(III) compound, see: Dai et al. (2008).

Experimental top

A mixture of 1,2,4,5-benzenetetracarboxylic (0.05 g), Gd2O3 (0.05 g), KOH(0.05 g) and H2O (15 ml) was heated at 448 K for 7 d in a sealed 25 ml Teflon-lined stainless steel vessel under autogenous pressure. After cooling to room temperature at a rate of 5 C h-1, colorless prismatic crystals were obtained in low yield.

Refinement top

The H atoms of C atoms were positioned geometrically and refined with a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The water H atoms were located in difference fourier maps, and then refined with a riding model, with O—H = 0.85 and 0.87 Å, and Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The GdIII and KI coordination environment of the title compound indicating the inversion symmetry of the btec ligands by symmetry codes vii and viii. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms. [Symmetry codes: (i) -x, y - 1/2, -z + 3/2; (ii) x, y - 1, z; (iii) -x + 1, y - 1/2, -z + 3/2; (iv) -x + 1, y + 1/2, -z + 3/2; (v) -x, y + 1/2, -z + 3/2; (vii) -x + 1, -y + 1, -z + 2; (viii) -x, -y + 2, -z + 1].
[Figure 2] Fig. 2. View of the three-dimensional network for the title compound.
Poly[µ-aqua-aqua(µ-benzene-1,2,4,5- tetracarboxylato)gadolinate(III)potassium(I)] top
Crystal data top
[KGd(C10H2O8)(H2O)2]F(000) = 916
Mr = 482.50Dx = 2.643 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2537 reflections
a = 8.9003 (1) Åθ = 2.3–25.1°
b = 7.7816 (1) ŵ = 5.87 mm1
c = 17.5150 (3) ÅT = 296 K
β = 91.857 (1)°Prism, colourless
V = 1212.43 (3) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3002 independent reflections
Radiation source: fine-focus sealed tube2588 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 83.33 pixels mm-1θmax = 28.3°, θmin = 2.3°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 109
Tmin = 0.386, Tmax = 0.591l = 2323
14043 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0208P)2 + 1.8584P]
where P = (Fo2 + 2Fc2)/3
3002 reflections(Δ/σ)max = 0.002
199 parametersΔρmax = 0.91 e Å3
0 restraintsΔρmin = 1.29 e Å3
Crystal data top
[KGd(C10H2O8)(H2O)2]V = 1212.43 (3) Å3
Mr = 482.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9003 (1) ŵ = 5.87 mm1
b = 7.7816 (1) ÅT = 296 K
c = 17.5150 (3) Å0.20 × 0.10 × 0.10 mm
β = 91.857 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3002 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2588 reflections with I > 2σ(I)
Tmin = 0.386, Tmax = 0.591Rint = 0.037
14043 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 1.04Δρmax = 0.91 e Å3
3002 reflectionsΔρmin = 1.29 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Gd10.21753 (2)0.47536 (2)0.699264 (9)0.00997 (6)
K10.22962 (11)0.97212 (11)0.78942 (5)0.02529 (19)
O10.4699 (3)0.5723 (3)0.66830 (15)0.0226 (6)
H1A0.50810.60650.71070.027*
H1B0.45330.66040.64060.027*
C10.3791 (4)0.5106 (4)0.8437 (2)0.0147 (7)
O20.3319 (3)0.6478 (3)0.81457 (14)0.0183 (6)
C20.4485 (4)0.5076 (4)0.92329 (19)0.0128 (7)
O30.3601 (3)0.3676 (3)0.81063 (14)0.0210 (6)
C30.3828 (4)0.3974 (4)0.97488 (18)0.0142 (7)
H30.30410.32700.95810.017*
O40.6594 (3)0.6935 (3)0.82750 (13)0.0180 (6)
C40.5683 (4)0.6106 (4)0.94877 (18)0.0128 (7)
O50.7106 (3)0.8636 (3)0.92519 (13)0.0173 (6)
C50.6512 (4)0.7290 (4)0.89702 (19)0.0139 (7)
O60.0404 (3)1.0020 (3)0.70586 (14)0.0163 (5)
C60.0794 (4)0.7479 (4)0.61673 (19)0.0129 (7)
O70.0284 (3)1.2656 (3)0.67405 (14)0.0168 (5)
C70.0324 (4)0.8804 (4)0.55820 (18)0.0105 (7)
O80.1973 (3)0.7726 (3)0.65718 (14)0.0189 (6)
C80.0245 (4)0.8287 (4)0.48207 (18)0.0118 (7)
H80.04030.71380.47000.014*
O90.0079 (3)0.6102 (3)0.61982 (15)0.0236 (6)
C90.0067 (4)1.0533 (4)0.57629 (19)0.0121 (7)
C100.0015 (4)1.1124 (4)0.65777 (18)0.0107 (7)
H10A0.33311.01550.98510.013*
H10B0.43370.93390.93840.013*
O100.3392 (4)0.9561 (4)0.94345 (18)0.0398 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd10.01314 (10)0.00955 (8)0.00718 (8)0.00160 (7)0.00007 (6)0.00017 (6)
K10.0245 (5)0.0240 (4)0.0270 (5)0.0026 (4)0.0061 (4)0.0027 (3)
O10.0190 (15)0.0213 (13)0.0278 (15)0.0025 (11)0.0022 (12)0.0034 (11)
C10.0161 (19)0.0175 (17)0.0104 (16)0.0008 (14)0.0006 (14)0.0011 (13)
O20.0226 (15)0.0168 (13)0.0153 (13)0.0012 (11)0.0046 (11)0.0045 (10)
C20.0161 (19)0.0125 (16)0.0096 (16)0.0008 (13)0.0010 (13)0.0008 (12)
O30.0335 (17)0.0156 (12)0.0133 (13)0.0060 (11)0.0071 (12)0.0033 (10)
C30.0158 (19)0.0157 (17)0.0111 (16)0.0033 (14)0.0003 (14)0.0000 (13)
O40.0225 (15)0.0206 (13)0.0109 (12)0.0066 (11)0.0026 (11)0.0019 (10)
C40.0151 (19)0.0140 (17)0.0092 (16)0.0013 (14)0.0001 (14)0.0018 (13)
O50.0225 (15)0.0175 (12)0.0121 (12)0.0048 (11)0.0011 (11)0.0015 (10)
C50.0122 (18)0.0161 (17)0.0134 (17)0.0005 (14)0.0003 (14)0.0050 (13)
O60.0220 (14)0.0159 (13)0.0111 (12)0.0023 (10)0.0044 (10)0.0046 (9)
C60.020 (2)0.0116 (16)0.0075 (15)0.0030 (14)0.0051 (14)0.0011 (12)
O70.0199 (15)0.0144 (12)0.0161 (13)0.0036 (10)0.0023 (11)0.0040 (10)
C70.0137 (18)0.0095 (15)0.0083 (15)0.0020 (13)0.0009 (13)0.0015 (12)
O80.0193 (15)0.0172 (13)0.0199 (14)0.0003 (11)0.0055 (11)0.0045 (10)
C80.0151 (19)0.0109 (16)0.0096 (16)0.0013 (13)0.0026 (13)0.0005 (12)
O90.0280 (17)0.0165 (13)0.0255 (15)0.0050 (11)0.0090 (12)0.0082 (11)
C90.0133 (18)0.0117 (16)0.0112 (16)0.0010 (13)0.0001 (13)0.0004 (12)
C100.0106 (18)0.0124 (16)0.0090 (15)0.0034 (13)0.0008 (13)0.0010 (12)
O100.045 (2)0.046 (2)0.0290 (17)0.0029 (16)0.0128 (15)0.0107 (14)
Geometric parameters (Å, º) top
Gd1—O6i2.337 (3)C2—C41.396 (5)
Gd1—O7ii2.376 (2)O3—K1ii3.306 (3)
Gd1—O82.433 (2)C3—C4vii1.394 (4)
Gd1—O32.441 (2)C3—H30.9300
Gd1—O12.447 (3)O4—C51.253 (4)
Gd1—O5iii2.451 (2)O4—Gd1iv2.503 (2)
Gd1—O4iii2.503 (2)O4—K1iii2.875 (3)
Gd1—O92.520 (3)C4—C3vii1.394 (4)
Gd1—O22.604 (2)C4—C51.502 (5)
Gd1—C62.825 (3)O5—C51.266 (4)
Gd1—C5iii2.831 (3)O5—Gd1iv2.451 (2)
Gd1—C12.882 (3)C5—Gd1iv2.831 (3)
K1—O22.714 (3)O6—C101.259 (4)
K1—O62.783 (3)O6—Gd1v2.337 (3)
K1—O82.795 (3)C6—O91.249 (4)
K1—O102.842 (3)C6—O81.261 (4)
K1—O1iv2.860 (3)C6—C71.504 (4)
K1—O4iv2.875 (3)O7—C101.253 (4)
K1—O7i2.891 (3)O7—Gd1vi2.376 (2)
K1—O9v2.893 (3)O7—K1v2.891 (3)
K1—C103.230 (3)C7—C81.392 (4)
K1—O3vi3.306 (3)C7—C91.402 (5)
K1—Gd1v3.9912 (10)C8—C9viii1.396 (4)
O1—K1iii2.860 (3)C8—H80.9300
O1—H1A0.8501O9—K1i2.893 (3)
O1—H1B0.8500C9—C8viii1.396 (4)
C1—O21.250 (4)C9—C101.503 (4)
C1—O31.263 (4)O10—H10A0.8671
C1—C21.506 (4)O10—H10B0.8656
C2—C31.388 (5)
O6i—Gd1—O7ii72.72 (8)O6—K1—O3vi105.99 (7)
O6i—Gd1—O894.93 (9)O8—K1—O3vi129.52 (7)
O7ii—Gd1—O8123.50 (8)O10—K1—O3vi79.96 (8)
O6i—Gd1—O378.90 (9)O1iv—K1—O3vi52.77 (7)
O7ii—Gd1—O3105.04 (9)O4iv—K1—O3vi52.76 (7)
O8—Gd1—O3126.89 (8)O7i—K1—O3vi140.46 (8)
O6i—Gd1—O1140.86 (9)O9v—K1—O3vi81.54 (7)
O7ii—Gd1—O1145.14 (9)C10—K1—O3vi88.80 (7)
O8—Gd1—O172.49 (9)O2—K1—Gd1v109.12 (6)
O3—Gd1—O179.97 (9)O6—K1—Gd1v34.92 (5)
O6i—Gd1—O5iii149.95 (9)O8—K1—Gd1v88.21 (6)
O7ii—Gd1—O5iii78.16 (8)O10—K1—Gd1v105.38 (8)
O8—Gd1—O5iii94.98 (8)O1iv—K1—Gd1v155.64 (6)
O3—Gd1—O5iii116.41 (8)O4iv—K1—Gd1v113.43 (6)
O1—Gd1—O5iii69.16 (9)O7i—K1—Gd1v36.12 (5)
O6i—Gd1—O4iii121.37 (8)O9v—K1—Gd1v38.99 (5)
O7ii—Gd1—O4iii71.02 (8)C10—K1—Gd1v54.57 (6)
O8—Gd1—O4iii143.63 (9)O3vi—K1—Gd1v109.62 (5)
O3—Gd1—O4iii68.24 (8)O2—K1—Gd137.34 (5)
O1—Gd1—O4iii79.53 (9)O6—K1—Gd182.38 (5)
O5iii—Gd1—O4iii52.70 (8)O8—K1—Gd134.09 (5)
O6i—Gd1—O981.44 (9)O10—K1—Gd1108.80 (7)
O7ii—Gd1—O971.09 (8)O1iv—K1—Gd1111.26 (6)
O8—Gd1—O952.45 (8)O4iv—K1—Gd1106.89 (5)
O3—Gd1—O9160.19 (9)O7i—K1—Gd163.78 (5)
O1—Gd1—O9114.70 (9)O9v—K1—Gd1122.78 (6)
O5iii—Gd1—O982.34 (9)C10—K1—Gd192.00 (6)
O4iii—Gd1—O9125.60 (8)O3vi—K1—Gd1155.35 (6)
O6i—Gd1—O270.03 (8)Gd1v—K1—Gd190.638 (18)
O7ii—Gd1—O2139.01 (8)Gd1—O1—K1iii135.72 (11)
O8—Gd1—O276.60 (8)Gd1—O1—H1A104.3
O3—Gd1—O251.49 (8)K1iii—O1—H1A61.0
O1—Gd1—O271.01 (9)Gd1—O1—H1B103.4
O5iii—Gd1—O2139.97 (9)K1iii—O1—H1B120.7
O4iii—Gd1—O2115.76 (8)H1A—O1—H1B107.7
O9—Gd1—O2118.52 (8)O2—C1—O3121.8 (3)
O6i—Gd1—C690.28 (9)O2—C1—C2120.9 (3)
O7ii—Gd1—C697.28 (10)O3—C1—C2117.1 (3)
O8—Gd1—C626.43 (9)O2—C1—Gd164.62 (18)
O3—Gd1—C6150.81 (9)O3—C1—Gd157.19 (17)
O1—Gd1—C692.43 (10)C2—C1—Gd1171.3 (2)
O5iii—Gd1—C686.17 (9)C1—O2—Gd189.7 (2)
O4iii—Gd1—C6138.40 (8)C1—O2—K1165.2 (2)
O9—Gd1—C626.23 (9)Gd1—O2—K1103.46 (8)
O2—Gd1—C699.35 (8)C3—C2—C4118.7 (3)
O6i—Gd1—C5iii141.71 (9)C3—C2—C1116.3 (3)
O7ii—Gd1—C5iii74.19 (9)C4—C2—C1125.0 (3)
O8—Gd1—C5iii119.44 (10)C1—O3—Gd197.0 (2)
O3—Gd1—C5iii91.69 (9)C1—O3—K1ii155.9 (2)
O1—Gd1—C5iii71.17 (9)Gd1—O3—K1ii93.34 (8)
O5iii—Gd1—C5iii26.51 (9)C2—C3—C4vii121.8 (3)
O4iii—Gd1—C5iii26.26 (9)C2—C3—H3119.1
O9—Gd1—C5iii105.40 (9)C4vii—C3—H3119.1
O2—Gd1—C5iii130.73 (9)C5—O4—Gd1iv91.6 (2)
C6—Gd1—C5iii112.63 (10)C5—O4—K1iii148.9 (2)
O6i—Gd1—C172.32 (10)Gd1iv—O4—K1iii103.25 (9)
O7ii—Gd1—C1123.98 (9)C3vii—C4—C2119.5 (3)
O8—Gd1—C1101.85 (9)C3vii—C4—C5117.5 (3)
O3—Gd1—C125.79 (9)C2—C4—C5123.0 (3)
O1—Gd1—C174.32 (10)C5—O5—Gd1iv93.7 (2)
O5iii—Gd1—C1132.62 (10)O4—C5—O5121.6 (3)
O4iii—Gd1—C192.23 (9)O4—C5—C4119.8 (3)
O9—Gd1—C1141.67 (9)O5—C5—C4118.6 (3)
O2—Gd1—C125.71 (8)O4—C5—Gd1iv62.10 (18)
C6—Gd1—C1125.03 (10)O5—C5—Gd1iv59.77 (18)
C5iii—Gd1—C1112.55 (10)C4—C5—Gd1iv174.2 (2)
O2—K1—O6116.27 (8)C10—O6—Gd1v138.0 (2)
O2—K1—O869.09 (7)C10—O6—K199.1 (2)
O6—K1—O863.05 (8)Gd1v—O6—K1102.10 (9)
O2—K1—O1072.67 (9)O9—C6—O8121.5 (3)
O6—K1—O10140.08 (10)O9—C6—C7119.1 (3)
O8—K1—O10141.74 (9)O8—C6—C7119.1 (3)
O2—K1—O1iv84.58 (8)O9—C6—Gd163.11 (18)
O6—K1—O1iv153.86 (8)O8—C6—Gd159.14 (17)
O8—K1—O1iv115.86 (9)C7—C6—Gd1166.0 (2)
O10—K1—O1iv58.46 (9)C10—O7—Gd1vi147.2 (2)
O2—K1—O4iv123.48 (8)C10—O7—K1v114.5 (2)
O6—K1—O4iv83.45 (7)Gd1vi—O7—K1v98.05 (8)
O8—K1—O4iv76.77 (7)C8—C7—C9119.4 (3)
O10—K1—O4iv125.96 (9)C8—C7—C6117.3 (3)
O1iv—K1—O4iv71.42 (8)C9—C7—C6123.2 (3)
O2—K1—O7i73.25 (8)C6—O8—Gd194.4 (2)
O6—K1—O7i58.96 (7)C6—O8—K1127.7 (2)
O8—K1—O7i79.25 (8)Gd1—O8—K1105.81 (9)
O10—K1—O7i90.92 (9)C7—C8—C9viii120.9 (3)
O1iv—K1—O7i146.80 (8)C7—C8—H8119.5
O4iv—K1—O7i141.64 (7)C9viii—C8—H8119.5
O2—K1—O9v120.23 (8)C6—O9—Gd190.7 (2)
O6—K1—O9v67.91 (7)C6—O9—K1i136.5 (2)
O8—K1—O9v127.17 (8)Gd1—O9—K1i94.77 (8)
O10—K1—O9v74.28 (9)C8viii—C9—C7119.7 (3)
O1iv—K1—O9v116.76 (8)C8viii—C9—C10118.6 (3)
O4iv—K1—O9v116.29 (8)C7—C9—C10121.4 (3)
O7i—K1—O9v59.01 (7)O7—C10—O6123.9 (3)
O2—K1—C10129.24 (8)O7—C10—C9119.4 (3)
O6—K1—C1022.64 (8)O6—C10—C9116.7 (3)
O8—K1—C1063.26 (8)O7—C10—K191.9 (2)
O10—K1—C10152.09 (10)O6—C10—K158.30 (18)
O1iv—K1—C10131.40 (9)C9—C10—K1121.7 (2)
O4iv—K1—C1060.96 (8)K1—O10—H10A138.3
O7i—K1—C1081.59 (8)K1—O10—H10B102.5
O9v—K1—C1078.87 (8)H10A—O10—H10B106.3
O2—K1—O3vi137.10 (8)
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y1, z; (iii) x+1, y1/2, z+3/2; (iv) x+1, y+1/2, z+3/2; (v) x, y+1/2, z+3/2; (vi) x, y+1, z; (vii) x+1, y+1, z+2; (viii) x, y+2, z+1.

Experimental details

Crystal data
Chemical formula[KGd(C10H2O8)(H2O)2]
Mr482.50
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.9003 (1), 7.7816 (1), 17.5150 (3)
β (°) 91.857 (1)
V3)1212.43 (3)
Z4
Radiation typeMo Kα
µ (mm1)5.87
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.386, 0.591
No. of measured, independent and
observed [I > 2σ(I)] reflections
14043, 3002, 2588
Rint0.037
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.051, 1.04
No. of reflections3002
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.91, 1.29

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Gd1—O6i2.337 (3)K1—O22.714 (3)
Gd1—O7ii2.376 (2)K1—O62.783 (3)
Gd1—O82.433 (2)K1—O82.795 (3)
Gd1—O32.441 (2)K1—O102.842 (3)
Gd1—O12.447 (3)K1—O1iv2.860 (3)
Gd1—O5iii2.451 (2)K1—O4iv2.875 (3)
Gd1—O4iii2.503 (2)K1—O7i2.891 (3)
Gd1—O92.520 (3)K1—O9v2.893 (3)
Gd1—O22.604 (2)
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y1, z; (iii) x+1, y1/2, z+3/2; (iv) x+1, y+1/2, z+3/2; (v) x, y+1/2, z+3/2.
 

References

First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, Y. M., Tang, E., Wang, X. Q., Huang, J. F., Wang, L. H. & Huang, X. D. (2008). Chin. J. Struct. Chem. 27, 1031–1034.  CAS Google Scholar
First citationHuang, R. Y., Xu, H. M., Zhu, K., Liu, G. X. & Ren, X. M. (2009). Chin. J. Struct. Chem. 28, 1661–1665.  CAS Google Scholar
First citationLu, K. L., Chen, Y. F., Liu, Y. H., Cheng, Y. W., Liao, R. T. & Wen, Y. S. (2005). Cryst. Growth Des. 5, 403–407.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, C. D., Lu, C. Z., Wu, D. M., Zhuang, H. H. & Huang, J. S. (2001). Inorg. Chem. Commun. 4, 561–564.  CrossRef CAS Google Scholar
First citationZhang, L. J., Yu, J. H., Xu, J. Q., Lu, J., Bie, H. Y. & Zhang, X. (2005). Inorg. Chem. Commun. 8, 638–642.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds