organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1313-o1314

(2E)-3-[3-(Benz­yl­oxy)phen­yl]-1-(2-hy­dr­oxy­phen­yl)prop-2-en-1-one

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Chemistry, P. A. College of Engineering, Mangalore 574 153, India, and cDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 25 April 2011; accepted 28 April 2011; online 7 May 2011)

In the title compound, C22H18O3, an intra­molecular O—H⋯O hydrogen bond stabilizes the mol­ecular structure, forming an S(6) ring motif. The central benzene ring forms a dihedral angle of 64.74 (5)° with the phenyl ring and a dihedral angle of 5.58 (5)° with the terminal benzene ring. In the crystal, mol­ecules are linked into columns along the a axis via inter­molecular C—H⋯O hydrogen bonds. C—H⋯π inter­actions involving the centroid of the hy­droxy-substituted benzene ring further stabilize the crystal structure.

Related literature

For the background to chalcones, see: Awad et al. (1960[Awad, W., El-Neweihy, M. & Selim, F. (1960). J. Org. Chem. 25, 1333-1336.]); Coudert et al. (1988[Coudert, P., Couquelet, J. & Tronche, P. (1988). J. Heterocycl. Chem. 25, 799-802.]); Insuasty et al. (1992[Insuasty, B., Abonia, R. & Quiroga, J. (1992). An. Quim. 88, 718-720.], 1997[Insuasty, B., Quiroga, J. & Meier, H. (1997). Trends Heterocycl. Chem. 5, 83-89.]); Kolos et al. (1996[Kolos, N., Orlov, V., Arisa, D., Shishkin, O., Struchkov, T. & Vorobiova, N. (1996). Khim. Geterotsikl. Soedin. pp. 87-95; Chem. Abstr. 125, 195600.]); Samshuddin et al. (2010[Samshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279-o1280.]); Fun et al. (2010[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o864-o865.]); Sarojini et al. (2006[Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54-59.]); Shettigar et al. (2010[Shettigar, S., Poornesh, P., Umesh, G., Sarojini, B. K., Narayana, B. & Prakash Kamath, K. (2010). Opt. Laser Technol. 42, 1162-1166.]); Sharma et al. (1997[Sharma, N. K., Kumar, R., Parmar, V. S. & Errington, W. (1997). Acta Cryst. C53, 1438-1440.]); Ravishankar et al. (2003[Ravishankar, T., Chinnakali, K., Nanjundan, S., Selvamalar, C. S. J., Ramnathan, A., Usman, A. & Fun, H.-K. (2003). Acta Cryst. E59, o1143-o1145.], 2005[Ravishankar, T., Chinnakali, K., Nanjundan, S., Selvam, P., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o405-o407.]); Butcher et al. (2006[Butcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o1633-o1635.]); Narayana et al. (2007[Narayana, B., Lakshmana, K., Sarojini, B. K., Yathirajan, H. S. & Bolte, M. (2007). Private communication.]); Sarojini et al. (2007a[Sarojini, B. K., Narayana, B., Mayekar, A. N., Yathirajan, H. S. & Bolte, M. (2007a). Acta Cryst. E63, o4447.],b[Sarojini, B. K., Yathirajan, H. S., Mustafa, K., Sarfraz, H. & Bolte, M. (2007b). Acta Cryst. E63, o4448.]); Jasinski et al. (2011[Jasinski, J. P., Butcher, R. J., Musthafa Khaleel, V., Sarojini, B. K. & Yathirajan, H. S. (2011). Acta Cryst. E67, o795.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18O3

  • Mr = 330.36

  • Monoclinic, P 21 /c

  • a = 6.6343 (1) Å

  • b = 35.7706 (5) Å

  • c = 8.1537 (1) Å

  • β = 121.879 (1)°

  • V = 1643.12 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.46 × 0.41 × 0.28 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.960, Tmax = 0.976

  • 23662 measured reflections

  • 5994 independent reflections

  • 5154 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.126

  • S = 1.04

  • 5994 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C17–C22 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1⋯O2 0.96 1.62 2.5121 (11) 152
C5—H5A⋯O3i 0.93 2.47 3.3912 (13) 170
C18—H18A⋯O3ii 0.93 2.48 3.1235 (16) 127
C7—H7BCg1i 0.97 2.75 3.6633 (11) 158
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x-1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Chalcones (1,3-diarylpropenones) have been widely used as starting materials in numerous synthetic reactions (Awad et al., 1960; Coudert et al., 1988) including the preparation of fused ring heterocyclic compounds (Insuasty et al., 1992, 1997; Kolos et al., 1996; Samshuddin et al., 2010; Fun et al., 2010). Chalcones are also finding application as organic nonlinear optical materials (NLO) for their SHG conversion efficiency (Sarojini et al., 2006; Shettigar et al., 2010). The crystal structures of some of the related chalcones viz: 1-(3,4-dimethoxyphenyl)-3-(3-methylphenyl)prop-2-en-1-one (Sharma et al., 1997), 3-(3,4-dimethoxyphenyl)-1-(4-hydroxy-phenyl)prop-2-en-1-one (Ravishankar et al., 2003), 1-(4-chlorophenyl)-3-(4-hydroxyphenyl)prop-2-en-1-one (Ravishankar et al., 2005), 3-(3,4-dimethoxyphenyl)-1-(4-fluorophenyl)prop-2-en-1-one (Butcher et al., 2006), 3-(2-chlorophenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (Narayana et al., 2007), (2E)-1-(2-hydroxyphenyl)-3-(4-methoxy-phenyl)prop-2-en-1-one, (2E)-1-(2-hydroxyphenyl)-3-[4-(methyl-sulfanyl)phenyl]prop-2-en-1-one (Sarojini et al., 2007a,b) and (2E)-3-(2-anthryl)-1-(2-hydroxyphenyl)prop-2-en-1-one (Jasinski et al., 2011) have been reported. In a continuation of our studies of the structures of chalcones, we report the crystal structure of a new chalcone, (2E)-3-(3-benzyloxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one, C22H18O3, (I).

The molecular strucure of (I) is shown in Fig. 1. An intramolecular O3—H1···O2 hydrogen bond (Table 1) stabilized the molecular structure, forming an S(6) ring motif (Bernstein et al., 1995). The (C8–C13) benzene ring forms a dihedral angle of 64.74 (5)° with the C1–C6 phenyl ring and is almost co-planar with the C17–C22 phenyl ring with a dihedral angle of 5.58 (5)°. Bond lengths (Allen et al., 1987) and angles are within the normal ranges.

In the crystal packing (Fig. 2), the molecules are linked into columns along the a axis via intermolecular C5—H5A···O3 and C18—H18A···O3 hydrogen bonds (Table 1). C–H···π interactions (Table 1) involving the centroids of C17–C22 rings (Cg1) further stabilize the crystal structure.

Related literature top

For the background to chalcones, see: Awad et al. (1960); Coudert et al. (1988); Insuasty et al. (1992, 1997); Kolos et al. (1996); Samshuddin et al. (2010); Fun et al. (2010); Sarojini et al. (2006); Shettigar et al. (2010); Sharma et al. (1997); Ravishankar et al. (2003, 2005); Butcher et al. (2006); Narayana et al. (2007); Sarojini et al. (2007a,b); Jasinski et al. (2011). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

2-Hydroxyacetophenone (1.36 g, 0.01 mol) was mixed with 4-benzyloxybenzaldehyde (2.12 g, 0.01 mol) and dissolved in ethanol (40 ml). To this solution 4 ml of KOH (50%) was added at 278 K. The reaction mixture was stirred for 8 h and poured onto crushed ice. The pH of this mixture was adjusted to 3–4 with 2 M HCl aqueous solution. The resulting crude yellow solid was filtered, washed successively with dilute HCl solution and distilled water and finally recrystallized from ethanol (95%) to give the pure chalcone. Crystals suitable for X-ray diffraction studies were grown by the slow evaporation of the solution of the compound in ethyl alcohol (m. p.: 367–369 K). Composition: Found (calculated) for C22H18O3, C 79.98 (79.93); H: 5.49 (5.52).

Refinement top

H1 was located from the difference Fourier map and was fixed at its found position with Uiso(H) = 1.5 Ueq(O) [O–H = 0.9618 Å]. The remaining H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 Ueq(C) [C–H = 0.93–0.97 Å].

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates the intramolecular hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.
(2E)-3-[3-(Benzyloxy)phenyl]-1-(2-hydroxyphenyl)prop-2-en-1-one top
Crystal data top
C22H18O3F(000) = 696
Mr = 330.36Dx = 1.335 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9442 reflections
a = 6.6343 (1) Åθ = 3.0–32.7°
b = 35.7706 (5) ŵ = 0.09 mm1
c = 8.1537 (1) ÅT = 100 K
β = 121.879 (1)°Block, yellow
V = 1643.12 (4) Å30.46 × 0.41 × 0.28 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5994 independent reflections
Radiation source: fine-focus sealed tube5154 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 32.7°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 109
Tmin = 0.960, Tmax = 0.976k = 5454
23662 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.6186P]
where P = (Fo2 + 2Fc2)/3
5994 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C22H18O3V = 1643.12 (4) Å3
Mr = 330.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.6343 (1) ŵ = 0.09 mm1
b = 35.7706 (5) ÅT = 100 K
c = 8.1537 (1) Å0.46 × 0.41 × 0.28 mm
β = 121.879 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5994 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5154 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.976Rint = 0.024
23662 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.04Δρmax = 0.47 e Å3
5994 reflectionsΔρmin = 0.21 e Å3
226 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.22678 (13)0.12255 (2)0.64011 (11)0.01788 (14)
O21.16788 (13)0.04531 (2)0.73546 (11)0.01926 (15)
O31.37772 (13)0.10727 (2)0.82954 (12)0.01960 (15)
H11.32900.08240.77900.029*
C10.1804 (2)0.21718 (3)0.69912 (16)0.0233 (2)
H1A0.34380.22090.76680.028*
C20.0347 (3)0.24325 (3)0.71398 (18)0.0297 (3)
H2A0.10130.26410.79260.036*
C30.2084 (2)0.23818 (3)0.61239 (18)0.0283 (2)
H3A0.30550.25570.62190.034*
C40.3076 (2)0.20672 (3)0.49557 (17)0.0238 (2)
H4A0.47130.20330.42640.029*
C50.16259 (19)0.18037 (3)0.48208 (15)0.01870 (18)
H5A0.22960.15930.40530.022*
C60.08311 (18)0.18549 (3)0.58347 (14)0.01668 (17)
C70.24046 (18)0.15803 (3)0.56323 (14)0.01653 (17)
H7A0.40300.16700.63310.020*
H7B0.18910.15530.42820.020*
C80.37550 (16)0.09508 (3)0.64855 (13)0.01453 (16)
C90.53008 (17)0.09903 (3)0.58253 (14)0.01643 (17)
H9A0.53570.12130.52620.020*
C100.67596 (17)0.06915 (3)0.60209 (14)0.01585 (17)
H10A0.77940.07190.55850.019*
C110.67167 (16)0.03522 (3)0.68526 (13)0.01424 (16)
C120.51140 (17)0.03170 (3)0.74868 (14)0.01541 (17)
H12A0.50320.00930.80280.018*
C130.36650 (17)0.06120 (3)0.73120 (14)0.01546 (17)
H13A0.26260.05860.77440.019*
C140.83060 (17)0.00553 (3)0.70116 (13)0.01512 (17)
H14A0.91830.01000.64430.018*
C150.86482 (17)0.02778 (3)0.78915 (14)0.01564 (17)
H15A0.77930.03380.84630.019*
C161.03580 (16)0.05459 (3)0.79541 (13)0.01431 (16)
C171.05437 (16)0.09259 (3)0.87343 (13)0.01351 (16)
C180.90277 (17)0.10566 (3)0.93231 (14)0.01700 (17)
H18A0.78720.08980.92460.020*
C190.92093 (19)0.14160 (3)1.00144 (15)0.02028 (19)
H19A0.81780.14971.03880.024*
C201.09498 (19)0.16556 (3)1.01480 (15)0.01988 (19)
H20A1.10820.18971.06180.024*
C211.24825 (18)0.15361 (3)0.95848 (14)0.01802 (18)
H21A1.36420.16970.96820.022*
C221.22862 (16)0.11736 (3)0.88693 (13)0.01474 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0210 (3)0.0121 (3)0.0250 (4)0.0031 (2)0.0152 (3)0.0037 (3)
O20.0199 (3)0.0171 (3)0.0267 (4)0.0001 (3)0.0163 (3)0.0017 (3)
O30.0174 (3)0.0188 (3)0.0277 (4)0.0011 (3)0.0154 (3)0.0008 (3)
C10.0310 (5)0.0153 (4)0.0192 (5)0.0003 (4)0.0103 (4)0.0007 (3)
C20.0488 (7)0.0159 (5)0.0248 (5)0.0033 (5)0.0197 (5)0.0015 (4)
C30.0467 (7)0.0181 (5)0.0315 (6)0.0120 (5)0.0284 (5)0.0067 (4)
C40.0291 (5)0.0209 (5)0.0293 (5)0.0068 (4)0.0207 (5)0.0066 (4)
C50.0239 (5)0.0151 (4)0.0212 (4)0.0005 (3)0.0148 (4)0.0015 (3)
C60.0233 (4)0.0123 (4)0.0156 (4)0.0013 (3)0.0110 (3)0.0024 (3)
C70.0195 (4)0.0131 (4)0.0177 (4)0.0000 (3)0.0103 (3)0.0017 (3)
C80.0145 (4)0.0131 (4)0.0155 (4)0.0004 (3)0.0076 (3)0.0002 (3)
C90.0179 (4)0.0145 (4)0.0181 (4)0.0010 (3)0.0104 (3)0.0028 (3)
C100.0167 (4)0.0157 (4)0.0165 (4)0.0002 (3)0.0098 (3)0.0009 (3)
C110.0145 (4)0.0133 (4)0.0140 (4)0.0004 (3)0.0069 (3)0.0009 (3)
C120.0168 (4)0.0121 (4)0.0171 (4)0.0007 (3)0.0089 (3)0.0001 (3)
C130.0167 (4)0.0139 (4)0.0179 (4)0.0010 (3)0.0105 (3)0.0001 (3)
C140.0147 (4)0.0146 (4)0.0153 (4)0.0006 (3)0.0074 (3)0.0018 (3)
C150.0163 (4)0.0153 (4)0.0169 (4)0.0005 (3)0.0098 (3)0.0005 (3)
C160.0140 (4)0.0141 (4)0.0146 (4)0.0005 (3)0.0074 (3)0.0010 (3)
C170.0129 (4)0.0134 (4)0.0146 (4)0.0005 (3)0.0075 (3)0.0003 (3)
C180.0166 (4)0.0177 (4)0.0193 (4)0.0002 (3)0.0113 (3)0.0008 (3)
C190.0217 (5)0.0207 (5)0.0215 (5)0.0022 (4)0.0136 (4)0.0025 (3)
C200.0237 (5)0.0169 (4)0.0169 (4)0.0007 (3)0.0093 (4)0.0022 (3)
C210.0184 (4)0.0157 (4)0.0178 (4)0.0034 (3)0.0080 (3)0.0017 (3)
C220.0130 (4)0.0162 (4)0.0146 (4)0.0004 (3)0.0070 (3)0.0011 (3)
Geometric parameters (Å, º) top
O1—C81.3683 (11)C10—C111.3978 (13)
O1—C71.4395 (12)C10—H10A0.9300
O2—C161.2528 (11)C11—C121.4123 (13)
O3—C221.3477 (11)C11—C141.4535 (13)
O3—H10.9618C12—C131.3833 (13)
C1—C21.3942 (17)C12—H12A0.9300
C1—C61.3956 (14)C13—H13A0.9300
C1—H1A0.9300C14—C151.3467 (13)
C2—C31.382 (2)C14—H14A0.9300
C2—H2A0.9300C15—C161.4656 (13)
C3—C41.3946 (17)C15—H15A0.9300
C3—H3A0.9300C16—C171.4780 (13)
C4—C51.3924 (14)C17—C181.4038 (13)
C4—H4A0.9300C17—C221.4139 (13)
C5—C61.3966 (15)C18—C191.3833 (14)
C5—H5A0.9300C18—H18A0.9300
C6—C71.5044 (14)C19—C201.3952 (15)
C7—H7A0.9700C19—H19A0.9300
C7—H7B0.9700C20—C211.3860 (15)
C8—C91.3945 (13)C20—H20A0.9300
C8—C131.4031 (13)C21—C221.3996 (14)
C9—C101.3933 (13)C21—H21A0.9300
C9—H9A0.9300
C8—O1—C7116.46 (7)C10—C11—C14118.56 (8)
C22—O3—H1104.7C12—C11—C14123.57 (8)
C2—C1—C6120.49 (11)C13—C12—C11120.71 (9)
C2—C1—H1A119.8C13—C12—H12A119.6
C6—C1—H1A119.8C11—C12—H12A119.6
C3—C2—C1120.24 (11)C12—C13—C8120.33 (9)
C3—C2—H2A119.9C12—C13—H13A119.8
C1—C2—H2A119.9C8—C13—H13A119.8
C2—C3—C4119.74 (11)C15—C14—C11127.18 (9)
C2—C3—H3A120.1C15—C14—H14A116.4
C4—C3—H3A120.1C11—C14—H14A116.4
C5—C4—C3120.24 (11)C14—C15—C16120.47 (9)
C5—C4—H4A119.9C14—C15—H15A119.8
C3—C4—H4A119.9C16—C15—H15A119.8
C4—C5—C6120.25 (10)O2—C16—C15120.07 (9)
C4—C5—H5A119.9O2—C16—C17119.68 (8)
C6—C5—H5A119.9C15—C16—C17120.26 (8)
C1—C6—C5119.03 (10)C18—C17—C22117.95 (9)
C1—C6—C7120.27 (9)C18—C17—C16122.79 (8)
C5—C6—C7120.66 (9)C22—C17—C16119.25 (8)
O1—C7—C6108.71 (8)C19—C18—C17121.67 (9)
O1—C7—H7A109.9C19—C18—H18A119.2
C6—C7—H7A109.9C17—C18—H18A119.2
O1—C7—H7B109.9C18—C19—C20119.54 (9)
C6—C7—H7B109.9C18—C19—H19A120.2
H7A—C7—H7B108.3C20—C19—H19A120.2
O1—C8—C9124.44 (8)C21—C20—C19120.43 (9)
O1—C8—C13115.60 (8)C21—C20—H20A119.8
C9—C8—C13119.96 (9)C19—C20—H20A119.8
C10—C9—C8119.09 (9)C20—C21—C22120.05 (9)
C10—C9—H9A120.5C20—C21—H21A120.0
C8—C9—H9A120.5C22—C21—H21A120.0
C9—C10—C11122.04 (9)O3—C22—C21117.97 (9)
C9—C10—H10A119.0O3—C22—C17121.68 (9)
C11—C10—H10A119.0C21—C22—C17120.35 (9)
C10—C11—C12117.87 (8)
C6—C1—C2—C30.73 (17)C9—C8—C13—C120.39 (14)
C1—C2—C3—C40.38 (17)C10—C11—C14—C15174.62 (9)
C2—C3—C4—C50.40 (17)C12—C11—C14—C155.66 (15)
C3—C4—C5—C60.83 (16)C11—C14—C15—C16178.92 (9)
C2—C1—C6—C50.30 (15)C14—C15—C16—O26.92 (14)
C2—C1—C6—C7178.15 (10)C14—C15—C16—C17173.44 (9)
C4—C5—C6—C10.47 (15)O2—C16—C17—C18176.07 (9)
C4—C5—C6—C7177.37 (9)C15—C16—C17—C184.29 (14)
C8—O1—C7—C6174.51 (8)O2—C16—C17—C222.76 (13)
C1—C6—C7—O1117.15 (10)C15—C16—C17—C22176.88 (8)
C5—C6—C7—O165.04 (11)C22—C17—C18—C190.09 (14)
C7—O1—C8—C92.20 (13)C16—C17—C18—C19178.75 (9)
C7—O1—C8—C13177.49 (8)C17—C18—C19—C200.48 (15)
O1—C8—C9—C10178.92 (9)C18—C19—C20—C210.32 (16)
C13—C8—C9—C100.75 (14)C19—C20—C21—C220.24 (15)
C8—C9—C10—C110.25 (15)C20—C21—C22—O3178.42 (9)
C9—C10—C11—C120.60 (14)C20—C21—C22—C170.64 (14)
C9—C10—C11—C14179.67 (9)C18—C17—C22—O3178.55 (9)
C10—C11—C12—C130.97 (14)C16—C17—C22—O30.33 (14)
C14—C11—C12—C13179.32 (9)C18—C17—C22—C210.47 (14)
C11—C12—C13—C80.49 (14)C16—C17—C22—C21179.36 (8)
O1—C8—C13—C12179.31 (8)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C17–C22 benzene ring.
D—H···AD—HH···AD···AD—H···A
O3—H1···O20.961.622.5121 (11)152
C5—H5A···O3i0.932.473.3912 (13)170
C18—H18A···O3ii0.932.483.1235 (16)127
C7—H7B···Cg1i0.972.753.6633 (11)158
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC22H18O3
Mr330.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)6.6343 (1), 35.7706 (5), 8.1537 (1)
β (°) 121.879 (1)
V3)1643.12 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.46 × 0.41 × 0.28
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.960, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
23662, 5994, 5154
Rint0.024
(sin θ/λ)max1)0.760
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.126, 1.04
No. of reflections5994
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C17–C22 benzene ring.
D—H···AD—HH···AD···AD—H···A
O3—H1···O20.961.622.5121 (11)152
C5—H5A···O3i0.932.473.3912 (13)170
C18—H18A···O3ii0.932.483.1235 (16)127
C7—H7B···Cg1i0.972.753.6633 (11)158
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: C-7581-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). WSL also thanks the Malaysian Government and USM for the award of a research fellowship. VMK thanks P. A. College of Engin­eering for the research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAwad, W., El-Neweihy, M. & Selim, F. (1960). J. Org. Chem. 25, 1333–1336.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationButcher, R. J., Yathirajan, H. S., Anilkumar, H. G., Sarojini, B. K. & Narayana, B. (2006). Acta Cryst. E62, o1633–o1635.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCoudert, P., Couquelet, J. & Tronche, P. (1988). J. Heterocycl. Chem. 25, 799–802.  CrossRef CAS Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o864–o865.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationInsuasty, B., Abonia, R. & Quiroga, J. (1992). An. Quim. 88, 718–720.  Google Scholar
First citationInsuasty, B., Quiroga, J. & Meier, H. (1997). Trends Heterocycl. Chem. 5, 83–89.  CAS Google Scholar
First citationJasinski, J. P., Butcher, R. J., Musthafa Khaleel, V., Sarojini, B. K. & Yathirajan, H. S. (2011). Acta Cryst. E67, o795.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKolos, N., Orlov, V., Arisa, D., Shishkin, O., Struchkov, T. & Vorobiova, N. (1996). Khim. Geterotsikl. Soedin. pp. 87–95; Chem. Abstr. 125, 195600.  Google Scholar
First citationNarayana, B., Lakshmana, K., Sarojini, B. K., Yathirajan, H. S. & Bolte, M. (2007). Private communication.  Google Scholar
First citationRavishankar, T., Chinnakali, K., Nanjundan, S., Selvam, P., Fun, H.-K. & Yu, X.-L. (2005). Acta Cryst. E61, o405–o407.  CSD CrossRef IUCr Journals Google Scholar
First citationRavishankar, T., Chinnakali, K., Nanjundan, S., Selvamalar, C. S. J., Ramnathan, A., Usman, A. & Fun, H.-K. (2003). Acta Cryst. E59, o1143–o1145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSamshuddin, S., Narayana, B., Yathirajan, H. S., Safwan, A. P. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1279–o1280.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54–59.  Web of Science CrossRef CAS Google Scholar
First citationSarojini, B. K., Narayana, B., Mayekar, A. N., Yathirajan, H. S. & Bolte, M. (2007a). Acta Cryst. E63, o4447.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSarojini, B. K., Yathirajan, H. S., Mustafa, K., Sarfraz, H. & Bolte, M. (2007b). Acta Cryst. E63, o4448.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSharma, N. K., Kumar, R., Parmar, V. S. & Errington, W. (1997). Acta Cryst. C53, 1438–1440.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShettigar, S., Poornesh, P., Umesh, G., Sarojini, B. K., Narayana, B. & Prakash Kamath, K. (2010). Opt. Laser Technol. 42, 1162–1166.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1313-o1314
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds