organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1301-o1302

(3E,5E)-1-Acryloyl-3,5-bis­­(2,4-di­chloro­benzyl­­idene)piperidin-4-one hemihydrate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 25 April 2011; accepted 27 April 2011; online 7 May 2011)

The asymmetric unit of the title compound, C22H15Cl4NO2·0.5H2O, consists of a (3E,5E)-1-acryloyl-3,5-bis­(2,4-dichloro­benzyl­idene)piperidin-4-one mol­ecule and a half-mol­ecule of water (the O atom of the water mol­ecule lies on a twofold axis). The piperidin-4-one ring adopts an envelope conformation. The dihedral angle between the two terminal benzene rings is 8.84 (11)°. In the crystal, mol­ecules are connected by C—H⋯O hydrogen bonds forming supra­molecular chains along the c axis. Furthermore, adjacent chains are inter­connected by the water mol­ecules via O—H⋯O hydrogen bonds.

Related literature

For details and applications of α,β-unsaturated carbonyl compounds, see: Oh et al. (2006[Oh, S., Jeong, I. H., Shin, W. S. & Wang, Q. L. (2006). Bioorg. Med. Chem. Lett. 16, 1656-1659.]); El-Subbagh et al. (2000[El-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-Obaid, A. M. (2000). J. Med. Chem. 43, 2915-2921.]); Husain et al. (2006[Husain, A., Hasan, S. M., Lal, S. & Alam, M. M. (2006). Indian J. Pharm. Sci. 68, 536-538.]); Favier et al. (2005[Favier, L. S., Maria, A. O. M., Wendel, G. H., Borkowski, E. J., Giordano, O. S., Pelzer, L. & Tonn, C. E. (2005). J. Ethnopharmacol. 100, 260-267.]). For details of the preparation, see: Dimmock et al. (2000[Dimmock, J. R., Padamanilayam, M. P. & Pathucode, R. N. (2000). J. Med. Chem. 44, 586-593.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • 2C22H15Cl4NO2·H2O

  • Mr = 952.32

  • Monoclinic, C 2/c

  • a = 27.0296 (12) Å

  • b = 11.3031 (5) Å

  • c = 18.9580 (14) Å

  • β = 133.807 (2)°

  • V = 4180.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 296 K

  • 0.41 × 0.22 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.794, Tmax = 0.947

  • 22264 measured reflections

  • 6084 independent reflections

  • 3314 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.140

  • S = 1.04

  • 6084 reflections

  • 273 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O2i 1.05 2.19 3.180 (3) 157
C4—H4A⋯O1ii 0.93 2.29 3.186 (3) 162
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The α,β-unsaturated carbonyl moiety is present in a large number of natural and synthetic products which are products of the Claisen-Schmidt condensation reaction. They exhibit wide variety of biological activities such as cytotoxicity (Oh et al., 2006), antitumor (El-Subbagh et al., 2000) and antimicrobial (Husain et al., 2006) properties. Furthermore, it has been shown that the conjugated system plays a fundamental role in determining the bioactivity, due to its ability to act as a Michael acceptor for the addition of protein functional groups (Favier et al., 2005). The title compound (I), is a new piperidin-4-one derivative.

The asymmetric unit of the title compound consists of a (3E,5E)-1-acryloyl-3,5-bis(2,4-dichlorobenzylidene) piperidin-4-one molecule and a half-molecule of water (the O atom of the water molecule lies on a twofold axis), as shown in Fig. 1. The dihedral angle between the two terminal phenyl (C1–C6:C15–C20) rings is 8.84 (11)°. The piperidine (N12/C8–C11/C13) ring adopts an envelope conformation [puckering parameters: Q = 0.508 (3) Å, θ = 122.4 (3)° and ϕ = 182.1 (4)°; (Cremer & Pople, 1975)] with atoms C11 and C13 deviating by 0.233 (2) and 0.217 (3) Å from the least-squares plane defined by the remaining atoms (N12/C8–C10) in the ring.

In the crystal structure, (Fig. 2), the molecules are connected by intermolecular C4—H4A···O1 hydrogen bonds forming one-dimensional supramolecular chains along the c-axis. Furthermore, adjacent chains are inter-connected by water molecules via O1W—H1W1···O2 hydrogen bonds.

Related literature top

For details and applications of α,β-unsaturated carbonyl compounds, see: Oh et al. (2006); El-Subbagh et al. (2000); Husain et al. (2006); Favier et al. (2005). For details of the preparation, see: Dimmock et al. (2000). For ring conformations, see: Cremer & Pople (1975).

Experimental top

3,5-bis(2,4-dichlorobenzylidene)piperidin-4-one was synthesized by the method described by Dimmock et al., (2000). Briefly, the title compound (I) was prepared by dropwise addition of acryloyl chloride solution (7.24 mmol) to stirring mixture of 3,5-bis(2,4-dichlorobenzylidene) piperidin-4-one (4.82 mmol) and acetone (10 ml) in presence of weak base at room temperature. After completion of the reaction (through TLC monitoring), the mixture was poured into ice. The precipitate was filtered and washed with water. The pure solid was then recrystallized from ethanol to afford the title compound as yellow crystals.

Refinement top

Atoms H23A and H23B were located from a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically [O–H = 1.0501 Å ] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound (I) with hydrogen bonds shown as dashed lines. H atoms not involved in the intermolecular interactions have been omitted for clarity.
(3E,5E)-1-Acryloyl-3,5-bis(2,4-dichlorobenzylidene)piperidin-4-one hemihydrate top
Crystal data top
2C22H15Cl4NO2·H2OF(000) = 1944
Mr = 952.32Dx = 1.513 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4558 reflections
a = 27.0296 (12) Åθ = 3.0–23.7°
b = 11.3031 (5) ŵ = 0.59 mm1
c = 18.9580 (14) ÅT = 296 K
β = 133.807 (2)°Plate, yellow
V = 4180.0 (4) Å30.41 × 0.22 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6084 independent reflections
Radiation source: fine-focus sealed tube3314 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 30.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 3737
Tmin = 0.794, Tmax = 0.947k = 1515
22264 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0565P)2 + 1.3835P]
where P = (Fo2 + 2Fc2)/3
6084 reflections(Δ/σ)max < 0.001
273 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
2C22H15Cl4NO2·H2OV = 4180.0 (4) Å3
Mr = 952.32Z = 4
Monoclinic, C2/cMo Kα radiation
a = 27.0296 (12) ŵ = 0.59 mm1
b = 11.3031 (5) ÅT = 296 K
c = 18.9580 (14) Å0.41 × 0.22 × 0.09 mm
β = 133.807 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6084 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3314 reflections with I > 2σ(I)
Tmin = 0.794, Tmax = 0.947Rint = 0.035
22264 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.140H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.32 e Å3
6084 reflectionsΔρmin = 0.30 e Å3
273 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.19792 (3)0.76399 (7)0.69001 (5)0.0713 (2)
Cl20.42591 (5)0.54693 (7)0.82870 (7)0.0917 (3)
Cl30.03129 (4)0.56068 (7)1.19385 (5)0.0758 (2)
Cl40.03353 (4)0.74207 (6)0.87822 (6)0.0793 (2)
O10.18932 (9)0.28214 (16)0.88038 (12)0.0674 (5)
O1W0.00000.0870 (4)0.25000.1570 (17)
H1W10.03680.15480.21240.235*
O20.13682 (9)0.76238 (14)0.86903 (13)0.0622 (5)
C10.33740 (12)0.57044 (19)0.92958 (17)0.0525 (6)
H1A0.34680.54470.98450.063*
C20.38244 (13)0.5423 (2)0.92100 (19)0.0599 (6)
H2A0.42150.49780.96910.072*
C30.36913 (13)0.5808 (2)0.84014 (19)0.0553 (6)
C40.31230 (12)0.64792 (19)0.76899 (17)0.0520 (6)
H4A0.30400.67480.71520.062*
C50.26793 (11)0.67438 (18)0.77940 (15)0.0463 (5)
C60.27789 (11)0.63624 (18)0.85892 (15)0.0432 (5)
C70.23003 (11)0.66960 (19)0.86785 (15)0.0450 (5)
H7A0.20630.73990.83710.054*
C80.21566 (11)0.61329 (18)0.91388 (14)0.0428 (5)
C90.16516 (11)0.66934 (18)0.91293 (15)0.0450 (5)
C100.15150 (11)0.61138 (17)0.96889 (14)0.0415 (5)
C110.18741 (13)0.49604 (19)1.02007 (17)0.0514 (6)
H11A0.23030.51161.08660.062*
H11B0.15890.44791.02260.062*
N120.20085 (11)0.43276 (15)0.96822 (15)0.0519 (5)
C130.24670 (13)0.4960 (2)0.96662 (18)0.0544 (6)
H13A0.25560.44830.93390.065*
H13B0.29000.51001.03310.065*
C140.10773 (11)0.66486 (18)0.96949 (15)0.0435 (5)
H14A0.08580.73110.92940.052*
C150.08921 (11)0.63488 (17)1.02373 (15)0.0412 (5)
C160.02599 (12)0.66960 (18)0.98959 (16)0.0485 (5)
C170.00789 (12)0.64771 (19)1.04118 (18)0.0525 (6)
H17A0.03460.67151.01650.063*
C180.05393 (12)0.5901 (2)1.12973 (17)0.0505 (6)
C190.11714 (12)0.5554 (2)1.16688 (16)0.0513 (6)
H19A0.14810.51711.22690.062*
C200.13390 (11)0.57787 (19)1.11453 (15)0.0462 (5)
H20A0.17670.55431.14040.055*
C210.17589 (12)0.3248 (2)0.92493 (16)0.0501 (6)
C220.13274 (16)0.2603 (2)0.9335 (2)0.0657 (7)
H22A0.13640.27970.98470.079*
C230.09076 (18)0.1794 (3)0.8743 (2)0.0836 (9)
H23A0.0609 (16)0.130 (3)0.877 (2)0.100*
H23B0.0891 (17)0.161 (3)0.826 (2)0.100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0626 (4)0.0989 (5)0.0619 (4)0.0183 (3)0.0467 (3)0.0281 (3)
Cl20.1113 (7)0.0861 (5)0.1412 (7)0.0305 (4)0.1113 (6)0.0297 (5)
Cl30.0849 (5)0.1020 (6)0.0794 (4)0.0122 (4)0.0715 (4)0.0143 (4)
Cl40.0618 (4)0.0870 (5)0.0905 (5)0.0289 (4)0.0533 (4)0.0392 (4)
O10.0783 (13)0.0780 (12)0.0699 (11)0.0054 (9)0.0603 (11)0.0090 (9)
O1W0.191 (5)0.105 (3)0.240 (5)0.0000.174 (4)0.000
O20.0806 (12)0.0583 (10)0.0728 (11)0.0209 (8)0.0626 (10)0.0227 (8)
C10.0539 (14)0.0573 (13)0.0553 (13)0.0014 (11)0.0412 (12)0.0075 (11)
C20.0550 (15)0.0579 (14)0.0759 (16)0.0061 (11)0.0487 (14)0.0129 (12)
C30.0637 (16)0.0483 (12)0.0806 (16)0.0016 (11)0.0600 (14)0.0012 (11)
C40.0634 (15)0.0525 (13)0.0579 (13)0.0086 (11)0.0486 (13)0.0030 (10)
C50.0488 (13)0.0467 (12)0.0504 (12)0.0060 (10)0.0371 (11)0.0010 (9)
C60.0466 (12)0.0445 (11)0.0462 (11)0.0090 (9)0.0350 (10)0.0035 (9)
C70.0480 (13)0.0474 (12)0.0449 (11)0.0027 (9)0.0342 (10)0.0013 (9)
C80.0459 (12)0.0464 (11)0.0419 (10)0.0002 (9)0.0325 (10)0.0002 (9)
C90.0515 (13)0.0463 (12)0.0438 (11)0.0006 (10)0.0355 (11)0.0005 (9)
C100.0484 (12)0.0411 (10)0.0425 (10)0.0012 (9)0.0344 (10)0.0005 (8)
C110.0719 (16)0.0474 (12)0.0601 (13)0.0108 (11)0.0551 (13)0.0074 (10)
N120.0748 (13)0.0409 (9)0.0746 (12)0.0072 (9)0.0647 (12)0.0057 (9)
C130.0651 (15)0.0558 (13)0.0671 (14)0.0107 (11)0.0551 (13)0.0123 (11)
C140.0479 (12)0.0405 (11)0.0455 (11)0.0005 (9)0.0336 (10)0.0002 (8)
C150.0440 (12)0.0374 (10)0.0497 (11)0.0017 (9)0.0352 (10)0.0052 (9)
C160.0528 (14)0.0399 (11)0.0594 (13)0.0044 (10)0.0413 (12)0.0018 (9)
C170.0520 (14)0.0522 (13)0.0685 (15)0.0018 (11)0.0474 (13)0.0081 (11)
C180.0591 (15)0.0528 (12)0.0588 (13)0.0081 (11)0.0480 (12)0.0135 (11)
C190.0584 (15)0.0586 (14)0.0477 (12)0.0013 (11)0.0407 (12)0.0025 (10)
C200.0441 (12)0.0536 (12)0.0473 (11)0.0023 (10)0.0340 (10)0.0051 (9)
C210.0583 (14)0.0524 (13)0.0517 (12)0.0147 (11)0.0427 (12)0.0103 (10)
C220.088 (2)0.0556 (14)0.0835 (18)0.0039 (14)0.0704 (17)0.0055 (13)
C230.083 (2)0.086 (2)0.083 (2)0.0061 (18)0.058 (2)0.0030 (18)
Geometric parameters (Å, º) top
Cl1—C51.743 (2)C11—N121.451 (3)
Cl2—C31.735 (3)C11—H11A0.9700
Cl3—C181.730 (2)C11—H11B0.9700
Cl4—C161.736 (2)N12—C211.360 (3)
O1—C211.226 (3)N12—C131.449 (3)
O1W—H1W11.0501C13—H13A0.9700
O2—C91.226 (2)C13—H13B0.9700
C1—C21.373 (3)C14—C151.461 (3)
C1—C61.397 (3)C14—H14A0.9300
C1—H1A0.9300C15—C201.400 (3)
C2—C31.380 (3)C15—C161.401 (3)
C2—H2A0.9300C16—C171.385 (3)
C3—C41.373 (3)C17—C181.378 (3)
C4—C51.376 (3)C17—H17A0.9300
C4—H4A0.9300C18—C191.380 (3)
C5—C61.403 (3)C19—C201.370 (3)
C6—C71.466 (3)C19—H19A0.9300
C7—C81.337 (3)C20—H20A0.9300
C7—H7A0.9300C21—C221.477 (4)
C8—C91.494 (3)C22—C231.273 (4)
C8—C131.516 (3)C22—H22A0.9300
C9—C101.494 (3)C23—H23A1.01 (3)
C10—C141.336 (3)C23—H23B0.90 (3)
C10—C111.510 (3)
C2—C1—C6122.4 (2)C13—N12—C11112.94 (19)
C2—C1—H1A118.8N12—C13—C8110.76 (19)
C6—C1—H1A118.8N12—C13—H13A109.5
C1—C2—C3119.2 (2)C8—C13—H13A109.5
C1—C2—H2A120.4N12—C13—H13B109.5
C3—C2—H2A120.4C8—C13—H13B109.5
C4—C3—C2121.3 (2)H13A—C13—H13B108.1
C4—C3—Cl2118.93 (19)C10—C14—C15129.64 (19)
C2—C3—Cl2119.8 (2)C10—C14—H14A115.2
C3—C4—C5118.2 (2)C15—C14—H14A115.2
C3—C4—H4A120.9C20—C15—C16115.8 (2)
C5—C4—H4A120.9C20—C15—C14123.2 (2)
C4—C5—C6123.3 (2)C16—C15—C14120.84 (19)
C4—C5—Cl1117.01 (17)C17—C16—C15122.5 (2)
C6—C5—Cl1119.65 (17)C17—C16—Cl4117.38 (18)
C1—C6—C5115.5 (2)C15—C16—Cl4120.08 (17)
C1—C6—C7123.27 (19)C18—C17—C16118.8 (2)
C5—C6—C7121.13 (19)C18—C17—H17A120.6
C8—C7—C6129.2 (2)C16—C17—H17A120.6
C8—C7—H7A115.4C17—C18—C19120.7 (2)
C6—C7—H7A115.4C17—C18—Cl3119.11 (19)
C7—C8—C9117.79 (19)C19—C18—Cl3120.14 (18)
C7—C8—C13124.7 (2)C20—C19—C18119.4 (2)
C9—C8—C13117.56 (18)C20—C19—H19A120.3
O2—C9—C8120.56 (19)C18—C19—H19A120.3
O2—C9—C10120.8 (2)C19—C20—C15122.6 (2)
C8—C9—C10118.57 (18)C19—C20—H20A118.7
C14—C10—C9117.60 (18)C15—C20—H20A118.7
C14—C10—C11124.36 (19)O1—C21—N12120.6 (2)
C9—C10—C11118.04 (19)O1—C21—C22121.0 (2)
N12—C11—C10109.96 (17)N12—C21—C22118.4 (2)
N12—C11—H11A109.7C23—C22—C21123.1 (3)
C10—C11—H11A109.7C23—C22—H22A118.4
N12—C11—H11B109.7C21—C22—H22A118.4
C10—C11—H11B109.7C22—C23—H23A127.5 (18)
H11A—C11—H11B108.2C22—C23—H23B117 (2)
C21—N12—C13120.28 (19)H23A—C23—H23B116 (3)
C21—N12—C11126.8 (2)
C6—C1—C2—C30.5 (4)C10—C11—N12—C1362.9 (2)
C1—C2—C3—C40.9 (4)C21—N12—C13—C8118.9 (2)
C1—C2—C3—Cl2179.49 (18)C11—N12—C13—C861.9 (2)
C2—C3—C4—C51.2 (3)C7—C8—C13—N12153.1 (2)
Cl2—C3—C4—C5179.73 (17)C9—C8—C13—N1226.5 (3)
C3—C4—C5—C60.0 (3)C9—C10—C14—C15174.22 (19)
C3—C4—C5—Cl1177.85 (17)C11—C10—C14—C156.4 (4)
C2—C1—C6—C51.5 (3)C10—C14—C15—C2029.1 (3)
C2—C1—C6—C7178.5 (2)C10—C14—C15—C16155.2 (2)
C4—C5—C6—C11.3 (3)C20—C15—C16—C170.9 (3)
Cl1—C5—C6—C1176.51 (16)C14—C15—C16—C17176.90 (19)
C4—C5—C6—C7178.3 (2)C20—C15—C16—Cl4179.54 (15)
Cl1—C5—C6—C70.5 (3)C14—C15—C16—Cl43.6 (3)
C1—C6—C7—C829.5 (3)C15—C16—C17—C180.3 (3)
C5—C6—C7—C8153.7 (2)Cl4—C16—C17—C18179.86 (16)
C6—C7—C8—C9178.76 (19)C16—C17—C18—C190.4 (3)
C6—C7—C8—C131.6 (4)C16—C17—C18—Cl3179.14 (16)
C7—C8—C9—O21.8 (3)C17—C18—C19—C200.5 (3)
C13—C8—C9—O2177.8 (2)Cl3—C18—C19—C20179.05 (17)
C7—C8—C9—C10176.47 (19)C18—C19—C20—C150.2 (3)
C13—C8—C9—C103.9 (3)C16—C15—C20—C190.9 (3)
O2—C9—C10—C140.3 (3)C14—C15—C20—C19176.7 (2)
C8—C9—C10—C14178.02 (19)C13—N12—C21—O13.3 (3)
O2—C9—C10—C11179.2 (2)C11—N12—C21—O1177.6 (2)
C8—C9—C10—C112.5 (3)C13—N12—C21—C22176.3 (2)
C14—C10—C11—N12150.5 (2)C11—N12—C21—C222.8 (3)
C9—C10—C11—N1228.9 (3)O1—C21—C22—C2322.3 (4)
C10—C11—N12—C21117.9 (2)N12—C21—C22—C23158.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2i1.052.193.180 (3)157
C4—H4A···O1ii0.932.293.186 (3)162
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula2C22H15Cl4NO2·H2O
Mr952.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)27.0296 (12), 11.3031 (5), 18.9580 (14)
β (°) 133.807 (2)
V3)4180.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.41 × 0.22 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.794, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
22264, 6084, 3314
Rint0.035
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.140, 1.04
No. of reflections6084
No. of parameters273
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.30

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2i1.052.193.180 (3)157
C4—H4A···O1ii0.932.293.186 (3)162
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y+1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: vicky@usm.my.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

AB, VM and HO thank the Malaysian Government and Universiti Sains Malaysia (USM) for providing financial support and the USM Graduate Scheme. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDimmock, J. R., Padamanilayam, M. P. & Pathucode, R. N. (2000). J. Med. Chem. 44, 586–593.  CSD CrossRef Google Scholar
First citationEl-Subbagh, H. I., Abu-Zaid, S. M., Mahran, M. A., Badria, F. A. & Al-Obaid, A. M. (2000). J. Med. Chem. 43, 2915–2921.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFavier, L. S., Maria, A. O. M., Wendel, G. H., Borkowski, E. J., Giordano, O. S., Pelzer, L. & Tonn, C. E. (2005). J. Ethnopharmacol. 100, 260–267.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHusain, A., Hasan, S. M., Lal, S. & Alam, M. M. (2006). Indian J. Pharm. Sci. 68, 536–538.  CrossRef CAS Google Scholar
First citationOh, S., Jeong, I. H., Shin, W. S. & Wang, Q. L. (2006). Bioorg. Med. Chem. Lett. 16, 1656–1659.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1301-o1302
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds