metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­(2-oxo-2H-chromene-3-carboxyl­ato-κ2O2,O3)manganese(II)

aCollege of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China
*Correspondence e-mail: xieyabo@bjut.edu.cn

(Received 28 April 2011; accepted 3 May 2011; online 7 May 2011)

In the title compound, [Mn(C10H5O4)2(H2O)2], the MnII atom lies on a crystallographic inversion center and is six-coordinated by two O atoms from water mol­ecules in the axial positions and four O atoms from two deprotonated coumarin-3-carb­oxy­lic acid ligands in the equatorial plane. The overall coordination geometry is slightly distorted octa­hedral. The Mn—O bond distances vary between 2.0931 (12) and 2.2315 (13) Å. O—H⋯O hydrogen bonds between the H atoms of coordinated water mol­ecules and the O atoms of the carboxyl­ate groups link the complex mol­ecules into two-dimensional layers parallel to the ab plane.

Related literature

For background to topological networks, see: Hu et al. (2010[Hu, J. S., Shang, Y. J., Yao, X. Q., Qin, L., Li, Y. Z., Guo, Z. J., Zheng, H. G. & Xue, Z. L. (2010). Cryst. Growth Des. 10, 4135-4142.]). For applications of manganese(II) complexes, see: Hazra et al. (2011[Hazra, A. J., Ali, Z. M., Shah, F. A., Zardari, L. A. & Khuhawar, M. Y. (2011). Chem. Commun. 47, 538-540.]), Kuschel et al. (2010[Kuschel, A., Luka, M., Wessig, M., Drescher, M., Fonin, M., Kiliani, G. & Polarz, S. (2010). Adv. Funct. Mater. 20, 1133-1143.]); Yang et al. (2010[Yang, Q., Zhao, J. P., Hu, B. W., Zhang, X. F. & Bu, X. H. (2010). Inorg. Chem. 49, 3746-3751.]). For related structures, see: Gao et al. (2010[Gao, Q., Jiang, F. L., Wu, M. Y., Huang, Y. G., Wei, W. & Hong, M. C. (2010). Cryst. Growth Des., 10, 184-190.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C10H5O4)2(H2O)2]

  • Mr = 469.25

  • Triclinic, [P \overline 1]

  • a = 6.7036 (13) Å

  • b = 6.9797 (14) Å

  • c = 10.424 (2) Å

  • α = 93.28 (3)°

  • β = 90.67 (3)°

  • γ = 113.47 (3)°

  • V = 446.33 (15) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.852, Tmax = 0.887

  • 2811 measured reflections

  • 2021 independent reflections

  • 1905 reflections with I > 2σ(I)

  • Rint = 0.009

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.070

  • S = 1.07

  • 2021 reflections

  • 146 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O4i 0.82 1.89 2.7113 (17) 178
O1W—H1WB⋯O4ii 0.82 (3) 1.95 (3) 2.755 (2) 167 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y-1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the past decades, numerous papers dealing with manganese(II) complexes have been published due to their fascinating structural diversity (Hu et al., 2010) and potential applications in the areas of catalysis (Kuschel et al., 2010), gas adsorption (Hazra et al., 2011) and magnetism (Yang et al., 2010). Herein, we report the synthesis and crystal structure of a new mononuclear manganese complex coordinated by coumarin-3-carboxylic acid.

In the title compound, [Mn(C10H5O4)2(H2O)2], each manganese(II) atom lies on a crystallographic inversion center and is six-coordinated by two O atoms from water molecules in the axial positions and four O atoms from two deprotonated coumarin-3-carboxylic acid ligands in the equatorial plane to exhibits a slightly distorted octahedral geometry. Angles around the Mn(II) atom vary between 82.88 (5)° and 97.12 (5)°. The Mn—O bond distances between the Mn(II) atom and the O atoms vary between 2.0931 (12) and 2.2315 (13) Å, all of which are comparable to those reported for other manganese-oxygen donor complexes (e.g. Gao et al., 2010). The (C1/C2/C3/C4/C5/C6) and (C4/C3/C7/C8/C9/O1) rings are almost coplanar with a dihedral angle of 1.847 (6)° between them. The dihedral angle between the C10/C8/C9/O2 and O2/Mn/O3 planes is 25.803 (7)°. O—H···O hydrogen bonds between the hydrogen atoms of the coordinated water molecules and the O atoms of the carboxyl groups [O(1 W)—H(1 W A)···O(4), 2.711 (2) Å, O(1 W)—H(1WB)···O(4), 2.755 (2) Å] join the complexes into two-dimensional layers parallel the ab plane (Table 1, Fig. 2).

Related literature top

For background to topological networks, see: Hu et al. (2010). For applications of manganese(II) complexes, see: Hazra et al. (2011), Kuschel et al. (2010); Yang et al. (2010). For related structures, see: Gao et al. (2010).

Experimental top

The title complex was synthesized by carefully layering a solution of MnSO4.H2O (16.9 mg, 0.1 mmol) in ethanol (10 ml) on top of a solution of coumarin-3-carboxylic acid (19.0 mg, 0.1 mmol) and LiOH (8.4 mg, 0.2 mmol) in H2O (10 ml) in a test-tube. After about one month at room temperature, yellow block-shaped single crystals suitable for X-ray investigation appeared at the boundary between the ethanol solution and the water layer with a yield of 25% (12.1 mg). FT—IR (KBr, cm-1): 788, 1028, 1183, 1285, 1388, 1457, 1585, 1662, 3214.

Refinement top

Carbon H atoms were placed geometrically (C—H = 0.93 Å) and treated as riding with Uiso(H) = 1.2Ueq(C). Water H atoms were located in a difference Fourier map. One was treated as riding in the subsequent refinement atoms, with O—H = 0.85 Å, the coordinates of the other were refined freely. For both i>Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level for non-hydrogen atoms, hydrogen atoms are shown as small circles of arbitrary radius. [Symmetry code: A = -x, -y + 1, -z + 1].
[Figure 2] Fig. 2. Partial packing view of title compound, showing the formation of network built from hydrogen bonds.
Diaquabis(2-oxo-2H-chromene-3-carboxylato- κ2O2,O3)manganese(II) top
Crystal data top
[Mn(C10H5O4)2(H2O)2]Z = 1
Mr = 469.25F(000) = 239
Triclinic, P1Dx = 1.746 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7036 (13) ÅCell parameters from 1947 reflections
b = 6.9797 (14) Åθ = 2.0–28.3°
c = 10.424 (2) ŵ = 0.80 mm1
α = 93.28 (3)°T = 293 K
β = 90.67 (3)°Block, yellow
γ = 113.47 (3)°0.20 × 0.20 × 0.15 mm
V = 446.33 (15) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2021 independent reflections
Radiation source: fine-focus sealed tube1905 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.009
ϕ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 78
Tmin = 0.852, Tmax = 0.887k = 88
2811 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.030P)2 + 0.2201P]
where P = (Fo2 + 2Fc2)/3
2021 reflections(Δ/σ)max = 0.002
146 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
[Mn(C10H5O4)2(H2O)2]γ = 113.47 (3)°
Mr = 469.25V = 446.33 (15) Å3
Triclinic, P1Z = 1
a = 6.7036 (13) ÅMo Kα radiation
b = 6.9797 (14) ŵ = 0.80 mm1
c = 10.424 (2) ÅT = 293 K
α = 93.28 (3)°0.20 × 0.20 × 0.15 mm
β = 90.67 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2021 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1905 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.887Rint = 0.009
2811 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.070H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.27 e Å3
2021 reflectionsΔρmin = 0.25 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.00000.50000.50000.02451 (10)
O10.20420 (17)0.69142 (18)0.12393 (10)0.0279 (2)
O1W0.00060 (19)0.21428 (19)0.40159 (11)0.0308 (2)
H1WA0.09740.18720.43250.046*
O20.06195 (17)0.64929 (19)0.31264 (11)0.0311 (3)
O30.34009 (16)0.63381 (18)0.51888 (10)0.0290 (2)
O40.67461 (16)0.86812 (18)0.49213 (11)0.0307 (3)
C10.7033 (3)0.7877 (3)0.12676 (17)0.0377 (4)
H1A0.81400.80880.18420.045*
C20.7458 (3)0.7881 (3)0.00281 (16)0.0327 (3)
H2A0.88450.80800.03260.039*
C30.5793 (2)0.7581 (2)0.09021 (14)0.0255 (3)
C40.3735 (2)0.7261 (2)0.04195 (14)0.0254 (3)
C50.3284 (3)0.7240 (3)0.08835 (15)0.0332 (4)
H5A0.18930.70170.11860.040*
C60.4953 (3)0.7559 (3)0.17236 (16)0.0377 (4)
H6A0.46850.75620.26010.045*
C70.6108 (2)0.7651 (2)0.22644 (14)0.0253 (3)
H7A0.74830.79010.26070.030*
C80.4463 (2)0.7363 (2)0.30689 (13)0.0218 (3)
C90.2290 (2)0.6896 (2)0.25373 (14)0.0230 (3)
C100.4883 (2)0.7473 (2)0.45064 (14)0.0223 (3)
H1WB0.110 (4)0.112 (4)0.418 (2)0.057 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01647 (15)0.02948 (18)0.02242 (17)0.00348 (12)0.00291 (11)0.00327 (12)
O10.0219 (5)0.0382 (6)0.0210 (5)0.0088 (4)0.0001 (4)0.0052 (4)
O1W0.0233 (5)0.0326 (6)0.0332 (6)0.0077 (5)0.0017 (4)0.0022 (5)
O20.0191 (5)0.0457 (7)0.0274 (6)0.0107 (5)0.0038 (4)0.0102 (5)
O30.0188 (5)0.0397 (6)0.0220 (5)0.0042 (4)0.0017 (4)0.0066 (4)
O40.0185 (5)0.0351 (6)0.0297 (6)0.0014 (4)0.0035 (4)0.0037 (5)
C10.0473 (10)0.0351 (9)0.0282 (8)0.0133 (7)0.0157 (7)0.0038 (7)
C20.0310 (8)0.0342 (8)0.0307 (8)0.0104 (6)0.0093 (6)0.0030 (6)
C30.0263 (7)0.0253 (7)0.0223 (7)0.0073 (6)0.0042 (5)0.0030 (5)
C40.0271 (7)0.0236 (7)0.0223 (7)0.0066 (6)0.0033 (5)0.0030 (5)
C50.0389 (9)0.0324 (8)0.0242 (8)0.0101 (7)0.0031 (6)0.0016 (6)
C60.0558 (11)0.0332 (8)0.0199 (7)0.0133 (8)0.0046 (7)0.0020 (6)
C70.0202 (6)0.0277 (7)0.0257 (7)0.0072 (5)0.0007 (5)0.0020 (6)
C80.0186 (6)0.0237 (7)0.0210 (7)0.0060 (5)0.0001 (5)0.0022 (5)
C90.0217 (7)0.0241 (7)0.0213 (7)0.0066 (5)0.0009 (5)0.0049 (5)
C100.0174 (6)0.0258 (7)0.0224 (7)0.0074 (5)0.0000 (5)0.0016 (5)
Geometric parameters (Å, º) top
Mn1—O32.0931 (12)C1—C61.395 (3)
Mn1—O3i2.0931 (12)C1—H1A0.9300
Mn1—O1W2.1884 (13)C2—C31.407 (2)
Mn1—O1Wi2.1884 (13)C2—H2A0.9300
Mn1—O2i2.2315 (13)C3—C41.389 (2)
Mn1—O22.2315 (13)C3—C71.429 (2)
O1—C91.3626 (17)C4—C51.386 (2)
O1—C41.3802 (18)C5—C61.384 (3)
O1W—H1WA0.8200C5—H5A0.9300
O1W—H1WB0.82 (3)C6—H6A0.9300
O2—C91.2225 (18)C7—C81.351 (2)
O3—C101.2549 (18)C7—H7A0.9300
O4—C101.2509 (17)C8—C91.4555 (19)
C1—C21.377 (2)C8—C101.5133 (19)
O3—Mn1—O3i180.0C3—C2—H2A120.0
O3—Mn1—O1W91.96 (5)C4—C3—C2118.33 (14)
O3i—Mn1—O1W88.04 (5)C4—C3—C7117.86 (14)
O3—Mn1—O1Wi88.04 (5)C2—C3—C7123.78 (14)
O3i—Mn1—O1Wi91.96 (5)O1—C4—C5117.46 (14)
O1W—Mn1—O1Wi180.00 (6)O1—C4—C3120.28 (13)
O3—Mn1—O2i97.12 (5)C5—C4—C3122.25 (15)
O3i—Mn1—O2i82.88 (5)C4—C5—C6118.39 (16)
O1W—Mn1—O2i91.16 (5)C4—C5—H5A120.8
O1Wi—Mn1—O2i88.84 (5)C6—C5—H5A120.8
O3—Mn1—O282.88 (5)C5—C6—C1120.65 (16)
O3i—Mn1—O297.12 (5)C5—C6—H6A119.7
O1W—Mn1—O288.84 (5)C1—C6—H6A119.7
O1Wi—Mn1—O291.16 (5)C8—C7—C3121.79 (14)
O2i—Mn1—O2180.0C8—C7—H7A119.1
C9—O1—C4122.73 (12)C3—C7—H7A119.1
Mn1—O1W—H1WA109.5C7—C8—C9119.37 (13)
Mn1—O1W—H1WB110.8 (17)C7—C8—C10119.84 (13)
H1WA—O1W—H1WB102.0C9—C8—C10120.77 (12)
C9—O2—Mn1124.45 (10)O2—C9—O1114.86 (13)
C10—O3—Mn1133.91 (10)O2—C9—C8127.35 (14)
C2—C1—C6120.41 (16)O1—C9—C8117.78 (13)
C2—C1—H1A119.8O4—C10—O3124.70 (14)
C6—C1—H1A119.8O4—C10—C8116.15 (13)
C1—C2—C3119.96 (16)O3—C10—C8119.13 (12)
C1—C2—H2A120.0
O3—Mn1—O2—C925.72 (12)C2—C1—C6—C50.1 (3)
O3i—Mn1—O2—C9154.28 (12)C4—C3—C7—C81.7 (2)
O1W—Mn1—O2—C966.40 (13)C2—C3—C7—C8179.71 (15)
O1Wi—Mn1—O2—C9113.60 (13)C3—C7—C8—C92.2 (2)
O1W—Mn1—O3—C1090.62 (15)C3—C7—C8—C10179.37 (13)
O1Wi—Mn1—O3—C1089.38 (15)Mn1—O2—C9—O1152.34 (10)
O2i—Mn1—O3—C10177.97 (14)Mn1—O2—C9—C828.2 (2)
O2—Mn1—O3—C102.03 (14)C4—O1—C9—O2177.49 (13)
C6—C1—C2—C30.6 (3)C4—O1—C9—C83.0 (2)
C1—C2—C3—C40.8 (2)C7—C8—C9—O2176.00 (15)
C1—C2—C3—C7177.20 (15)C10—C8—C9—O22.4 (2)
C9—O1—C4—C5179.93 (14)C7—C8—C9—O14.5 (2)
C9—O1—C4—C31.0 (2)C10—C8—C9—O1177.09 (12)
C2—C3—C4—O1178.54 (13)Mn1—O3—C10—O4155.33 (12)
C7—C3—C4—O13.3 (2)Mn1—O3—C10—C826.6 (2)
C2—C3—C4—C50.4 (2)C7—C8—C10—O431.1 (2)
C7—C3—C4—C5177.76 (14)C9—C8—C10—O4150.50 (14)
O1—C4—C5—C6179.23 (14)C7—C8—C10—O3147.10 (15)
C3—C4—C5—C60.3 (2)C9—C8—C10—O331.3 (2)
C4—C5—C6—C10.5 (3)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4ii0.821.892.7113 (17)178
O1W—H1WB···O4iii0.82 (3)1.95 (3)2.755 (2)167 (2)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x1, y1, z.

Experimental details

Crystal data
Chemical formula[Mn(C10H5O4)2(H2O)2]
Mr469.25
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.7036 (13), 6.9797 (14), 10.424 (2)
α, β, γ (°)93.28 (3), 90.67 (3), 113.47 (3)
V3)446.33 (15)
Z1
Radiation typeMo Kα
µ (mm1)0.80
Crystal size (mm)0.20 × 0.20 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.852, 0.887
No. of measured, independent and
observed [I > 2σ(I)] reflections
2811, 2021, 1905
Rint0.009
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.070, 1.07
No. of reflections2021
No. of parameters146
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.25

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4i0.821.892.7113 (17)178
O1W—H1WB···O4ii0.82 (3)1.95 (3)2.755 (2)167 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y1, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.21075114), the Science and Technology Development Project of the Beijing Education Committee and the Special Environmental Protection Fund for Public Welfare Project (201009015), the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the jurisdiction of the Beijing Municipality (PHR 201107104) and the Ninth Technology Fund for Postgraduates of Beijing University of Technology (ykj-2011-5406).

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, Q., Jiang, F. L., Wu, M. Y., Huang, Y. G., Wei, W. & Hong, M. C. (2010). Cryst. Growth Des., 10, 184–190.  CrossRef CAS Google Scholar
First citationHazra, A. J., Ali, Z. M., Shah, F. A., Zardari, L. A. & Khuhawar, M. Y. (2011). Chem. Commun. 47, 538–540.  CrossRef CAS Google Scholar
First citationHu, J. S., Shang, Y. J., Yao, X. Q., Qin, L., Li, Y. Z., Guo, Z. J., Zheng, H. G. & Xue, Z. L. (2010). Cryst. Growth Des. 10, 4135–4142.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuschel, A., Luka, M., Wessig, M., Drescher, M., Fonin, M., Kiliani, G. & Polarz, S. (2010). Adv. Funct. Mater. 20, 1133–1143.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, Q., Zhao, J. P., Hu, B. W., Zhang, X. F. & Bu, X. H. (2010). Inorg. Chem. 49, 3746–3751.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds