organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Carb­­oxy-5-(pyridinium-4-yl)benzoate: a redetermination

aCollege of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, and bCollege of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China
*Correspondence e-mail: songwd60@126.com

(Received 28 April 2011; accepted 30 April 2011; online 7 May 2011)

The title compound, C13H9NO4, crystallizes in a zwitterionic form with the pyridine N atom protonated and the carboxyl OH group deprotonated. The benzene and pyridinium rings are inclined with a dihedral angle of 31.42 (14)° between them. A previous report of this stucture claims, we believe incorrectly, that neither of the carboxyl­ate groups is deprotonated [Zhang et al. (2010[Zhang, Y.-F., Zhang, Q.-F., Jin, J., Sun, D.-Z. & Wang, D.-Q. (2010). Acta Cryst. E66, o2928.]). Acta Cryst. E66, o2928–o2928]. In the crystal, inter­molecular O—H⋯O, N—H⋯O and weak C—H⋯O hydrogen-bonding inter­actions link adjacent mol­ecules into a three-dimensional supra­molecular network.

Related literature

For coordination polymers based on pyridine­carboxyl­ate ligands, see: Lu & Luck (2003[Lu, T. B. & Luck, R. L. (2003). Inorg. Chim. Acta, 351, 345-355.]); Ma et al. (2009[Ma, D. Y., Liu, H. L. & Li, Y. W. (2009). Inorg. Chem. Commun. 12, 883-886.]). For a previous report of the structure of this mol­ecule, which claims that neither of the carboxyl­ate groups is deprotonated, see: Zhang et al. (2010[Zhang, Y.-F., Zhang, Q.-F., Jin, J., Sun, D.-Z. & Wang, D.-Q. (2010). Acta Cryst. E66, o2928.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9NO4

  • Mr = 243.21

  • Orthorhombic, F d d 2

  • a = 15.5702 (13) Å

  • b = 37.377 (3) Å

  • c = 7.2016 (9) Å

  • V = 4191.1 (7) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.38 × 0.15 × 0.07 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.992

  • 5456 measured reflections

  • 1024 independent reflections

  • 885 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.142

  • S = 1.09

  • 1024 reflections

  • 164 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.86 1.70 2.562 (4) 175
N1—H1⋯O3i 0.86 2.67 3.252 (4) 126
O1—H1A⋯O4ii 0.82 1.96 2.643 (5) 141
C8—H8⋯O2iii 0.93 2.71 3.632 (5) 171
C10—H10⋯O2iii 0.93 2.58 3.225 (6) 127
C9—H9⋯O1iv 0.93 2.59 3.316 (6) 135
Symmetry codes: (i) [-x+{\script{1\over 4}}, y-{\script{1\over 4}}, z-{\script{1\over 4}}]; (ii) [x+{\script{1\over 2}}, y, z-{\script{1\over 2}}]; (iii) -x+1, -y, z; (iv) [-x+{\script{3\over 4}}, y-{\script{1\over 4}}, z+{\script{1\over 4}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Rigid pyridinecarboxylate ligands have been used extensively to react with metal ions and generate coordination polymers with fascinating structures and properties (Lu & Luck 2003; Ma et al., 2009). As part of an ongoing investigation into coordination polymers based on pyridinecarboxylate ligands, we report here the crystal structure of the title compound.

As shown in Fig. 1, the title compound, C13H9NO4, crystallizes in a zwitterionic form with the pyridine N protonated and one of the carboxyl OH groups deprotonated. The locations of the N and O bound H atoms are clearly shown in a difference Fourier map. A previous report of the same structure in the same space group and with similar unit-cell parameters claims that neither of the carboxylate groups are deprotonated (Zhang et al., 2010). We believe this assignment to be in error. A conformational feature of the molecule is a rigid structure with the benzene and pyridinium rings inclined at an angle of 31.42 (14) ° to one another. In the crystal structure, molecules are interconnected by O—H···O, N—H···O and weak C—H···O hydrogen bonding interactions (Table. 1), generating a three-dimensional supramolecular network (Fig. 2).

Related literature top

For coordination polymers based on pyridinecarboxylate ligands, see: Lu & Luck (2003); Ma et al. (2009). For a previous report of the structure of this molecule, which claims that neither of the carboxylate groups is deprotonated, see: Zhang et al. (2010).

Experimental top

Commercially available 5-(pyridin-4-yl)isophthalic acid was further purified by repeated recrystallization from anhydrous ethanol. Colorless crystals suitable for X-ray analysis were obtained by slow evaporation of the ethanol solvent at room temperature.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic hydrogen atoms 0.86 Å, Uiso = 1.2Ueq (N) for the NH group and 0.82 Å, Uiso = 1.5Ueq (O) for the OH group. In the absence of significant anomalous dispersion effects, Friedel pairs were merged.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Crystal packing of the title compound (H atoms not involved in forming hydrogen bonds are omitted for clarity).
3-Carboxy-5-(pyridinium-4-yl)benzoate top
Crystal data top
C13H9NO4F(000) = 2016
Mr = 243.21Dx = 1.542 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 1702 reflections
a = 15.5702 (13) Åθ = 2.5–25.9°
b = 37.377 (3) ŵ = 0.12 mm1
c = 7.2016 (9) ÅT = 298 K
V = 4191.1 (7) Å3Block, colorless
Z = 160.38 × 0.15 × 0.07 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1024 independent reflections
Radiation source: fine-focus sealed tube885 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ϕ and ω scansθmax = 25.2°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1518
Tmin = 0.957, Tmax = 0.992k = 4244
5456 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0985P)2 + 0.9031P]
where P = (Fo2 + 2Fc2)/3
1024 reflections(Δ/σ)max < 0.001
164 parametersΔρmax = 0.21 e Å3
4 restraintsΔρmin = 0.26 e Å3
Crystal data top
C13H9NO4V = 4191.1 (7) Å3
Mr = 243.21Z = 16
Orthorhombic, Fdd2Mo Kα radiation
a = 15.5702 (13) ŵ = 0.12 mm1
b = 37.377 (3) ÅT = 298 K
c = 7.2016 (9) Å0.38 × 0.15 × 0.07 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1024 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
885 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.992Rint = 0.048
5456 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0504 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.09Δρmax = 0.21 e Å3
1024 reflectionsΔρmin = 0.26 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1480 (2)0.05751 (9)0.2133 (5)0.0409 (9)
H10.11900.07710.21010.049*
O10.5435 (2)0.10547 (10)0.0930 (7)0.0710 (12)
H1A0.59390.10440.06060.106*
O20.5453 (2)0.04721 (10)0.0306 (6)0.0697 (13)
O30.29114 (19)0.16581 (7)0.3311 (6)0.0532 (9)
O40.18242 (19)0.13290 (7)0.4374 (6)0.0482 (9)
C10.5099 (3)0.07316 (11)0.0923 (7)0.0397 (9)
C20.2558 (2)0.13670 (10)0.3568 (7)0.0360 (9)
C30.4199 (2)0.07241 (9)0.1660 (6)0.0327 (9)
C40.3802 (2)0.10341 (10)0.2268 (6)0.0328 (9)
H4A0.41020.12490.22550.039*
C50.2964 (2)0.10264 (10)0.2892 (6)0.0314 (9)
C60.2511 (2)0.07076 (10)0.2856 (6)0.0314 (9)
H60.19400.07040.32360.038*
C70.2898 (2)0.03945 (10)0.2260 (6)0.0315 (9)
C80.3750 (2)0.04014 (10)0.1687 (6)0.0325 (9)
H80.40200.01910.13210.039*
C90.2321 (3)0.05851 (11)0.2449 (7)0.0422 (10)
H90.25890.08040.26440.051*
C100.2804 (3)0.02736 (10)0.2493 (7)0.0376 (10)
H100.33940.02850.26880.045*
C110.2406 (2)0.00546 (10)0.2248 (6)0.0324 (9)
C120.1522 (3)0.00546 (10)0.1922 (7)0.0399 (10)
H120.12290.02690.17450.048*
C130.1090 (3)0.02658 (11)0.1866 (7)0.0438 (11)
H130.05020.02650.16320.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0402 (19)0.0294 (16)0.053 (2)0.0098 (14)0.0033 (17)0.0067 (17)
O10.057 (2)0.0575 (15)0.098 (3)0.0119 (15)0.024 (2)0.006 (2)
O20.052 (2)0.0601 (15)0.097 (4)0.0054 (14)0.018 (2)0.010 (2)
O30.0488 (18)0.0275 (14)0.083 (3)0.0033 (12)0.0095 (17)0.0067 (17)
O40.0399 (16)0.0334 (15)0.071 (2)0.0014 (12)0.0126 (16)0.0045 (15)
C10.0301 (19)0.0442 (18)0.045 (2)0.0001 (14)0.0017 (19)0.0004 (18)
C20.0335 (19)0.028 (2)0.046 (2)0.0031 (15)0.0038 (18)0.0062 (18)
C30.0320 (19)0.0282 (18)0.038 (2)0.0014 (14)0.0008 (18)0.0009 (17)
C40.0294 (19)0.0310 (18)0.038 (2)0.0053 (14)0.0011 (16)0.0001 (17)
C50.0300 (19)0.0292 (18)0.035 (2)0.0014 (14)0.0026 (17)0.0039 (16)
C60.0274 (18)0.0298 (19)0.037 (2)0.0010 (14)0.0009 (16)0.0012 (16)
C70.0291 (19)0.0319 (19)0.033 (2)0.0023 (14)0.0006 (17)0.0007 (18)
C80.032 (2)0.0280 (18)0.037 (2)0.0021 (15)0.0010 (18)0.0013 (16)
C90.048 (2)0.0270 (19)0.052 (3)0.0011 (17)0.000 (2)0.0019 (18)
C100.030 (2)0.0340 (19)0.049 (3)0.0004 (15)0.0029 (19)0.0046 (19)
C110.0336 (19)0.028 (2)0.035 (2)0.0015 (15)0.0038 (17)0.0027 (17)
C120.032 (2)0.0314 (19)0.056 (3)0.0017 (15)0.0026 (19)0.003 (2)
C130.036 (2)0.038 (2)0.057 (3)0.0054 (17)0.002 (2)0.005 (2)
Geometric parameters (Å, º) top
N1—C131.320 (5)C5—C61.385 (5)
N1—C91.329 (5)C6—C71.385 (5)
N1—H10.8600C6—H60.9300
O1—C11.316 (5)C7—C81.389 (5)
O1—H1A0.8200C7—C111.484 (5)
O2—C11.201 (5)C8—H80.9300
O3—C21.233 (5)C9—C101.386 (5)
O4—C21.290 (5)C9—H90.9300
C1—C31.498 (5)C10—C111.386 (6)
C2—C51.502 (5)C10—H100.9300
C3—C41.385 (5)C11—C121.397 (6)
C3—C81.394 (5)C12—C131.374 (6)
C4—C51.379 (5)C12—H120.9300
C4—H4A0.9300C13—H130.9300
C13—N1—C9120.2 (3)C6—C7—C8119.5 (3)
C13—N1—H1119.9C6—C7—C11120.0 (3)
C9—N1—H1119.9C8—C7—C11120.5 (3)
C1—O1—H1A109.5C7—C8—C3119.9 (3)
O2—C1—O1124.0 (4)C7—C8—H8120.0
O2—C1—C3123.1 (4)C3—C8—H8120.0
O1—C1—C3112.8 (4)N1—C9—C10121.0 (4)
O3—C2—O4124.0 (3)N1—C9—H9119.5
O3—C2—C5120.8 (4)C10—C9—H9119.5
O4—C2—C5115.2 (3)C11—C10—C9119.9 (4)
C4—C3—C8119.7 (3)C11—C10—H10120.1
C4—C3—C1120.9 (3)C9—C10—H10120.1
C8—C3—C1119.3 (3)C10—C11—C12117.5 (4)
C5—C4—C3120.5 (3)C10—C11—C7121.8 (3)
C5—C4—H4A119.7C12—C11—C7120.7 (3)
C3—C4—H4A119.7C13—C12—C11119.2 (4)
C4—C5—C6119.6 (3)C13—C12—H12120.4
C4—C5—C2119.1 (3)C11—C12—H12120.4
C6—C5—C2121.4 (3)N1—C13—C12122.2 (4)
C7—C6—C5120.7 (3)N1—C13—H13118.9
C7—C6—H6119.6C12—C13—H13118.9
C5—C6—H6119.6
O2—C1—C3—C4176.6 (5)C6—C7—C8—C32.0 (6)
O1—C1—C3—C40.2 (6)C11—C7—C8—C3178.4 (4)
O2—C1—C3—C81.7 (7)C4—C3—C8—C72.2 (6)
O1—C1—C3—C8178.1 (4)C1—C3—C8—C7176.1 (4)
C8—C3—C4—C50.3 (6)C13—N1—C9—C100.4 (7)
C1—C3—C4—C5178.0 (4)N1—C9—C10—C111.5 (7)
C3—C4—C5—C61.9 (6)C9—C10—C11—C121.3 (7)
C3—C4—C5—C2179.1 (4)C9—C10—C11—C7179.2 (4)
O3—C2—C5—C411.1 (6)C6—C7—C11—C10150.4 (4)
O4—C2—C5—C4170.3 (4)C8—C7—C11—C1029.3 (6)
O3—C2—C5—C6167.9 (4)C6—C7—C11—C1231.8 (6)
O4—C2—C5—C610.7 (6)C8—C7—C11—C12148.5 (4)
C4—C5—C6—C72.2 (6)C10—C11—C12—C130.2 (7)
C2—C5—C6—C7178.8 (4)C7—C11—C12—C13178.1 (4)
C5—C6—C7—C80.2 (7)C9—N1—C13—C120.7 (8)
C5—C6—C7—C11179.4 (4)C11—C12—C13—N10.8 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.861.702.562 (4)175
N1—H1···O3i0.862.673.252 (4)126
O1—H1A···O4ii0.821.962.643 (5)141
C8—H8···O2iii0.932.713.632 (5)171
C10—H10···O2iii0.932.583.225 (6)127
C9—H9···O1iv0.932.593.316 (6)135
Symmetry codes: (i) x+1/4, y1/4, z1/4; (ii) x+1/2, y, z1/2; (iii) x+1, y, z; (iv) x+3/4, y1/4, z+1/4.

Experimental details

Crystal data
Chemical formulaC13H9NO4
Mr243.21
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)298
a, b, c (Å)15.5702 (13), 37.377 (3), 7.2016 (9)
V3)4191.1 (7)
Z16
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.38 × 0.15 × 0.07
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.957, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
5456, 1024, 885
Rint0.048
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.142, 1.09
No. of reflections1024
No. of parameters164
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.26

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.861.702.562 (4)175
N1—H1···O3i0.862.673.252 (4)126
O1—H1A···O4ii0.821.962.643 (5)141
C8—H8···O2iii0.932.713.632 (5)171
C10—H10···O2iii0.932.583.225 (6)127
C9—H9···O1iv0.932.593.316 (6)135
Symmetry codes: (i) x+1/4, y1/4, z1/4; (ii) x+1/2, y, z1/2; (iii) x+1, y, z; (iv) x+3/4, y1/4, z+1/4.
 

Acknowledgements

This work was supported by the Guangdong Chinese Academy of Science Comprehensive Strategic Cooperation Project (grant No. 2009B091300121), the Science and Technology Department of Guangdong Province Project (grant No. 00087 061110314018) and the Guangdong Natural Science Foundation (No. 9252408801000002).

References

First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLu, T. B. & Luck, R. L. (2003). Inorg. Chim. Acta, 351, 345–355.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, D. Y., Liu, H. L. & Li, Y. W. (2009). Inorg. Chem. Commun. 12, 883–886.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y.-F., Zhang, Q.-F., Jin, J., Sun, D.-Z. & Wang, D.-Q. (2010). Acta Cryst. E66, o2928.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds