organic compounds
3-Nitrobenzene-1,2-diamine
aNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za
The molecule of the title compound, C6H7N3O2, a derivative of o-phenylenediamine, nearly shows non-crystallographic Cs symmetry. C—C—C angles span the range 116.25 (11)–122.35 (11)°. In the crystal, intermolecular N—H⋯O and N—H⋯N hydrogen bonds connect molecules into undulating sheets perpendicular to the crystallographic a axis. A weak intramolecular N—H⋯O hydrogen bond is also observed. No π-stacking is observed in the crystal structure.
Related literature
For the ); Czapik & Gdaniec (2010). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995). For the use of chelate ligands in coordination chemistry, see: Gade (1998). For the crystal structures of coordination compounds with rhenium in different oxidation states applying (mixed) oxygen-, nitrogen- and/or sulfur-containing ligands, see: Chiozzone et al. (1999); Videira et al. (2009); Edwards et al. (1998); Marti et al. (2005); Babich et al. (2001).
of 1,2-diaminobenzene, see: Stalhandske (1981Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: APEX2 (Bruker, 2010); cell SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536811016825/sj5135sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811016825/sj5135Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811016825/sj5135Isup3.cml
The compound was obtained commercially (Aldrich). Crystals suitable for the X-ray diffraction study were obtained upon recrystallization from ethanol.
Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the
in the riding model approximation, with U(H) set to 1.2Ueq(C). The H-atoms of the amine groups were located on a difference Fourier map, and their N—H distances as well as their H–N–H angles were refined using DFIX instructions with one common free variable, with their U(H) set to 1.5Ueq(N).Data collection: APEX2 (Bruker, 2010); cell
SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C6H7N3O2 | F(000) = 320 |
Mr = 153.15 | Dx = 1.549 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 3115 reflections |
a = 13.2854 (5) Å | θ = 2.5–28.2° |
b = 3.7504 (1) Å | µ = 0.12 mm−1 |
c = 16.3309 (6) Å | T = 200 K |
β = 126.208 (2)° | Rod, red |
V = 656.55 (4) Å3 | 0.55 × 0.24 × 0.11 mm |
Z = 4 |
Bruker APEXII CCD diffractometer | 1262 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.043 |
Graphite monochromator | θmax = 28.3°, θmin = 3.1° |
ϕ and ω scans | h = −17→17 |
6477 measured reflections | k = −4→4 |
1605 independent reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.115 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.055P)2 + 0.1822P] where P = (Fo2 + 2Fc2)/3 |
1605 reflections | (Δ/σ)max < 0.001 |
113 parameters | Δρmax = 0.30 e Å−3 |
6 restraints | Δρmin = −0.17 e Å−3 |
C6H7N3O2 | V = 656.55 (4) Å3 |
Mr = 153.15 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.2854 (5) Å | µ = 0.12 mm−1 |
b = 3.7504 (1) Å | T = 200 K |
c = 16.3309 (6) Å | 0.55 × 0.24 × 0.11 mm |
β = 126.208 (2)° |
Bruker APEXII CCD diffractometer | 1262 reflections with I > 2σ(I) |
6477 measured reflections | Rint = 0.043 |
1605 independent reflections |
R[F2 > 2σ(F2)] = 0.040 | 6 restraints |
wR(F2) = 0.115 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.30 e Å−3 |
1605 reflections | Δρmin = −0.17 e Å−3 |
113 parameters |
x | y | z | Uiso*/Ueq | ||
O1 | 0.13915 (10) | 0.7321 (4) | 0.03335 (7) | 0.0524 (3) | |
O2 | 0.30745 (12) | 1.0010 (4) | 0.07783 (10) | 0.0687 (4) | |
N1 | 0.13706 (12) | 0.8731 (4) | 0.34249 (9) | 0.0419 (3) | |
H711 | 0.1778 (16) | 0.888 (5) | 0.4092 (10) | 0.063* | |
H712 | 0.1066 (16) | 0.649 (4) | 0.3250 (14) | 0.063* | |
N2 | 0.07013 (10) | 0.7189 (3) | 0.15331 (8) | 0.0346 (3) | |
H721 | 0.0209 (14) | 0.662 (5) | 0.1708 (12) | 0.052* | |
H722 | 0.0458 (15) | 0.663 (5) | 0.0919 (10) | 0.052* | |
N3 | 0.23536 (11) | 0.9000 (3) | 0.09715 (8) | 0.0382 (3) | |
C1 | 0.22068 (11) | 0.9559 (3) | 0.31843 (9) | 0.0289 (3) | |
C2 | 0.18152 (10) | 0.8773 (3) | 0.21809 (8) | 0.0241 (3) | |
C3 | 0.26459 (10) | 0.9743 (3) | 0.19499 (8) | 0.0268 (3) | |
C4 | 0.37907 (11) | 1.1429 (3) | 0.26574 (11) | 0.0349 (3) | |
H4 | 0.4329 | 1.2060 | 0.2477 | 0.042* | |
C5 | 0.41227 (12) | 1.2152 (4) | 0.36057 (10) | 0.0397 (3) | |
H5 | 0.4895 | 1.3289 | 0.4091 | 0.048* | |
C6 | 0.33235 (12) | 1.1214 (4) | 0.38622 (9) | 0.0374 (3) | |
H6 | 0.3561 | 1.1739 | 0.4524 | 0.045* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0500 (6) | 0.0787 (8) | 0.0285 (5) | −0.0038 (6) | 0.0231 (5) | −0.0108 (5) |
O2 | 0.0701 (8) | 0.1063 (11) | 0.0630 (7) | −0.0052 (7) | 0.0575 (7) | 0.0026 (7) |
N1 | 0.0512 (7) | 0.0525 (8) | 0.0371 (6) | 0.0146 (6) | 0.0344 (6) | 0.0103 (6) |
N2 | 0.0294 (5) | 0.0433 (7) | 0.0331 (5) | −0.0028 (4) | 0.0195 (5) | −0.0030 (5) |
N3 | 0.0430 (6) | 0.0493 (7) | 0.0343 (6) | 0.0089 (5) | 0.0294 (5) | 0.0054 (5) |
C1 | 0.0353 (6) | 0.0286 (6) | 0.0263 (5) | 0.0121 (5) | 0.0201 (5) | 0.0066 (5) |
C2 | 0.0261 (5) | 0.0237 (5) | 0.0244 (5) | 0.0061 (4) | 0.0160 (4) | 0.0031 (4) |
C3 | 0.0299 (6) | 0.0276 (6) | 0.0264 (5) | 0.0052 (4) | 0.0185 (5) | 0.0035 (4) |
C4 | 0.0300 (6) | 0.0283 (6) | 0.0472 (7) | 0.0024 (5) | 0.0233 (6) | 0.0037 (5) |
C5 | 0.0305 (6) | 0.0294 (7) | 0.0404 (7) | 0.0011 (5) | 0.0106 (5) | −0.0050 (5) |
C6 | 0.0433 (7) | 0.0331 (7) | 0.0249 (6) | 0.0114 (5) | 0.0140 (5) | −0.0011 (5) |
O1—N3 | 1.2420 (16) | C1—C6 | 1.3681 (18) |
O2—N3 | 1.2318 (15) | C1—C2 | 1.4268 (15) |
N1—C1 | 1.4142 (16) | C2—C3 | 1.4088 (15) |
N1—H711 | 0.887 (12) | C3—C4 | 1.4041 (17) |
N1—H712 | 0.903 (12) | C4—C5 | 1.364 (2) |
N2—C2 | 1.3462 (15) | C4—H4 | 0.9500 |
N2—H721 | 0.880 (12) | C5—C6 | 1.397 (2) |
N2—H722 | 0.878 (12) | C5—H5 | 0.9500 |
N3—C3 | 1.4313 (15) | C6—H6 | 0.9500 |
C1—N1—H711 | 108.5 (12) | C3—C2—C1 | 116.25 (11) |
C1—N1—H712 | 113.3 (12) | C4—C3—C2 | 122.35 (11) |
H711—N1—H712 | 106.4 (15) | C4—C3—N3 | 117.01 (11) |
C2—N2—H721 | 122.3 (11) | C2—C3—N3 | 120.64 (11) |
C2—N2—H722 | 119.6 (11) | C5—C4—C3 | 119.38 (12) |
H721—N2—H722 | 118.0 (14) | C5—C4—H4 | 120.3 |
O2—N3—O1 | 120.77 (12) | C3—C4—H4 | 120.3 |
O2—N3—C3 | 119.13 (12) | C4—C5—C6 | 119.81 (12) |
O1—N3—C3 | 120.09 (10) | C4—C5—H5 | 120.1 |
C6—C1—N1 | 121.95 (11) | C6—C5—H5 | 120.1 |
C6—C1—C2 | 120.56 (11) | C1—C6—C5 | 121.65 (12) |
N1—C1—C2 | 117.41 (11) | C1—C6—H6 | 119.2 |
N2—C2—C3 | 125.10 (10) | C5—C6—H6 | 119.2 |
N2—C2—C1 | 118.65 (10) | ||
C6—C1—C2—N2 | −179.04 (11) | O1—N3—C3—C4 | 175.60 (12) |
N1—C1—C2—N2 | −2.26 (17) | O2—N3—C3—C2 | 177.07 (12) |
C6—C1—C2—C3 | 0.96 (17) | O1—N3—C3—C2 | −3.77 (19) |
N1—C1—C2—C3 | 177.74 (10) | C2—C3—C4—C5 | 0.29 (19) |
N2—C2—C3—C4 | 179.27 (11) | N3—C3—C4—C5 | −179.07 (11) |
C1—C2—C3—C4 | −0.73 (17) | C3—C4—C5—C6 | −0.04 (19) |
N2—C2—C3—N3 | −1.39 (19) | N1—C1—C6—C5 | −177.40 (12) |
C1—C2—C3—N3 | 178.60 (10) | C2—C1—C6—C5 | −0.78 (19) |
O2—N3—C3—C4 | −3.56 (19) | C4—C5—C6—C1 | 0.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H711···O1i | 0.89 (1) | 2.41 (2) | 3.1257 (14) | 138 (2) |
N2—H721···N1ii | 0.88 (1) | 2.26 (1) | 3.0800 (16) | 156 (2) |
N2—H722···O1 | 0.88 (1) | 1.98 (1) | 2.6084 (14) | 127 (1) |
N2—H722···O1iii | 0.88 (1) | 2.55 (2) | 3.1416 (16) | 126 (1) |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x, y−1/2, −z+1/2; (iii) −x, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C6H7N3O2 |
Mr | 153.15 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 200 |
a, b, c (Å) | 13.2854 (5), 3.7504 (1), 16.3309 (6) |
β (°) | 126.208 (2) |
V (Å3) | 656.55 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.55 × 0.24 × 0.11 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6477, 1605, 1262 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.666 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.115, 1.05 |
No. of reflections | 1605 |
No. of parameters | 113 |
No. of restraints | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.30, −0.17 |
Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H711···O1i | 0.887 (12) | 2.409 (16) | 3.1257 (14) | 138.0 (15) |
N2—H721···N1ii | 0.880 (12) | 2.255 (13) | 3.0800 (16) | 155.9 (15) |
N2—H722···O1 | 0.878 (12) | 1.980 (14) | 2.6084 (14) | 127.4 (14) |
N2—H722···O1iii | 0.878 (12) | 2.546 (15) | 3.1416 (16) | 125.8 (13) |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x, y−1/2, −z+1/2; (iii) −x, −y+1, −z. |
Acknowledgements
The authors thank Mr Henk Schalekamp for helpful discussions.
References
Babich, J. W., Graham, W., Femia, F. J., Dong, Q., Barzana, M., Ferrill, K., Fischman, A. J. & Zubieta, J. (2001). Inorg. Chim. Acta, 323, 23–36. CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chiozzone, R., González, R., Kremer, C., De Munno, G., Cano, J., Lloret, F., Julve, M. & Faus, J. (1999). Inorg. Chem. 38, 4745—4752. CrossRef Google Scholar
Czapik, A. & Gdaniec, M. (2010). Acta Cryst. C66, o198–o201. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Edwards, P. G., Jokela, J., Lehtonen, A. & Sillanpää, R. (1998). J. Chem. Soc. Dalton Trans. pp. 3287–3294. CrossRef Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gade, L. H. (1998). Koordinationschemie, 1. Auflage. Weinheim: Wiley–VCH. Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Marti, N., Spingler, B., Breher, F. & Schibli, R. (2005). Inorg. Chem. 44, 6082–6091. Web of Science CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stalhandske, C. (1981). Cryst. Struct. Commun. 10, 1081–1086. CAS Google Scholar
Videira, M., Silva, F., Paulo, A., Santos, I. C. & Santos, I. (2009). Inorg. Chim. Acta, 362, 2807–2813. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chelate ligands have found widespread use in coordination chemistry due to the enhanced thermodynamic stability of resultant coordination compounds in relation to coordination compounds exclusively applying comparable monodentate ligands (Gade 1998). Combining different sets of donor atoms in one chelate ligand molecule, a probe for testing and accomodating metal centers of different Lewis acidities is at hand. For the crystal structures of coordination compounds with rhenium in different oxidation states applying (mixed) oxygen-, nitrogen- and/or sulfur-containing ligands, see: Chiozzone et al. (1999); Videira et al. (2009); Edwards et al. (1998); Marti et al. (2005); Babich et al. (2001). The title compound, which offers two amino and one nitro group in close proximity to each other, seemed particularily interesting in this aspect. To enable comparative studies with the crystal structures of envisioned coordination compounds, the structure of the free ligand was determined. The crystal structure of 1,2-diaminobenzene is apparent in the literature (Stalhandske 1981, Czapik & Gdaniec 2010).
Intracyclic angles cover a range of 116–122 ° with the smallest angle present on the C-atom in between the C-atoms bearing the nitro as well as an amino group. The nitro group is nearly completely in plane with the aromatic system. The least-squares planes defined by their respective atoms intersect at an angle of only 3.93 (18) ° (Fig. 1).
Except for one of the H-atoms of the amino group in meta-position to the nitro group, all of the hydrogen atoms of the amino groups participate in hydrogen bonds in the crystal structure. While one of the O-atoms of the nitro group acts as twofold acceptor, the second one does not take part in this type of intermolecular contacts. In terms of graph-set analysis, (Etter et al. 1990, Bernstein et al. 1995), the descriptor for the hydrogen bonding system on the unitary level is C11(5)C11(7)R22(12). In total, the molecules are connected to waved sheets perpendicular to the crystallographic a-axis. π-stacking is not observed in the crystal structure of the title compound (Fig. 2).
The molecular packing is shown in Figure 3.