metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[tri­aqua­(μ3-4-oxido­pyridine-2,6-di­carboxyl­ato)holmium(III)] mono­hydrate]

aSchool of Chemistry and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030021, People's Republic of China, and bKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China
*Correspondence e-mail: zqgao2008@163.com

(Received 28 April 2011; accepted 5 May 2011; online 11 May 2011)

In the title coordination polymer, {[Ho(C7H2NO5)(H2O)3]·H2O}n, the HoIII atom is eight-coordinated by a tridentate 4-oxidopyridine-2,6-dicarboxyl­ate trianion, two monodentate anions and three water mol­ecules, forming a distorted bicapped trigonal–prismatic HoNO7 coordination geometry. The anions bridge adjacent HoIII ions into double chains. Adjacent chains are further connected into sheets. O—H⋯O hydrogen bonds involving both coordinated and uncoordinated water mol­ecules generate a three-dimensional supra­molecular framework.

Related literature

For the structures and properties of lanthanide coordination compounds, see: Wang et al. (2007[Wang, H. S., Zhao, B., Zhai, B., Shi, W., Cheng, P., Liao, D. Z. & Yan, S. P. (2007). Cryst. Growth Des. 7, 1851-1857.]); Lv et al. (2010[Lv, D.-Y., Gao, Z.-Q. & Gu, J.-Z. (2010). Acta Cryst. E66, m1694-m1695.]); Gao et al. (2006[Gao, H. L., Yi, L., Zhao, B., Zhao, X. Q., Cheng, P., Liao, D. Z. & Yan, S. P. (2006). Inorg. Chem. 45, 5980-5988.]). For bond lengths and angles in other complexes with eight-coordinate HoIII, see: Wang et al. (2007[Wang, H. S., Zhao, B., Zhai, B., Shi, W., Cheng, P., Liao, D. Z. & Yan, S. P. (2007). Cryst. Growth Des. 7, 1851-1857.]); Munoz et al. (2005[Munoz, J. C., Atria, A. M., Baggio, R., Garland, M. T., Pena, O. & Orrego, C. (2005). Inorg. Chim. Acta, 358, 4027-4033.]).

[Scheme 1]

Experimental

Crystal data
  • [Ho(C7H2NO5)(H2O)3]·H2O

  • Mr = 417.09

  • Monoclinic, P 21 /n

  • a = 9.879 (5) Å

  • b = 7.557 (4) Å

  • c = 15.386 (8) Å

  • β = 105.386 (5)°

  • V = 1107.5 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.19 mm−1

  • T = 296 K

  • 0.32 × 0.29 × 0.26 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.207, Tmax = 0.257

  • 4776 measured reflections

  • 2003 independent reflections

  • 1646 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.047

  • S = 1.02

  • 2003 reflections

  • 196 parameters

  • 12 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.71 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H8W⋯O2i 0.86 (1) 2.33 (4) 3.080 (5) 145 (6)
O9—H7W⋯O4 0.86 (1) 1.84 (1) 2.693 (5) 170 (5)
O8—H6W⋯O9ii 0.86 (1) 2.28 (3) 3.026 (5) 145 (5)
O8—H5W⋯O9iii 0.86 (1) 1.84 (2) 2.689 (5) 168 (5)
O7—H4W⋯O3iii 0.86 (1) 2.08 (3) 2.788 (4) 139 (4)
O7—H3W⋯O5iv 0.87 (1) 1.92 (3) 2.711 (4) 152 (4)
O6—H2W⋯O1v 0.86 (1) 1.85 (2) 2.671 (4) 159 (5)
O6—H1W⋯O4vi 0.86 (1) 1.83 (1) 2.687 (4) 171 (5)
Symmetry codes: (i) x-1, y, z; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+1, -y+1, -z+2; (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) -x+1, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Lanthanide coordination polymers have shown not only versatile architectures but also desirable properties, e.g., luminescent, magnetic, catalytic, and gas absorption and separation properties (Wang et al., 2007; Lv et al., 2010). In order to extend our investigations in this field, we designed and synthesized one lanthanide coordination polymer {[Ho(C7H2NO5)(H2O)3].H2O}n by choosing 4-oxidopyridine-2,6-dicarboxylicacid as a functional ligand, and report its structure here.

The title compound is isotypic with its Dy (Gao et al., 2006) and Eu (Lv et al., 2010) analogues. As shown in Fig.1, the asymmetric unit of the cell contains one Ho(III) ion, one 4-oxidopyridine-2,6-dicarboxylate anion, three coordinated water molecules, and one water molecule of crystallization. The Ho atom is eight-coordinated by seven oxygen atoms from three anions and three coordinated water molecules and by one nitrogen atom from one tridentate anion (the other two anions are monodentate), forming a distorted bicapped trigonal-prismatic coordination environment.

Important bond distances are presented in Table 1. The Ho–O bond lengths [2.279 (3) to 2.400 (3) Å] are shorter than the Ho–N bond length [2.450 (3) Å], which is in agreement with the bond lengths observed in other Ho(III) complexes (Wang et al., 2007; Munoz et al., 2005). The anion adopts a µ3-pentadentate coordination mode, as shown in Fig.1. The anions bridge the adjacent HoIII ions to form infinite double chains (Fig.2). Adjacent chains are further connected by the coordination of the anions and Ho(III) ions into a two-dimensional sheet (Fig.3), which are further extended into a three-dimensional supramolecular framework through O–H···O hydrogen-bonding interactions including both coordinated and uncoordinated water molecules (Table 2).

Related literature top

For the structures and properties of lanthanide coordination compounds, see: Wang et al. (2007); Lv et al. (2010); Gao et al. (2006). For bond lengths and angles in other eight-coordinate HoIII complexes, see: Wang et al. (2007); Munoz et al. (2005).

Experimental top

To a solution of holmium(III)nitrate hexahydrate (0.138 g, 0.3 mmol) in water (5 ml) was added an aqueous solution (5 ml) of the ligand (0.060 g, 0.3 mmol) and a drop of triethylamine. The reactants were sealed in a 25-ml Teflon-lined, stainless-steel Parr bomb. The bomb was heated at 433 K for 3 days. The cool solution yielded colorless single crystals in ca 75% yield. Anal. Calcd for C7H10TbNO9: C, 20.16; H, 2.42; N, 3.36. Found: C, 20.45; H, 2.17; N, 3.64.

Refinement top

The coordinated water H atoms were located in a different Fourier map and refined with distance constraints of O–H = 0.83 (3) Å. The free water H atoms were placed at calculated positions and refined with a riding model, considering the position of oxygen atoms and the quantity of H atoms. The carbon-bound H atoms were placed in geometrically idealized positions, with C–H = 0.93 Å and constrained to ride on their respective parent atoms, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title complex, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. View along the b axis, showing the polymeric double chain.
[Figure 3] Fig. 3. View along the a axis, showing the sheet structure of {[Ho(C7H2NO5)(H2O)3].H2O}n.
Poly[[triaqua(µ3-4-oxidopyridine-2,6-dicarboxylato)holmium(III)] monohydrate] top
Crystal data top
[Ho(C7H2NO5)(H2O)3]·H2OF(000) = 792
Mr = 417.09Dx = 2.502 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2y/nCell parameters from 2292 reflections
a = 9.879 (5) Åθ = 2.2–28.2°
b = 7.557 (4) ŵ = 7.19 mm1
c = 15.386 (8) ÅT = 296 K
β = 105.386 (5)°Block, colorless
V = 1107.5 (9) Å30.32 × 0.29 × 0.26 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2003 independent reflections
Radiation source: fine-focus sealed tube1646 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 117
Tmin = 0.207, Tmax = 0.257k = 89
4776 measured reflectionsl = 1617
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.047 w = 1/[σ2(Fo2) + (0.0176P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.002
2003 reflectionsΔρmax = 0.71 e Å3
196 parametersΔρmin = 0.54 e Å3
12 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0119 (3)
Crystal data top
[Ho(C7H2NO5)(H2O)3]·H2OV = 1107.5 (9) Å3
Mr = 417.09Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.879 (5) ŵ = 7.19 mm1
b = 7.557 (4) ÅT = 296 K
c = 15.386 (8) Å0.32 × 0.29 × 0.26 mm
β = 105.386 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
2003 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1646 reflections with I > 2σ(I)
Tmin = 0.207, Tmax = 0.257Rint = 0.025
4776 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02112 restraints
wR(F2) = 0.047H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.71 e Å3
2003 reflectionsΔρmin = 0.54 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ho10.501337 (17)0.82185 (2)0.747304 (11)0.01332 (10)
C10.7829 (4)0.5891 (5)0.8379 (3)0.0184 (9)
C20.7250 (4)0.6133 (5)0.9175 (3)0.0158 (9)
C30.7940 (4)0.5582 (5)1.0018 (3)0.0172 (9)
H30.87800.49631.01120.021*
C40.7379 (4)0.5951 (5)1.0743 (2)0.0163 (9)
C50.6087 (4)0.6828 (5)1.0537 (3)0.0193 (9)
H50.56520.70731.09910.023*
C60.5460 (4)0.7328 (5)0.9665 (3)0.0157 (9)
C70.4083 (4)0.8304 (5)0.9374 (3)0.0162 (9)
H1W0.613 (6)1.087 (8)0.8854 (11)0.08 (2)*
H2W0.661 (5)1.128 (7)0.806 (3)0.08 (2)*
H3W0.332 (5)0.547 (8)0.7874 (18)0.09 (2)*
H4W0.313 (4)0.523 (6)0.6913 (15)0.040 (15)*
H5W0.484 (6)0.5513 (17)0.606 (4)0.08 (2)*
H6W0.524 (8)0.714 (7)0.569 (3)0.12 (3)*
H7W0.1510 (15)0.841 (6)0.945 (3)0.057 (19)*
H8W0.032 (5)0.745 (8)0.888 (4)0.16 (4)*
N10.6032 (3)0.7004 (4)0.8981 (2)0.0151 (7)
O10.7200 (3)0.6723 (4)0.76661 (19)0.0274 (8)
O20.8899 (3)0.4962 (4)0.84514 (18)0.0234 (7)
O30.3689 (3)0.8732 (4)0.85503 (18)0.0201 (6)
O40.3418 (3)0.8625 (4)0.99379 (18)0.0249 (7)
O50.8051 (3)0.5493 (4)1.15748 (17)0.0200 (6)
O60.6030 (3)1.0722 (4)0.8286 (2)0.0315 (8)
O70.3636 (3)0.5656 (4)0.7411 (2)0.0295 (8)
O80.4963 (4)0.6642 (4)0.6113 (2)0.0255 (7)
O90.0620 (4)0.8221 (4)0.9302 (3)0.0392 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ho10.01235 (13)0.01734 (13)0.01046 (14)0.00009 (7)0.00339 (8)0.00057 (8)
C10.016 (2)0.024 (2)0.014 (2)0.0019 (17)0.0032 (17)0.0012 (17)
C20.015 (2)0.018 (2)0.014 (2)0.0028 (16)0.0033 (17)0.0011 (17)
C30.016 (2)0.018 (2)0.017 (2)0.0040 (16)0.0039 (17)0.0012 (16)
C40.017 (2)0.019 (2)0.013 (2)0.0047 (16)0.0028 (17)0.0022 (17)
C50.019 (2)0.022 (2)0.019 (2)0.0011 (16)0.0079 (18)0.0022 (17)
C60.016 (2)0.017 (2)0.014 (2)0.0005 (16)0.0049 (17)0.0004 (16)
C70.016 (2)0.015 (2)0.018 (2)0.0025 (15)0.0059 (18)0.0032 (16)
N10.0145 (18)0.0198 (19)0.0126 (18)0.0011 (13)0.0063 (14)0.0005 (13)
O10.0270 (17)0.044 (2)0.0138 (16)0.0158 (14)0.0108 (14)0.0074 (13)
O20.0244 (17)0.0273 (18)0.0196 (16)0.0151 (13)0.0076 (13)0.0013 (13)
O30.0150 (15)0.0300 (17)0.0150 (16)0.0057 (12)0.0033 (12)0.0029 (12)
O40.0211 (16)0.0410 (19)0.0151 (16)0.0065 (13)0.0092 (13)0.0003 (13)
O50.0158 (15)0.0295 (17)0.0124 (15)0.0036 (12)0.0005 (12)0.0065 (12)
O60.036 (2)0.041 (2)0.021 (2)0.0177 (15)0.0143 (16)0.0087 (15)
O70.0341 (19)0.036 (2)0.0202 (18)0.0165 (14)0.0105 (16)0.0040 (15)
O80.036 (2)0.0232 (19)0.0186 (18)0.0012 (14)0.0098 (15)0.0031 (13)
O90.027 (2)0.029 (2)0.059 (3)0.0001 (15)0.0072 (19)0.0033 (18)
Geometric parameters (Å, º) top
Ho1—O5i2.279 (3)C5—C61.373 (5)
Ho1—O62.342 (3)C5—H50.9300
Ho1—O72.354 (3)C6—N11.341 (5)
Ho1—O12.386 (3)C6—C71.508 (5)
Ho1—O2ii2.393 (3)C7—O41.243 (5)
Ho1—O82.397 (3)C7—O31.265 (5)
Ho1—O32.400 (3)O2—Ho1iii2.393 (3)
Ho1—N12.450 (3)O5—Ho1iv2.279 (3)
C1—O21.249 (5)O6—H1W0.860 (10)
C1—O11.275 (5)O6—H2W0.858 (10)
C1—C21.493 (5)O7—H3W0.865 (10)
C2—N11.334 (5)O7—H4W0.861 (10)
C2—C31.361 (5)O8—H5W0.862 (10)
C3—C41.399 (5)O8—H6W0.861 (10)
C3—H30.9300O9—H7W0.860 (10)
C4—O51.322 (4)O9—H8W0.861 (10)
C4—C51.398 (5)
O5i—Ho1—O698.86 (11)C3—C2—C1122.7 (3)
O5i—Ho1—O786.39 (12)C2—C3—C4119.7 (4)
O6—Ho1—O7147.96 (12)C2—C3—H3120.2
O5i—Ho1—O1150.97 (10)C4—C3—H3120.2
O6—Ho1—O194.04 (12)O5—C4—C5122.5 (4)
O7—Ho1—O196.31 (12)O5—C4—C3121.1 (4)
O5i—Ho1—O2ii81.27 (10)C5—C4—C3116.5 (4)
O6—Ho1—O2ii71.09 (11)C6—C5—C4119.9 (4)
O7—Ho1—O2ii140.78 (10)C6—C5—H5120.0
O1—Ho1—O2ii78.49 (10)C4—C5—H5120.0
O5i—Ho1—O882.29 (11)N1—C6—C5122.8 (4)
O6—Ho1—O8140.74 (12)N1—C6—C7113.0 (3)
O7—Ho1—O871.19 (12)C5—C6—C7124.2 (4)
O1—Ho1—O871.43 (11)O4—C7—O3124.8 (4)
O2ii—Ho1—O870.33 (11)O4—C7—C6119.4 (4)
O5i—Ho1—O379.50 (10)O3—C7—C6115.8 (3)
O6—Ho1—O374.68 (11)C2—N1—C6117.2 (3)
O7—Ho1—O375.28 (11)C2—N1—Ho1121.0 (3)
O1—Ho1—O3129.20 (9)C6—N1—Ho1121.4 (2)
O2ii—Ho1—O3137.27 (9)C1—O1—Ho1124.0 (2)
O8—Ho1—O3142.60 (11)C1—O2—Ho1iii139.4 (3)
O5i—Ho1—N1143.51 (10)C7—O3—Ho1124.8 (2)
O6—Ho1—N177.69 (12)C4—O5—Ho1iv127.1 (2)
O7—Ho1—N179.53 (11)Ho1—O6—H1W124 (3)
O1—Ho1—N164.77 (10)Ho1—O6—H2W115 (3)
O2ii—Ho1—N1129.28 (10)H1W—O6—H2W116 (2)
O8—Ho1—N1123.29 (11)Ho1—O7—H3W116 (3)
O3—Ho1—N164.44 (10)Ho1—O7—H4W123 (3)
O2—C1—O1124.2 (4)H3W—O7—H4W114.8 (19)
O2—C1—C2119.7 (3)Ho1—O8—H5W123 (3)
O1—C1—C2116.1 (3)Ho1—O8—H6W120 (4)
N1—C2—C3123.9 (4)H5W—O8—H6W115.3 (19)
N1—C2—C1113.4 (3)H7W—O9—H8W116 (2)
O2—C1—C2—N1173.7 (4)O3—Ho1—N1—C2179.5 (3)
O1—C1—C2—N18.7 (5)O5i—Ho1—N1—C615.3 (4)
O2—C1—C2—C39.1 (6)O6—Ho1—N1—C672.9 (3)
O1—C1—C2—C3168.6 (4)O7—Ho1—N1—C684.4 (3)
N1—C2—C3—C41.0 (6)O1—Ho1—N1—C6173.5 (3)
C1—C2—C3—C4175.9 (4)O2ii—Ho1—N1—C6125.6 (3)
C2—C3—C4—O5177.4 (4)O8—Ho1—N1—C6143.5 (3)
C2—C3—C4—C52.3 (6)O3—Ho1—N1—C65.8 (3)
O5—C4—C5—C6177.7 (4)O2—C1—O1—Ho1172.6 (3)
C3—C4—C5—C62.0 (6)C2—C1—O1—Ho19.9 (5)
C4—C5—C6—N10.3 (6)O5i—Ho1—O1—C1163.5 (3)
C4—C5—C6—C7178.9 (4)O6—Ho1—O1—C180.1 (3)
N1—C6—C7—O4177.2 (3)O7—Ho1—O1—C169.5 (3)
C5—C6—C7—O43.4 (6)O2ii—Ho1—O1—C1149.8 (3)
N1—C6—C7—O32.4 (5)O8—Ho1—O1—C1137.3 (3)
C5—C6—C7—O3176.9 (4)O3—Ho1—O1—C16.6 (4)
C3—C2—N1—C60.8 (6)N1—Ho1—O1—C15.7 (3)
C1—C2—N1—C6178.0 (3)O1—C1—O2—Ho1iii28.4 (7)
C3—C2—N1—Ho1173.2 (3)C2—C1—O2—Ho1iii154.1 (3)
C1—C2—N1—Ho14.0 (5)O4—C7—O3—Ho1177.4 (3)
C5—C6—N1—C21.1 (6)C6—C7—O3—Ho13.0 (5)
C7—C6—N1—C2179.6 (3)O5i—Ho1—O3—C7178.8 (3)
C5—C6—N1—Ho1172.8 (3)O6—Ho1—O3—C778.9 (3)
C7—C6—N1—Ho16.5 (4)O7—Ho1—O3—C789.8 (3)
O5i—Ho1—N1—C2171.0 (3)O1—Ho1—O3—C73.6 (3)
O6—Ho1—N1—C2100.7 (3)O2ii—Ho1—O3—C7116.6 (3)
O7—Ho1—N1—C2101.9 (3)O8—Ho1—O3—C7116.6 (3)
O1—Ho1—N1—C20.2 (3)N1—Ho1—O3—C74.5 (3)
O2ii—Ho1—N1—C248.1 (3)C5—C4—O5—Ho1iv106.4 (4)
O8—Ho1—N1—C242.8 (3)C3—C4—O5—Ho1iv73.3 (4)
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+3/2, y+1/2, z+3/2; (iii) x+3/2, y1/2, z+3/2; (iv) x+1/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H8W···O2v0.86 (1)2.33 (4)3.080 (5)145 (6)
O9—H7W···O40.86 (1)1.84 (1)2.693 (5)170 (5)
O8—H6W···O9vi0.86 (1)2.28 (3)3.026 (5)145 (5)
O8—H5W···O9vii0.86 (1)1.84 (2)2.689 (5)168 (5)
O7—H4W···O3vii0.86 (1)2.08 (3)2.788 (4)139 (4)
O7—H3W···O5viii0.87 (1)1.92 (3)2.711 (4)152 (4)
O6—H2W···O1ii0.86 (1)1.85 (2)2.671 (4)159 (5)
O6—H1W···O4ix0.86 (1)1.83 (1)2.687 (4)171 (5)
Symmetry codes: (ii) x+3/2, y+1/2, z+3/2; (v) x1, y, z; (vi) x+1/2, y+3/2, z1/2; (vii) x+1/2, y1/2, z+3/2; (viii) x+1, y+1, z+2; (ix) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Ho(C7H2NO5)(H2O)3]·H2O
Mr417.09
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.879 (5), 7.557 (4), 15.386 (8)
β (°) 105.386 (5)
V3)1107.5 (9)
Z4
Radiation typeMo Kα
µ (mm1)7.19
Crystal size (mm)0.32 × 0.29 × 0.26
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.207, 0.257
No. of measured, independent and
observed [I > 2σ(I)] reflections
4776, 2003, 1646
Rint0.025
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.047, 1.02
No. of reflections2003
No. of parameters196
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.71, 0.54

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H8W···O2i0.861 (10)2.33 (4)3.080 (5)145 (6)
O9—H7W···O40.860 (10)1.842 (14)2.693 (5)170 (5)
O8—H6W···O9ii0.861 (10)2.28 (3)3.026 (5)145 (5)
O8—H5W···O9iii0.862 (10)1.841 (17)2.689 (5)168 (5)
O7—H4W···O3iii0.861 (10)2.08 (3)2.788 (4)139 (4)
O7—H3W···O5iv0.865 (10)1.92 (3)2.711 (4)152 (4)
O6—H2W···O1v0.858 (10)1.85 (2)2.671 (4)159 (5)
O6—H1W···O4vi0.860 (10)1.834 (14)2.687 (4)171 (5)
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+3/2, z1/2; (iii) x+1/2, y1/2, z+3/2; (iv) x+1, y+1, z+2; (v) x+3/2, y+1/2, z+3/2; (vi) x+1, y+2, z+2.
 

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, H. L., Yi, L., Zhao, B., Zhao, X. Q., Cheng, P., Liao, D. Z. & Yan, S. P. (2006). Inorg. Chem. 45, 5980–5988.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLv, D.-Y., Gao, Z.-Q. & Gu, J.-Z. (2010). Acta Cryst. E66, m1694–m1695.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMunoz, J. C., Atria, A. M., Baggio, R., Garland, M. T., Pena, O. & Orrego, C. (2005). Inorg. Chim. Acta, 358, 4027–4033.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H. S., Zhao, B., Zhai, B., Shi, W., Cheng, P., Liao, D. Z. & Yan, S. P. (2007). Cryst. Growth Des. 7, 1851–1857.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds