organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1395-o1396

4-[4-(Di­ethyl­amino)­phen­yl]-N-methyl-3-nitro-4H-chromen-2-amine

aCentre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry 605 014, India, and bDepartment of Chemistry, Pondicherry University, Puducherry 605 014, India
*Correspondence e-mail: krishstrucbio@gmail.com

(Received 5 May 2011; accepted 8 May 2011; online 14 May 2011)

In the title compound, C20H23N3O3, the dihydro­pyran ring adopts half-chair conformation. The chromene system makes a dihedral angle of 87.35 (5)° with the adjacent benzene ring. An intra­molecular N—H⋯O hydrogen bond generates an S(6) motif, which stabilizes the mol­ecular conformation. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds contribute to the stabilization of the packing.

Related literature

For the biological importance of 4H-chromene derivatives, see: Cai (2007[Cai, S. X. (2007). Recent Patents Anticancer Drug Discov. 2, 79-101.], 2008[Cai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603-607.]); Cai et al. (2006[Cai, S. X., Drewe, J. & Kasibhatla, S. (2006). Curr. Med. Chem. 13, 2627-2644.]); Gabor (1988[Gabor, M. (1988). The Pharmacology of Benzopyrone Derivatives and Related Compounds, pp. 91-126. Budapest: Akademiai Kiado.]); Brooks (1998[Brooks, G. T. (1998). Pestic. Sci. 22, 41-50.]); Valenti et al. (1993[Valenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349-360.]); Hyana & Saimoto (1987[Hyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.]); Afanti­tis et al. (2006[Afantitis, A., Melagraki, G., Sarimveis, H., Koutentis, P. A., Markopoulosd, J. & Igglessi-Markopoulou, O. (2006). Bioorg. Med. Chem. 14, 6686-6694.]); Tang et al. (2007[Tang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437-o1438.]). For the structures of 4H-chromene derivatives, see: Muthukumaran et al. (2011[Muthukumaran, J., Parthiban, A., Manivel, P., Rao, H. S. P. & Krishna, R. (2011). Acta Cryst. E67, o1276-o1277.]); Gayathri et al. (2006[Gayathri, D., Velmurugan, D., Ravikumar, K., Geetha, K. & Surya Prakash Rao, H. (2006). Acta Cryst. E62, o1961-o1963.]); Bhaskaran et al. (2006[Bhaskaran, S., Velmurugan, D., Ravikumar, K., Geetha, K. & Surya Prakash Rao, H. (2006). Acta Cryst. E62, o188-o190.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) and for hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C20H23N3O3

  • Mr = 353.41

  • Triclinic, [P \overline 1]

  • a = 8.9199 (11) Å

  • b = 10.4333 (12) Å

  • c = 11.6697 (8) Å

  • α = 65.100 (9)°

  • β = 82.388 (8)°

  • γ = 69.513 (11)°

  • V = 922.63 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.45 × 0.35 × 0.35 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.923, Tmax = 1.000

  • 17119 measured reflections

  • 3242 independent reflections

  • 2625 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.162

  • S = 1.05

  • 3242 reflections

  • 226 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 1.96 2.596 (2) 129
C5—H5⋯O3i 0.93 2.52 3.325 (3) 144
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

4H-chromenes and their derivatives possess various biological and pharmacological properties such as anti-viral, anti-fungal, anti-inflammatory, antidiabetic, cardionthonic, anti-anaphylactic and anti-cancer activity (Cai, 2008; Cai, 2007; Cai et al., 2006; Gabor,1988; Brooks,1998; Valenti et al., 1993; Hyana & Saimoto, 1987; Tang et al., 2007). 4-aryl-4H-chromenes are a new series of apoptosis inducers, which exhibit potent anticancer activity (Afantitis et al., 2006). Considering the importance of 4-aryl-4H-chromene derivatives, a single-crystal X-ray diffraction study on the title compound was carried out and analyzed.

Some 4H-chromene derivatives are already reported in the literature (Muthukumaran et al., 2011; Gayathri et al., 2006; Bhaskaran et al., 2006). The molecular structure of the title compound is shown in Fig. 1. From the puckering analysis (Cremer & Pople, 1975), the fused dihydropyran ring (O1/C1/C6/C7/C8/C9) of 4H-chromene system is very similar to half chair (H form) conformation with puckering parameters of Q = 0.253 (2) Å, θ = 103.2 (5) ° and Φ = 7.0 (5) °. In the title compound, the 4H-chromene system makes a dihedral angle of 87.35 (5)° with the adjacent phenyl ring. The intramolecular N1—H1···O2 interaction generates a graph-set motif S (6) (Bernstein et al., 1995) (Fig. 2) with a D···A bond distance of 2.596 (2) Å. The crystal packing (Fig. 3) is stabilized by weak intermolecular C—H···O interactions.

Related literature top

For the biological importance of 4H-chromene derivatives, see: Cai (2007, 2008); Cai et al. (2006); Gabor (1988); Brooks (1998); Valenti et al. (1993); Hyana & Saimoto (1987); Afantitis et al. (2006); Tang et al. (2007). For the structures of 4H-chromene derivatives, see: Muthukumaran et al. (2011); Gayathri et al. (2006); Bhaskaran et al. (2006). For ring puckering analysis, see: Cremer & Pople (1975) and for hydrogen-bond motifs, see: Bernstein et al. (1995)

Experimental top

To a vigorously stirred solution of N-methyl-N-[3-nitro-4-(methylsulfanyl)-4H-2-chromenyl]amine (0.5 g, 2 mmol) in ethanol (15 ml), N, N-diethylaminobenzene (0.33 g, 2.2 mmol) was added and the resulting solution was refluxed for 12 h by which time the reaction was complete (TLC; hexane: EtOAc, 6:4). The reaction mixture was cooled to room temperature and kept aside for 3 h. The solid, which separated was filtered to obtain 0.59 g of N2-methyl-4-[4-(diethylamino)phenyl]-3-nitro-4H-2-chromenamine in 92% yield as colorless solid; mp 201 °C. Rf 0.4 (hexane: EtOAc, 6:4). A sample suitable for single crystal X-ray analysis was obtained by recrystallization from a mixture of dichloromethane and hexane (3:1).

Refinement top

All hydrogen atoms were placed in calculated positions, with N—H=0.86 and C—H=0.93 and included in the final cycles of refinement using a riding model with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. : A view of intramolecular motif S (6) formed by N—H···O interaction in Compound (I). The motif forming atoms are shown in ball and stick model and the Hydrogen bond are shown in blue dashed lines.
[Figure 3] Fig. 3. : The crystal packing of (I) showing intermolecular interactions as dashed lines.
4-[4-(Diethylamino)phenyl]-N-methyl-3-nitro-4H-chromen-2-amine top
Crystal data top
C20H23N3O3Z = 2
Mr = 353.41F(000) = 376
Triclinic, P1Dx = 1.272 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9199 (11) ÅCell parameters from 8151 reflections
b = 10.4333 (12) Åθ = 2.7–29.3°
c = 11.6697 (8) ŵ = 0.09 mm1
α = 65.100 (9)°T = 293 K
β = 82.388 (8)°Block, yellow
γ = 69.513 (11)°0.45 × 0.35 × 0.35 mm
V = 922.63 (19) Å3
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3242 independent reflections
Radiation source: fine-focus sealed tube2625 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 15.9821 pixels mm-1θmax = 25.0°, θmin = 2.7°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1212
Tmin = 0.923, Tmax = 1.000l = 1313
17119 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0737P)2 + 0.5254P]
where P = (Fo2 + 2Fc2)/3
3242 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.52 e Å3
3 restraintsΔρmin = 0.44 e Å3
Crystal data top
C20H23N3O3γ = 69.513 (11)°
Mr = 353.41V = 922.63 (19) Å3
Triclinic, P1Z = 2
a = 8.9199 (11) ÅMo Kα radiation
b = 10.4333 (12) ŵ = 0.09 mm1
c = 11.6697 (8) ÅT = 293 K
α = 65.100 (9)°0.45 × 0.35 × 0.35 mm
β = 82.388 (8)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3242 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2625 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 1.000Rint = 0.036
17119 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0563 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.05Δρmax = 0.52 e Å3
3242 reflectionsΔρmin = 0.44 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.42869 (17)0.68371 (16)0.57975 (15)0.0483 (4)
N10.3634 (2)0.9167 (2)0.43607 (18)0.0466 (5)
H10.38820.99100.37900.056*
N20.6967 (2)0.8783 (2)0.38082 (17)0.0474 (5)
C80.6437 (2)0.7689 (2)0.47334 (19)0.0395 (5)
C70.7689 (2)0.6305 (2)0.55805 (19)0.0391 (5)
H70.85710.60010.50530.047*
O30.84395 (19)0.8532 (2)0.36670 (17)0.0620 (5)
C90.4810 (2)0.7932 (2)0.4932 (2)0.0397 (5)
O20.5993 (2)1.00198 (19)0.31188 (17)0.0658 (5)
C60.6982 (2)0.5058 (2)0.6218 (2)0.0399 (5)
C100.8361 (2)0.6586 (2)0.65559 (19)0.0385 (5)
C150.9923 (2)0.6551 (2)0.6541 (2)0.0425 (5)
H151.05990.63400.59190.051*
C10.5350 (3)0.5370 (2)0.6324 (2)0.0424 (5)
C130.9558 (3)0.7122 (3)0.8384 (2)0.0491 (6)
C50.7938 (3)0.3569 (3)0.6773 (2)0.0484 (6)
H50.90440.33210.67050.058*
C110.7400 (3)0.6897 (3)0.7504 (2)0.0482 (5)
H110.63390.69320.75360.058*
C141.0514 (3)0.6821 (3)0.7422 (2)0.0478 (5)
H141.15700.68020.73730.057*
C120.7968 (3)0.7153 (3)0.8397 (2)0.0544 (6)
H120.72880.73510.90220.065*
C200.1945 (3)0.9377 (3)0.4617 (3)0.0563 (6)
H20A0.16810.85890.45600.084*
H20B0.13161.03230.40090.084*
H20C0.17240.93570.54510.084*
N31.0125 (3)0.7401 (3)0.9267 (2)0.0778 (5)
C20.4655 (3)0.4275 (3)0.6966 (2)0.0527 (6)
H20.35480.45200.70210.063*
C30.5633 (3)0.2813 (3)0.7523 (3)0.0602 (7)
H30.51870.20610.79710.072*
C40.7278 (3)0.2458 (3)0.7418 (2)0.0584 (6)
H40.79350.14670.77840.070*
C181.1609 (4)0.7810 (4)0.9042 (3)0.0778 (5)
H18A1.17200.83220.81400.093*
H18B1.14960.85060.94210.093*
C160.9352 (4)0.7188 (4)1.0492 (3)0.0778 (5)
H16A0.87900.64781.06850.093*
H16B1.01650.67721.11440.093*
C170.8226 (6)0.8584 (5)1.0503 (5)0.1329 (17)
H17A0.87740.92961.02980.199*
H17B0.77740.84051.13270.199*
H17C0.73870.89710.98900.199*
C191.3069 (5)0.6543 (5)0.9545 (4)0.1141 (14)
H19A1.29590.60051.04330.171*
H19B1.39600.69010.94110.171*
H19C1.32480.58910.91200.171*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0341 (8)0.0406 (8)0.0607 (10)0.0087 (6)0.0025 (7)0.0150 (7)
N10.0364 (9)0.0393 (10)0.0554 (11)0.0078 (8)0.0005 (8)0.0145 (9)
N20.0400 (10)0.0525 (11)0.0445 (11)0.0133 (9)0.0030 (8)0.0168 (9)
C80.0367 (11)0.0437 (11)0.0381 (11)0.0115 (9)0.0013 (9)0.0179 (9)
C70.0316 (10)0.0437 (11)0.0406 (11)0.0070 (8)0.0014 (8)0.0202 (9)
O30.0406 (9)0.0702 (11)0.0623 (11)0.0191 (8)0.0105 (8)0.0170 (9)
C90.0386 (11)0.0401 (11)0.0411 (11)0.0103 (9)0.0002 (9)0.0187 (9)
O20.0520 (10)0.0530 (10)0.0628 (11)0.0111 (8)0.0009 (8)0.0005 (9)
C60.0407 (11)0.0436 (12)0.0386 (11)0.0100 (9)0.0032 (9)0.0214 (9)
C100.0361 (10)0.0386 (11)0.0383 (11)0.0094 (8)0.0008 (8)0.0150 (9)
C150.0344 (11)0.0470 (12)0.0442 (12)0.0094 (9)0.0013 (9)0.0199 (10)
C10.0418 (11)0.0393 (11)0.0451 (12)0.0090 (9)0.0023 (9)0.0186 (10)
C130.0539 (13)0.0516 (13)0.0449 (13)0.0201 (11)0.0051 (10)0.0184 (11)
C50.0455 (12)0.0486 (13)0.0494 (13)0.0057 (10)0.0061 (10)0.0241 (11)
C110.0381 (11)0.0626 (14)0.0517 (13)0.0198 (10)0.0060 (10)0.0292 (11)
C140.0371 (11)0.0543 (13)0.0515 (13)0.0157 (10)0.0025 (10)0.0192 (11)
C120.0543 (14)0.0726 (16)0.0496 (14)0.0261 (12)0.0123 (11)0.0359 (13)
C200.0363 (12)0.0499 (13)0.0732 (17)0.0054 (10)0.0002 (11)0.0229 (12)
N30.0905 (12)0.1014 (13)0.0670 (10)0.0482 (10)0.0023 (9)0.0428 (10)
C20.0494 (13)0.0516 (14)0.0595 (15)0.0204 (11)0.0012 (11)0.0216 (12)
C30.0729 (17)0.0459 (14)0.0617 (16)0.0251 (12)0.0033 (13)0.0158 (12)
C40.0681 (17)0.0405 (13)0.0597 (15)0.0073 (11)0.0104 (12)0.0191 (11)
C180.0905 (12)0.1014 (13)0.0670 (10)0.0482 (10)0.0023 (9)0.0428 (10)
C160.0905 (12)0.1014 (13)0.0670 (10)0.0482 (10)0.0023 (9)0.0428 (10)
C170.172 (5)0.129 (4)0.145 (4)0.071 (3)0.028 (3)0.088 (3)
C190.094 (3)0.151 (4)0.098 (3)0.039 (3)0.022 (2)0.044 (3)
Geometric parameters (Å, º) top
O1—C91.349 (3)C11—C121.373 (3)
O1—C11.402 (2)C11—H110.9300
N1—C91.312 (3)C14—H140.9300
N1—C201.453 (3)C12—H120.9300
N1—H10.8600C20—H20A0.9600
N2—O31.249 (2)C20—H20B0.9600
N2—O21.262 (2)C20—H20C0.9600
N2—C81.377 (3)N3—C161.465 (4)
C8—C91.388 (3)N3—C181.487 (4)
C8—C71.507 (3)C2—C31.376 (3)
C7—C61.510 (3)C2—H20.9300
C7—C101.525 (3)C3—C41.384 (4)
C7—H70.9800C3—H30.9300
O3—N21.249 (2)C4—H40.9300
O2—N21.262 (2)C18—C191.460 (5)
C6—C11.377 (3)C18—H18A0.9700
C6—C51.390 (3)C18—H18B0.9700
C10—C151.380 (3)C16—C171.455 (5)
C10—C111.385 (3)C16—H16A0.9700
C15—C141.380 (3)C16—H16B0.9700
C15—H150.9300C17—H17A0.9600
C1—C21.380 (3)C17—H17B0.9600
C13—N31.378 (3)C17—H17C0.9600
C13—C141.393 (3)C19—H19A0.9600
C13—C121.406 (3)C19—H19B0.9600
C5—C41.372 (4)C19—H19C0.9600
C5—H50.9300
C9—O1—C1119.79 (16)C11—C12—H12119.4
C9—N1—C20125.1 (2)C13—C12—H12119.4
C9—N1—H1117.5N1—C20—H20A109.5
C20—N1—H1117.5N1—C20—H20B109.5
O3—N2—O2120.32 (18)H20A—C20—H20B109.5
O3—N2—O2120.32 (18)N1—C20—H20C109.5
O3—N2—C8118.58 (18)H20A—C20—H20C109.5
O2—N2—C8121.10 (18)H20B—C20—H20C109.5
N2—C8—C9120.35 (19)C13—N3—C16120.7 (2)
N2—C8—C7117.15 (17)C13—N3—C18120.8 (2)
C9—C8—C7122.25 (19)C16—N3—C18118.3 (2)
C6—C7—C8109.37 (17)C3—C2—C1118.6 (2)
C6—C7—C10110.83 (17)C3—C2—H2120.7
C8—C7—C10111.95 (17)C1—C2—H2120.7
C6—C7—H7108.2C2—C3—C4120.2 (2)
C10—C7—H7108.2C2—C3—H3119.9
N1—C9—O1112.50 (18)C4—C3—H3119.9
N1—C9—C8127.1 (2)C5—C4—C3119.9 (2)
O1—C9—C8120.41 (18)C5—C4—H4120.0
C1—C6—C5117.4 (2)C3—C4—H4120.0
C1—C6—C7120.57 (18)C19—C18—N3114.4 (3)
C5—C6—C7121.92 (19)C19—C18—H18A108.7
C15—C10—C11117.06 (19)N3—C18—H18A108.7
C15—C10—C7122.49 (18)C19—C18—H18B108.7
C11—C10—C7120.45 (18)N3—C18—H18B108.7
C14—C15—C10122.0 (2)H18A—C18—H18B107.6
C14—C15—H15119.0C17—C16—N3112.0 (3)
C10—C15—H15119.0C17—C16—H16A109.2
C6—C1—C2122.6 (2)N3—C16—H16A109.2
C6—C1—O1121.69 (19)C17—C16—H16B109.2
C2—C1—O1115.70 (19)N3—C16—H16B109.2
N3—C13—C14122.1 (2)H16A—C16—H16B107.9
N3—C13—C12121.4 (2)C16—C17—H17A109.5
C14—C13—C12116.5 (2)C16—C17—H17B109.5
C4—C5—C6121.2 (2)H17A—C17—H17B109.5
C4—C5—H5119.4C16—C17—H17C109.5
C6—C5—H5119.4H17A—C17—H17C109.5
C12—C11—C10121.9 (2)H17B—C17—H17C109.5
C12—C11—H11119.0C18—C19—H19A109.5
C10—C11—H11119.0C18—C19—H19B109.5
C15—C14—C13121.3 (2)H19A—C19—H19B109.5
C15—C14—H14119.3C18—C19—H19C109.5
C13—C14—H14119.3H19A—C19—H19C109.5
C11—C12—C13121.2 (2)H19B—C19—H19C109.5
O3—N2—C8—N20 (17)C8—C7—C6—C5162.23 (19)
O2—N2—C8—N20 (100)C10—C7—C6—C573.9 (2)
O2—N2—C8—N20 (100)C6—C7—C10—C15124.8 (2)
N2—N2—C8—C90.00 (11)C8—C7—C10—C15112.8 (2)
O3—N2—C8—C9179.15 (19)C6—C7—C10—C1155.4 (3)
O2—N2—C8—C90.4 (3)C8—C7—C10—C1167.0 (3)
O2—N2—C8—C90.4 (3)C11—C10—C15—C140.4 (3)
N2—N2—C8—C70.00 (19)C7—C10—C15—C14179.4 (2)
O3—N2—C8—C74.7 (3)C5—C6—C1—C21.0 (3)
O2—N2—C8—C7174.88 (19)C7—C6—C1—C2175.9 (2)
O2—N2—C8—C7174.88 (19)C5—C6—C1—O1179.92 (18)
N2—C8—C7—C6161.30 (17)C7—C6—C1—O13.0 (3)
N2—C8—C7—C6161.30 (17)C9—O1—C1—C615.4 (3)
C9—C8—C7—C624.4 (3)C9—O1—C1—C2165.57 (19)
N2—C8—C7—C1075.5 (2)C1—C6—C5—C41.0 (3)
N2—C8—C7—C1075.5 (2)C7—C6—C5—C4175.8 (2)
C9—C8—C7—C1098.9 (2)C15—C10—C11—C120.3 (3)
O2—N2—O3—N20 (39)C7—C10—C11—C12179.9 (2)
O2—N2—O3—N20 (39)C10—C15—C14—C131.0 (3)
C8—N2—O3—N20 (100)N3—C13—C14—C15179.6 (2)
C20—N1—C9—O10.6 (3)C12—C13—C14—C150.8 (3)
C20—N1—C9—C8178.9 (2)C10—C11—C12—C130.4 (4)
C1—O1—C9—N1168.16 (18)N3—C13—C12—C11179.0 (2)
C1—O1—C9—C812.3 (3)C14—C13—C12—C110.1 (4)
N2—C8—C9—N13.7 (3)C14—C13—N3—C16158.1 (3)
N2—C8—C9—N13.7 (3)C12—C13—N3—C1623.1 (4)
C7—C8—C9—N1170.5 (2)C14—C13—N3—C1817.1 (4)
N2—C8—C9—O1176.92 (18)C12—C13—N3—C18161.7 (3)
N2—C8—C9—O1176.92 (18)C6—C1—C2—C30.0 (4)
C7—C8—C9—O18.9 (3)O1—C1—C2—C3179.0 (2)
N2—N2—O2—O20.0C1—C2—C3—C41.0 (4)
O3—N2—O2—O20.0 (2)C6—C5—C4—C30.1 (4)
C8—N2—O2—O20.00 (11)C2—C3—C4—C51.0 (4)
O3—N2—O2—N20 (10)C13—N3—C18—C1992.4 (4)
O2—N2—O2—N20 (100)C16—N3—C18—C1982.9 (4)
C8—N2—O2—N20 (100)C13—N3—C16—C1797.1 (4)
C8—C7—C6—C121.0 (3)C18—N3—C16—C1787.6 (4)
C10—C7—C6—C1102.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.962.596 (2)129
C5—H5···O3i0.932.523.325 (3)144
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC20H23N3O3
Mr353.41
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.9199 (11), 10.4333 (12), 11.6697 (8)
α, β, γ (°)65.100 (9), 82.388 (8), 69.513 (11)
V3)922.63 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.35 × 0.35
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.923, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
17119, 3242, 2625
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.162, 1.05
No. of reflections3242
No. of parameters226
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.44

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.962.596 (2)129
C5—H5···O3i0.932.523.325 (3)144
Symmetry code: (i) x+2, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: hspr@yahoo.com.

Acknowledgements

RK, JM and PM thank the Centre for Bioinformatics (Funded by the Department of Biotechnology and the Department of Information Technology, New Delhi, India), Pondicherry University for providing the computational facilities to carry out this work. AP thanks Pondicherry University for a Fellowship. PM also thanks the University Grants Commission (UGC) for a Fellowship. JM also thanks the Council for Scientific and Industrial Research (CSIR) for a Senior Research Fellowship (SRF). HSP thanks the UGC for the Special Assistance Programme (SAP) and the Department of Science and Technology (DST) for the Fund for Improvement of Science and Technology Infrastructure in Universities and Higher Educational Institutions (FIST).

References

First citationAfantitis, A., Melagraki, G., Sarimveis, H., Koutentis, P. A., Markopoulosd, J. & Igglessi-Markopoulou, O. (2006). Bioorg. Med. Chem. 14, 6686–6694.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBhaskaran, S., Velmurugan, D., Ravikumar, K., Geetha, K. & Surya Prakash Rao, H. (2006). Acta Cryst. E62, o188–o190.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrooks, G. T. (1998). Pestic. Sci. 22, 41–50.  CrossRef Web of Science Google Scholar
First citationCai, S. X. (2007). Recent Patents Anticancer Drug Discov. 2, 79–101.  Google Scholar
First citationCai, S. X. (2008). Bioorg. Med. Chem. Lett. 18, 603–607.  Web of Science PubMed Google Scholar
First citationCai, S. X., Drewe, J. & Kasibhatla, S. (2006). Curr. Med. Chem. 13, 2627–2644.  Web of Science PubMed CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGabor, M. (1988). The Pharmacology of Benzopyrone Derivatives and Related Compounds, pp. 91–126. Budapest: Akademiai Kiado.  Google Scholar
First citationGayathri, D., Velmurugan, D., Ravikumar, K., Geetha, K. & Surya Prakash Rao, H. (2006). Acta Cryst. E62, o1961–o1963.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHyana, T. & Saimoto, H. (1987). Jpn Patent JP 621 812 768.  Google Scholar
First citationMuthukumaran, J., Parthiban, A., Manivel, P., Rao, H. S. P. & Krishna, R. (2011). Acta Cryst. E67, o1276–o1277.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, Q.-G., Wu, W.-Y., He, W., Sun, H.-S. & Guo, C. (2007). Acta Cryst. E63, o1437–o1438.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationValenti, P., Da Re, P., Rampa, A., Montanari, P., Carrara, M. & Cima, L. (1993). Anticancer Drug. Des. 8, 349–360.  CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1395-o1396
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds