metal-organic compounds
Bis(2-methylbenzoato-κ2O,O′)(1,10′-phenanthroline-κ2N,N′)copper(II)
aDepartment of Chemistry, Huzhou Teachers College, Huzhou, Zhejiang, 313000, People's Republic of China
*Correspondence e-mail: shengliangni@163.com
In the title compound, [Cu(C8H7O2)2(C12H8N2)], the CuII atom assumes a distorted octahedral coordination geometry, chelated by two N atoms from the 1,10′-phenanthroline ligand and four O atoms from two 2-methylbenzoate anions. A significant Jahn–Teller distortion is observed with two axial Cu—O distances significantly longer than those in the equatorial CuO2N2 plane. In the crystal, π–π stacking interactions, with centroid–centroid distances of 3.547 (3) or 3.728 (3) Å between the phenanthroline rings, form layers parallel to (011).
Related literature
For Jahn–Teller distortions in copper complexes, see: Yang & Vittal (2003); Su et al. (2005); Liu et al. (2010). For phenanthroline complexes, see: Wang et al. (1996); Wall et al. (1999); Naing et al. (1995). For related structures, see: Cano et al. (1997); Rodrigues et al. (1999) Xu & Xu (2004).
Experimental
Crystal data
|
Refinement
|
|
Data collection: RAPID-AUTO (Rigaku, 1998); cell RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811018162/sj5144sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811018162/sj5144Isup2.hkl
Freshly prepared CuCO3 was essential for an optimal synthesis. 1.0 cm3 (1 M) aqueous Na2CO3 was added dropwise to a stirred aqueous solution of (0.2490 g, 1.0 mmol)CuSO4.5H2O in 4 cm3 of doubly distilled water. This produced a blue precipitate, of Cu(OH)2-2x(CO3)x.yH2O, which was centrifuged and washed with doubly distilled water until no SO4-2 anions were detected in the supernatant liquid. The fresh blue precipitate was subsequently added to a stirred solution of 2-methylbenzoic acid (0.2725 g, 2.0 mmol) and 1,10'-phenanthroline (0.1982 g, 1.0 mmol) in 20 cm3 C2H5OH-H2O (1:1, v/v). The mixture was stirred for 30 min and filtered. The insoluble solid was then filtered off, and the resulting blue filtrate (pH = 5.20) was allowed to stand at room temperature. Blue block-like crystals were grown by slow evaporation over a week. Yield: 45% based on the initial CuSO4.5 H2O.
All H-atoms bonded to C were positioned geometrically and refined using a riding model with d(C-H) = 0.093 Å, Uiso(H) = 1.2 Ueq(C) for aromatic, and 0.96 Å, Uiso(H) = 1.5 Ueq(C) for CH3 atoms. H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O-H distances fixed as initially found and with Uiso(H) values set at 1.5 Ueq(O).
Data collection: RAPID-AUTO (Rigaku, 1998); cell
RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C8H7O2)2(C12H8N2)] | F(000) = 1060 |
Mr = 514.02 | Dx = 1.495 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 16.245 (3) Å | θ = 3.0–25.0° |
b = 10.136 (2) Å | µ = 1.00 mm−1 |
c = 14.048 (3) Å | T = 293 K |
β = 99.15 (3)° | Plate, blue |
V = 2283.7 (8) Å3 | 0.15 × 0.10 × 0.10 mm |
Z = 4 |
Rigaku R-AXIS RAPID diffractometer | 4021 independent reflections |
Radiation source: fine-focus sealed tube | 2509 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.063 |
ω scans | θmax = 25.0°, θmin = 3.0° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −19→19 |
Tmin = 0.866, Tmax = 0.900 | k = −12→12 |
17441 measured reflections | l = −16→16 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H-atom parameters constrained |
wR(F2) = 0.150 | w = 1/[σ2(Fo2) + (0.0447P)2 + 4.7675P] where P = (Fo2 + 2Fc2)/3 |
S = 1.13 | (Δ/σ)max < 0.001 |
4021 reflections | Δρmax = 0.74 e Å−3 |
319 parameters | Δρmin = −1.04 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0013 (5) |
[Cu(C8H7O2)2(C12H8N2)] | V = 2283.7 (8) Å3 |
Mr = 514.02 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 16.245 (3) Å | µ = 1.00 mm−1 |
b = 10.136 (2) Å | T = 293 K |
c = 14.048 (3) Å | 0.15 × 0.10 × 0.10 mm |
β = 99.15 (3)° |
Rigaku R-AXIS RAPID diffractometer | 4021 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2509 reflections with I > 2σ(I) |
Tmin = 0.866, Tmax = 0.900 | Rint = 0.063 |
17441 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.150 | H-atom parameters constrained |
S = 1.13 | Δρmax = 0.74 e Å−3 |
4021 reflections | Δρmin = −1.04 e Å−3 |
319 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu | −0.33221 (4) | 0.96309 (7) | −0.17022 (4) | 0.0480 (2) | |
O1 | −0.2996 (2) | 1.1433 (4) | −0.1871 (3) | 0.0703 (12) | |
O2 | −0.2404 (2) | 1.1033 (4) | −0.0382 (3) | 0.0606 (10) | |
O3 | −0.2325 (2) | 0.8925 (4) | −0.2077 (3) | 0.0635 (11) | |
O4 | −0.3140 (2) | 0.8977 (4) | −0.3495 (3) | 0.0609 (10) | |
N1 | −0.3735 (2) | 0.7809 (4) | −0.1419 (3) | 0.0450 (10) | |
N2 | −0.4462 (2) | 1.0137 (4) | −0.1442 (3) | 0.0423 (9) | |
C1 | −0.3348 (4) | 0.6641 (6) | −0.1404 (4) | 0.0584 (15) | |
H1 | −0.2794 | 0.6613 | −0.1496 | 0.070* | |
C2 | −0.3756 (5) | 0.5461 (6) | −0.1255 (4) | 0.0698 (17) | |
H2 | −0.3471 | 0.4665 | −0.1251 | 0.084* | |
C3 | −0.4558 (4) | 0.5468 (6) | −0.1115 (4) | 0.0607 (15) | |
H3 | −0.4825 | 0.4678 | −0.1024 | 0.073* | |
C4 | −0.4990 (3) | 0.6670 (5) | −0.1108 (3) | 0.0478 (13) | |
C5 | −0.5834 (3) | 0.6805 (6) | −0.0943 (4) | 0.0587 (15) | |
H5 | −0.6141 | 0.6053 | −0.0854 | 0.070* | |
C6 | −0.6191 (3) | 0.7998 (7) | −0.0914 (4) | 0.0588 (15) | |
H6 | −0.6734 | 0.8055 | −0.0785 | 0.071* | |
C7 | −0.5753 (3) | 0.9185 (6) | −0.1076 (3) | 0.0482 (13) | |
C8 | −0.6084 (4) | 1.0457 (6) | −0.1077 (4) | 0.0606 (16) | |
H8 | −0.6627 | 1.0579 | −0.0962 | 0.073* | |
C9 | −0.5615 (4) | 1.1519 (6) | −0.1244 (4) | 0.0623 (16) | |
H9 | −0.5833 | 1.2366 | −0.1235 | 0.075* | |
C10 | −0.4806 (4) | 1.1328 (5) | −0.1431 (4) | 0.0565 (14) | |
H10 | −0.4494 | 1.2061 | −0.1552 | 0.068* | |
C11 | −0.4933 (3) | 0.9076 (5) | −0.1268 (3) | 0.0395 (11) | |
C12 | −0.4540 (3) | 0.7812 (5) | −0.1262 (3) | 0.0406 (11) | |
C13 | −0.2490 (3) | 1.1732 (5) | −0.1108 (4) | 0.0476 (12) | |
C14 | −0.2009 (3) | 1.3008 (5) | −0.1152 (3) | 0.0416 (11) | |
C15 | −0.2043 (3) | 1.3578 (5) | −0.2067 (4) | 0.0509 (13) | |
H15 | −0.2348 | 1.3161 | −0.2599 | 0.061* | |
C16 | −0.1637 (3) | 1.4737 (6) | −0.2196 (4) | 0.0619 (15) | |
H16 | −0.1660 | 1.5092 | −0.2811 | 0.074* | |
C17 | −0.1197 (4) | 1.5370 (6) | −0.1411 (5) | 0.0667 (16) | |
H17 | −0.0928 | 1.6163 | −0.1490 | 0.080* | |
C18 | −0.1157 (3) | 1.4830 (6) | −0.0517 (5) | 0.0604 (15) | |
H18 | −0.0859 | 1.5272 | 0.0008 | 0.072* | |
C19 | −0.1545 (3) | 1.3636 (5) | −0.0356 (4) | 0.0496 (13) | |
C20 | −0.1458 (4) | 1.3130 (7) | 0.0666 (4) | 0.080 (2) | |
H20A | −0.1327 | 1.2206 | 0.0676 | 0.120* | |
H20B | −0.1973 | 1.3262 | 0.0907 | 0.120* | |
H20C | −0.1019 | 1.3600 | 0.1063 | 0.120* | |
C21 | −0.2458 (3) | 0.8741 (5) | −0.2988 (4) | 0.0494 (13) | |
C22 | −0.1747 (3) | 0.8162 (5) | −0.3429 (3) | 0.0425 (11) | |
C23 | −0.1959 (3) | 0.7396 (5) | −0.4251 (3) | 0.0531 (14) | |
H23 | −0.2517 | 0.7325 | −0.4527 | 0.064* | |
C24 | −0.1363 (4) | 0.6736 (6) | −0.4669 (4) | 0.0615 (15) | |
H24 | −0.1517 | 0.6217 | −0.5214 | 0.074* | |
C25 | −0.0538 (4) | 0.6861 (6) | −0.4265 (4) | 0.0612 (15) | |
H25 | −0.0130 | 0.6410 | −0.4528 | 0.073* | |
C26 | −0.0319 (3) | 0.7651 (6) | −0.3470 (4) | 0.0555 (14) | |
H26 | 0.0243 | 0.7750 | −0.3220 | 0.067* | |
C27 | −0.0903 (3) | 0.8306 (5) | −0.3028 (3) | 0.0430 (12) | |
C28 | −0.0598 (3) | 0.9171 (6) | −0.2164 (4) | 0.0629 (16) | |
H18A | −0.0909 | 0.9981 | −0.2215 | 0.094* | |
H28B | −0.0017 | 0.9361 | −0.2144 | 0.094* | |
H28C | −0.0676 | 0.8720 | −0.1584 | 0.094* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.0409 (4) | 0.0540 (4) | 0.0480 (4) | −0.0059 (3) | 0.0037 (3) | 0.0006 (3) |
O1 | 0.067 (2) | 0.074 (3) | 0.063 (2) | −0.024 (2) | −0.011 (2) | 0.009 (2) |
O2 | 0.075 (3) | 0.049 (2) | 0.057 (2) | −0.006 (2) | 0.0108 (19) | 0.0059 (19) |
O3 | 0.049 (2) | 0.094 (3) | 0.048 (2) | −0.005 (2) | 0.0121 (17) | 0.000 (2) |
O4 | 0.045 (2) | 0.060 (2) | 0.074 (3) | −0.0035 (18) | −0.0034 (18) | 0.005 (2) |
N1 | 0.040 (2) | 0.053 (3) | 0.041 (2) | 0.010 (2) | 0.0046 (17) | −0.003 (2) |
N2 | 0.051 (2) | 0.035 (2) | 0.039 (2) | 0.0028 (19) | 0.0003 (18) | 0.0003 (18) |
C1 | 0.059 (3) | 0.059 (4) | 0.056 (3) | 0.022 (3) | 0.005 (3) | −0.002 (3) |
C2 | 0.105 (5) | 0.041 (3) | 0.065 (4) | 0.018 (4) | 0.019 (4) | 0.004 (3) |
C3 | 0.091 (5) | 0.044 (3) | 0.050 (3) | −0.007 (3) | 0.019 (3) | −0.001 (3) |
C4 | 0.056 (3) | 0.047 (3) | 0.039 (3) | −0.009 (3) | 0.001 (2) | −0.003 (2) |
C5 | 0.054 (3) | 0.075 (4) | 0.047 (3) | −0.027 (3) | 0.005 (3) | −0.001 (3) |
C6 | 0.041 (3) | 0.084 (5) | 0.050 (3) | −0.007 (3) | 0.004 (2) | −0.007 (3) |
C7 | 0.040 (3) | 0.062 (4) | 0.039 (3) | 0.006 (3) | −0.002 (2) | −0.005 (2) |
C8 | 0.050 (3) | 0.078 (4) | 0.050 (3) | 0.025 (3) | −0.002 (2) | −0.009 (3) |
C9 | 0.070 (4) | 0.059 (4) | 0.053 (3) | 0.031 (3) | −0.004 (3) | −0.009 (3) |
C10 | 0.081 (4) | 0.040 (3) | 0.044 (3) | 0.006 (3) | −0.004 (3) | 0.003 (2) |
C11 | 0.039 (3) | 0.044 (3) | 0.033 (2) | 0.002 (2) | −0.003 (2) | −0.002 (2) |
C12 | 0.041 (3) | 0.042 (3) | 0.035 (2) | 0.005 (2) | −0.003 (2) | −0.005 (2) |
C13 | 0.041 (3) | 0.042 (3) | 0.061 (3) | 0.001 (2) | 0.013 (3) | 0.000 (3) |
C14 | 0.036 (2) | 0.039 (3) | 0.050 (3) | 0.000 (2) | 0.007 (2) | −0.001 (2) |
C15 | 0.043 (3) | 0.054 (3) | 0.056 (3) | −0.003 (2) | 0.006 (2) | 0.005 (3) |
C16 | 0.057 (3) | 0.061 (4) | 0.071 (4) | 0.003 (3) | 0.021 (3) | 0.021 (3) |
C17 | 0.060 (4) | 0.047 (3) | 0.096 (5) | −0.006 (3) | 0.023 (3) | 0.000 (4) |
C18 | 0.049 (3) | 0.053 (4) | 0.079 (4) | −0.007 (3) | 0.008 (3) | −0.018 (3) |
C19 | 0.046 (3) | 0.053 (3) | 0.051 (3) | −0.005 (3) | 0.011 (2) | −0.006 (3) |
C20 | 0.086 (5) | 0.098 (5) | 0.053 (4) | −0.023 (4) | 0.002 (3) | −0.003 (3) |
C21 | 0.039 (3) | 0.053 (3) | 0.057 (3) | −0.013 (2) | 0.007 (2) | 0.006 (3) |
C22 | 0.044 (3) | 0.042 (3) | 0.043 (3) | −0.005 (2) | 0.009 (2) | 0.007 (2) |
C23 | 0.058 (3) | 0.056 (3) | 0.043 (3) | −0.015 (3) | 0.002 (2) | 0.003 (3) |
C24 | 0.088 (4) | 0.050 (3) | 0.049 (3) | −0.014 (3) | 0.017 (3) | −0.007 (3) |
C25 | 0.070 (4) | 0.054 (4) | 0.063 (4) | 0.006 (3) | 0.022 (3) | 0.000 (3) |
C26 | 0.051 (3) | 0.062 (4) | 0.053 (3) | −0.001 (3) | 0.007 (3) | 0.002 (3) |
C27 | 0.042 (3) | 0.041 (3) | 0.045 (3) | −0.002 (2) | 0.007 (2) | 0.005 (2) |
C28 | 0.048 (3) | 0.079 (4) | 0.061 (3) | −0.014 (3) | 0.003 (3) | −0.013 (3) |
Cu—O3 | 1.919 (4) | C11—C12 | 1.431 (6) |
Cu—O1 | 1.927 (4) | C13—C14 | 1.518 (7) |
Cu—N2 | 2.010 (4) | C14—C19 | 1.399 (7) |
Cu—N1 | 2.025 (4) | C14—C15 | 1.402 (7) |
O1—C13 | 1.279 (6) | C15—C16 | 1.374 (7) |
O2—C13 | 1.230 (6) | C15—H15 | 0.9300 |
O3—C21 | 1.277 (6) | C16—C17 | 1.374 (8) |
O4—C21 | 1.240 (6) | C16—H16 | 0.9300 |
N1—C1 | 1.339 (6) | C17—C18 | 1.362 (8) |
N1—C12 | 1.361 (6) | C17—H17 | 0.9300 |
N2—C10 | 1.332 (6) | C18—C19 | 1.399 (7) |
N2—C11 | 1.364 (6) | C18—H18 | 0.9300 |
C1—C2 | 1.399 (8) | C19—C20 | 1.510 (7) |
C1—H1 | 0.9300 | C20—H20A | 0.9600 |
C2—C3 | 1.348 (8) | C20—H20B | 0.9600 |
C2—H2 | 0.9300 | C20—H20C | 0.9600 |
C3—C4 | 1.406 (7) | C21—C22 | 1.515 (7) |
C3—H3 | 0.9300 | C22—C23 | 1.388 (7) |
C4—C12 | 1.404 (7) | C22—C27 | 1.404 (6) |
C4—C5 | 1.434 (7) | C23—C24 | 1.382 (8) |
C5—C6 | 1.345 (8) | C23—H23 | 0.9300 |
C5—H5 | 0.9300 | C24—C25 | 1.375 (8) |
C6—C7 | 1.435 (8) | C24—H24 | 0.9300 |
C6—H6 | 0.9300 | C25—C26 | 1.374 (7) |
C7—C8 | 1.398 (7) | C25—H25 | 0.9300 |
C7—C11 | 1.404 (7) | C26—C27 | 1.383 (7) |
C8—C9 | 1.360 (8) | C26—H26 | 0.9300 |
C8—H8 | 0.9300 | C27—C28 | 1.516 (7) |
C9—C10 | 1.393 (8) | C28—H18A | 0.9600 |
C9—H9 | 0.9300 | C28—H28B | 0.9600 |
C10—H10 | 0.9300 | C28—H28C | 0.9600 |
O3—Cu—O1 | 93.39 (18) | O1—C13—C14 | 115.7 (5) |
O3—Cu—N2 | 170.71 (16) | C19—C14—C15 | 118.9 (5) |
O1—Cu—N2 | 93.45 (17) | C19—C14—C13 | 124.8 (4) |
O3—Cu—N1 | 91.94 (17) | C15—C14—C13 | 116.3 (4) |
O1—Cu—N1 | 173.96 (17) | C16—C15—C14 | 121.6 (5) |
N2—Cu—N1 | 81.58 (15) | C16—C15—H15 | 119.2 |
C13—O1—Cu | 105.9 (3) | C14—C15—H15 | 119.2 |
C21—O3—Cu | 108.2 (3) | C15—C16—C17 | 119.5 (5) |
C1—N1—C12 | 117.4 (5) | C15—C16—H16 | 120.3 |
C1—N1—Cu | 129.8 (4) | C17—C16—H16 | 120.3 |
C12—N1—Cu | 112.7 (3) | C18—C17—C16 | 119.7 (6) |
C10—N2—C11 | 117.7 (4) | C18—C17—H17 | 120.2 |
C10—N2—Cu | 129.3 (4) | C16—C17—H17 | 120.2 |
C11—N2—Cu | 113.0 (3) | C17—C18—C19 | 122.7 (5) |
N1—C1—C2 | 121.7 (5) | C17—C18—H18 | 118.7 |
N1—C1—H1 | 119.1 | C19—C18—H18 | 118.7 |
C2—C1—H1 | 119.1 | C14—C19—C18 | 117.6 (5) |
C3—C2—C1 | 120.6 (6) | C14—C19—C20 | 124.2 (5) |
C3—C2—H2 | 119.7 | C18—C19—C20 | 118.1 (5) |
C1—C2—H2 | 119.7 | C19—C20—H20A | 109.5 |
C2—C3—C4 | 120.0 (5) | C19—C20—H20B | 109.5 |
C2—C3—H3 | 120.0 | H20A—C20—H20B | 109.5 |
C4—C3—H3 | 120.0 | C19—C20—H20C | 109.5 |
C12—C4—C3 | 116.2 (5) | H20A—C20—H20C | 109.5 |
C12—C4—C5 | 118.7 (5) | H20B—C20—H20C | 109.5 |
C3—C4—C5 | 125.1 (5) | O4—C21—O3 | 122.7 (5) |
C6—C5—C4 | 121.3 (5) | O4—C21—C22 | 120.6 (5) |
C6—C5—H5 | 119.4 | O3—C21—C22 | 116.6 (4) |
C4—C5—H5 | 119.4 | C23—C22—C27 | 119.3 (5) |
C5—C6—C7 | 121.4 (5) | C23—C22—C21 | 116.9 (4) |
C5—C6—H6 | 119.3 | C27—C22—C21 | 123.7 (4) |
C7—C6—H6 | 119.3 | C24—C23—C22 | 121.7 (5) |
C8—C7—C11 | 116.7 (5) | C24—C23—H23 | 119.2 |
C8—C7—C6 | 124.9 (5) | C22—C23—H23 | 119.2 |
C11—C7—C6 | 118.4 (5) | C25—C24—C23 | 118.8 (5) |
C9—C8—C7 | 120.3 (5) | C25—C24—H24 | 120.6 |
C9—C8—H8 | 119.9 | C23—C24—H24 | 120.6 |
C7—C8—H8 | 119.9 | C26—C25—C24 | 119.9 (5) |
C8—C9—C10 | 119.6 (5) | C26—C25—H25 | 120.0 |
C8—C9—H9 | 120.2 | C24—C25—H25 | 120.0 |
C10—C9—H9 | 120.2 | C25—C26—C27 | 122.4 (5) |
N2—C10—C9 | 122.5 (5) | C25—C26—H26 | 118.8 |
N2—C10—H10 | 118.7 | C27—C26—H26 | 118.8 |
C9—C10—H10 | 118.7 | C26—C27—C22 | 117.7 (5) |
N2—C11—C7 | 123.2 (5) | C26—C27—C28 | 118.5 (4) |
N2—C11—C12 | 116.4 (4) | C22—C27—C28 | 123.7 (4) |
C7—C11—C12 | 120.3 (5) | C27—C28—H18A | 109.5 |
N1—C12—C4 | 124.1 (4) | C27—C28—H28B | 109.5 |
N1—C12—C11 | 116.1 (4) | H18A—C28—H28B | 109.5 |
C4—C12—C11 | 119.8 (4) | C27—C28—H28C | 109.5 |
O2—C13—O1 | 122.1 (5) | H18A—C28—H28C | 109.5 |
O2—C13—C14 | 122.2 (5) | H28B—C28—H28C | 109.5 |
Experimental details
Crystal data | |
Chemical formula | [Cu(C8H7O2)2(C12H8N2)] |
Mr | 514.02 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 16.245 (3), 10.136 (2), 14.048 (3) |
β (°) | 99.15 (3) |
V (Å3) | 2283.7 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.00 |
Crystal size (mm) | 0.15 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.866, 0.900 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17441, 4021, 2509 |
Rint | 0.063 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.150, 1.13 |
No. of reflections | 4021 |
No. of parameters | 319 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.74, −1.04 |
Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
This project was supported by the Foundation of the Education Department of Zhejiang Province (ZC200805662).
References
Cano, J., De Munno, G., Sanz, J. L., Ruiz, R., Faus, J., Lloret, F., Julve, M. & Caneschi, A. (1997). J. Chem. Soc. Dalton Trans. pp. 1915–1920. CSD CrossRef Web of Science Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Liu, Y., Sun, J. & Niu, X. (2010). Acta Cryst. E66, m34. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naing, K., Takahashi, M., Taniguchi, M. & Yamagishi, A. (1995). Inorg. Chem. 34, 350–356. CrossRef CAS Web of Science Google Scholar
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA. Google Scholar
Rodrigues, B. L., Costa, M. D. D. & Fernandes, N. G. (1999). Acta Cryst. C55, 1997–2000. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Su, J.-R., Gu, J.-M. & Xu, D.-J. (2005). Acta Cryst. E61, m379–m381. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wall, M., Linkletter, B., Williams, D., Lebuis, A. M., Hynes, R. C. & Chin, J. (1999). J. Am. Chem. Soc. 121, 4710–4711. Web of Science CSD CrossRef CAS Google Scholar
Wang, J., Cai, X., Rivas, G., Shiraishi, H., Farias, P. A. M. & Dontha, N. (1996). Anal. Chem. 68, 2629–2634. CrossRef CAS PubMed Web of Science Google Scholar
Xu, T.-G. & Xu, D.-J. (2004). Acta Cryst. E60, m1650–m1652. Web of Science CSD CrossRef IUCr Journals Google Scholar
Yang, C. T. & Vittal, J. J. (2003). Inorg. Chim. Acta, 344, 65–76. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The Jahn-Teller distortion of copper(II) complexes is well known. Most copper(II) complexes display an elongated distortion, and the coordinate bonds in the axial direction are usually longer than those in the equatorial coordination plane by 0.2–0.6 Å (Yang & Vittal, 2003; Su et al., 2005; Liu et al., 2010). Metal-phenanthroline complexes and their derivatives have also attracted much attention (Wang et al., 1996; Wall et al., 1999; Naing et al., 1995). In the title copper(II) phenanthroline complex, (I), a pair of long Cu-O bonds is observed.
The molecular structure of the title complex is shown in Fig. 1. The CuII ion binds to a phenanthroline molecule and two 2-methylbenzoate anions in a distorted octahedral geometry. Two N atoms from phen and two O atoms from carboxyl groups form a tetrahedrally distorted equatorial coordination plane, with a dihedral angle of 7.3 (2) ° between the Cu/O1/O3 and Cu/N1/N2 planes. The bond lengths in the equatorial plane are normal (Table 1). In the axial direction, the Cu-O distances (Cu-O2 2.609 (4) Å, Cu-O4 2.666 (4) Å) are longer than the Cu-O distances(Cu-O1 1.927 (4) Å, Cu-O3 1.919 (4) Å) equatorial plane.
The Cu-O-C angles of (Cu-O1-C13 105.9 (3) °, Cu-O3-C21 108.2 (3) °) are similar to values found in copper(II) complexes with a chelating benzoate ligand, for example, 106.1 (4) ° (Cano et al., 1997) and 104.5 (1) ° (Xu & Xu, 2004), but are much smaller than those in copper(II) complexes with a monodentate benzoate ligand, for example, 131.8 (1) ° (Rodrigues et al., 1999). This suggests the existence of a bonding interaction between atoms Cu and O2, Cu and O4. Besides the elongated Jahn-Teller distortion, the smaller O2-Cu-O4 angle of 132.1 (1) Å is also a possible reason for the larger differences within the same carboxylate group.
In the crystal structure two-dimensional layers form parallel to (011) through π–π packing interactions with centroid to centroid distances 3.547 (3) Å and 3.728 (3) Å between the phenanthroline rings, as shown in Fig. 2.