organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(5-Bromo-2-meth­­oxy­benzyl­­idene)isonicotinohydrazide

aSchool of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People's Republic of China
*Correspondence e-mail: hongyan_ban@163.com

(Received 11 May 2011; accepted 12 May 2011; online 20 May 2011)

The asymmetric unit of the title compound, C14H12BrN3O2, contains two independent mol­ecules in which the dihedral angles between the benzene ring and the pyridine ring are 24.4 (6) and 23.7 (6)°. The mol­ecules exist in a trans configuration with respect to the central methyl­idene units. In the crystal, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming chains along the a axis.

Related literature

For the biological activity of hydrazones, see: Zhong et al. (2007[Zhong, X., Wei, H.-L., Liu, W.-S., Wang, D.-Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett. 17, 3774-3777.]); Raj et al. (2007[Raj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425-429.]); Jimenez-Pulido et al. (2008[Jimenez-Pulido, S. B., Linares-Ordonez, F. M., Martinez-Martos, J. M., Moreno-Carretero, M. N., Quiros-Olozabal, M. & Ramirez-Exposito, M. J. (2008). J. Inorg. Biochem. 102, 1677-1683.]). For related structures, see: Ban (2010[Ban, H.-Y. (2010). Acta Cryst. E66, o3240.]); Ban & Li (2008a[Ban, H.-Y. & Li, C.-M. (2008a). Acta Cryst. E64, o2177.],b[Ban, H.-Y. & Li, C.-M. (2008b). Acta Cryst. E64, o2260.]); Li & Ban (2009a[Li, C.-M. & Ban, H.-Y. (2009a). Acta Cryst. E65, o876.],b[Li, C.-M. & Ban, H.-Y. (2009b). Acta Cryst. E65, o883.]); Yehye et al. (2008[Yehye, W. A., Rahman, N. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1824.]); Fun et al. (2008a[Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008a). Acta Cryst. E64, o1594-o1595.],b[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008b). Acta Cryst. E64, o1707.]); Yang et al. (2008[Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.]); Ejsmont et al. (2008[Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.]); Yang (2006[Yang, D.-S. (2006). Acta Cryst. E62, o3792-o3793.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12BrN3O2

  • Mr = 334.18

  • Monoclinic, P 21 /c

  • a = 10.020 (3) Å

  • b = 25.732 (2) Å

  • c = 11.243 (2) Å

  • β = 102.199 (3)°

  • V = 2833.4 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.91 mm−1

  • T = 298 K

  • 0.13 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.704, Tmax = 0.760

  • 14099 measured reflections

  • 5922 independent reflections

  • 2018 reflections with I > 2σ(I)

  • Rint = 0.114

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.143

  • S = 0.94

  • 5922 reflections

  • 369 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5⋯O2 0.90 (1) 2.06 (2) 2.939 (7) 164 (6)
N2—H2⋯O4i 0.90 (1) 2.11 (2) 2.999 (7) 168 (6)
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazone compounds derived from the condensation of aldehydes with hydrazides have been demonstrated to possess excellent biological activities (Zhong et al., 2007; Raj et al., 2007; Jimenez-Pulido et al., 2008). Due to the easy synthesis of such compounds, a number of hydrazone compounds have been synthesized and structurally characterized (Yehye et al., 2008; Fun et al., 2008a,b; Yang et al., 2008; Ejsmont et al., 2008; Yang, 2006). Recently, we have reported a few such compounds (Ban, 2010; Ban & Li, 2008a,b; Li & Ban, 2009a,b). We report here the crystal structure of the title new compound.

The asymmetric unit of the title hydrazone compound, Fig. 1, contains two independent molecules. The dihedral angles between the benzene ring and the pyridine ring in each molecule are 24.4 (6) and 23.7 (6)°, respectively. The molecules exist in a trans configuration with respect to the central methylidene units. In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains along the a axis, Fig. 2.

Related literature top

For the biological activity of hydrazones, see: Zhong et al. (2007); Raj et al. (2007); Jimenez-Pulido et al. (2008). For related structures, see: Ban (2010); Ban & Li (2008a,b); Li & Ban (2009a,b); Yehye et al. (2008); Fun et al. (2008a,b); Yang et al. (2008); Ejsmont et al. (2008); Yang (2006).

Experimental top

The title compound was prepared by refluxing 5-bromo-2-methoxybenzaldehyde (1.0 mol, 0.22 g) with isonicotinohydrazide (1.0 mol, 0.14 g) in methanol (100 ml). Excess methanol was removed from the mixture by distillation. The colourless solid product was filtered, and washed three times with methanol. Colourless block-shaped crystals of the title compound were obtained from a methanol solution of the compound by slow evaporation in air.

Refinement top

Atoms H2 and H5 were located in a difference Fourier map and refined isotropically, with the N—H distances restrained to 0.90 (1) Å. The remaining H atoms were placed in calculated positions (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) and 1.5 Ueq(C7 and C21).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids for the non-hydrogen atoms. A hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The packing diagram of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.
(E)-N'-(5-Bromo-2-methoxybenzylidene)isonicotinohydrazide top
Crystal data top
C14H12BrN3O2F(000) = 1344
Mr = 334.18Dx = 1.567 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 916 reflections
a = 10.020 (3) Åθ = 2.5–24.3°
b = 25.732 (2) ŵ = 2.91 mm1
c = 11.243 (2) ÅT = 298 K
β = 102.199 (3)°Block, colourless
V = 2833.4 (10) Å30.13 × 0.10 × 0.10 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
5922 independent reflections
Radiation source: fine-focus sealed tube2018 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.114
ω scansθmax = 27.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.704, Tmax = 0.760k = 1532
14099 measured reflectionsl = 1214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
5922 reflections(Δ/σ)max < 0.001
369 parametersΔρmax = 0.32 e Å3
2 restraintsΔρmin = 0.43 e Å3
Crystal data top
C14H12BrN3O2V = 2833.4 (10) Å3
Mr = 334.18Z = 8
Monoclinic, P21/cMo Kα radiation
a = 10.020 (3) ŵ = 2.91 mm1
b = 25.732 (2) ÅT = 298 K
c = 11.243 (2) Å0.13 × 0.10 × 0.10 mm
β = 102.199 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5922 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2018 reflections with I > 2σ(I)
Tmin = 0.704, Tmax = 0.760Rint = 0.114
14099 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0642 restraints
wR(F2) = 0.143H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.32 e Å3
5922 reflectionsΔρmin = 0.43 e Å3
369 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.51353 (8)0.35943 (3)0.41403 (8)0.0813 (3)
Br20.03344 (8)0.09381 (3)0.49305 (8)0.0786 (3)
N10.7533 (5)0.1886 (2)0.2601 (5)0.0433 (14)
N20.7920 (5)0.1410 (2)0.2216 (5)0.0483 (15)
N30.8554 (7)0.0399 (2)0.0738 (5)0.0570 (17)
N40.2636 (5)0.0667 (2)0.2875 (5)0.0469 (15)
N50.3008 (5)0.1126 (2)0.2381 (5)0.0455 (15)
N60.3357 (8)0.2873 (2)0.0375 (6)0.070 (2)
O11.0434 (5)0.29599 (17)0.2924 (4)0.0661 (14)
O20.5883 (5)0.10295 (15)0.2207 (4)0.0531 (13)
O30.5607 (5)0.03865 (16)0.3491 (4)0.0627 (14)
O40.0906 (5)0.14763 (16)0.2208 (5)0.0675 (15)
C10.8234 (7)0.2757 (2)0.3160 (6)0.0396 (17)
C20.9269 (8)0.3125 (3)0.3234 (6)0.0504 (19)
C30.9065 (7)0.3632 (3)0.3589 (6)0.056 (2)
H30.97540.38780.36430.068*
C40.7825 (8)0.3763 (3)0.3859 (6)0.056 (2)
H40.76710.41020.40870.068*
C50.6821 (7)0.3396 (3)0.3791 (6)0.0478 (19)
C60.7036 (7)0.2897 (3)0.3450 (6)0.0497 (19)
H60.63500.26510.34170.060*
C71.1577 (7)0.3308 (3)0.3069 (6)0.070 (2)
H7A1.13680.35860.24890.105*
H7B1.23640.31230.29360.105*
H7C1.17630.34490.38780.105*
C80.8473 (7)0.2231 (2)0.2755 (6)0.054 (2)
H80.93250.21460.26060.064*
C90.7057 (7)0.1007 (2)0.2057 (6)0.0432 (18)
C100.7624 (7)0.0518 (2)0.1629 (6)0.0387 (17)
C110.6714 (7)0.0151 (2)0.1033 (6)0.052 (2)
H110.57770.02010.09270.062*
C120.7233 (8)0.0294 (3)0.0596 (6)0.058 (2)
H120.66150.05340.01770.069*
C130.9394 (7)0.0048 (3)0.1323 (6)0.055 (2)
H131.03250.01130.14430.066*
C140.8989 (7)0.0409 (2)0.1769 (6)0.0464 (18)
H140.96380.06440.21650.056*
C150.3380 (7)0.0171 (2)0.3649 (6)0.0431 (18)
C160.4437 (7)0.0535 (3)0.3829 (6)0.0456 (18)
C170.4289 (7)0.1015 (3)0.4355 (6)0.055 (2)
H170.49980.12550.44840.066*
C180.3064 (8)0.1126 (3)0.4681 (6)0.057 (2)
H180.29530.14450.50400.068*
C190.2015 (6)0.0777 (3)0.4487 (6)0.0452 (18)
C200.2170 (7)0.0301 (3)0.3968 (6)0.0473 (18)
H200.14500.00650.38320.057*
C210.6772 (7)0.0721 (3)0.3758 (6)0.072 (2)
H21A0.69940.07930.46150.107*
H21B0.75340.05530.35250.107*
H21C0.65710.10400.33150.107*
C220.3574 (7)0.0332 (3)0.3104 (6)0.0483 (19)
H220.44160.04070.29190.058*
C230.2085 (8)0.1511 (2)0.2091 (6)0.0479 (19)
C240.2575 (7)0.1983 (2)0.1524 (6)0.0398 (18)
C250.3935 (7)0.2111 (3)0.1626 (6)0.059 (2)
H250.46200.19040.20770.071*
C260.4257 (8)0.2552 (3)0.1049 (7)0.069 (2)
H260.51770.26320.11370.083*
C270.2071 (10)0.2744 (3)0.0269 (7)0.073 (3)
H270.14090.29510.02140.087*
C280.1643 (7)0.2316 (3)0.0838 (6)0.053 (2)
H280.07140.22530.07550.064*
H50.388 (2)0.116 (2)0.232 (6)0.080*
H20.880 (2)0.139 (3)0.214 (6)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0673 (6)0.0816 (6)0.0990 (7)0.0128 (5)0.0266 (5)0.0272 (6)
Br20.0568 (6)0.0881 (7)0.0920 (7)0.0143 (5)0.0184 (5)0.0230 (6)
N10.038 (4)0.035 (3)0.059 (4)0.002 (3)0.016 (3)0.003 (3)
N20.032 (3)0.034 (3)0.081 (4)0.007 (3)0.018 (3)0.001 (3)
N30.057 (4)0.039 (4)0.078 (5)0.007 (4)0.021 (4)0.002 (3)
N40.047 (4)0.032 (3)0.064 (4)0.000 (3)0.016 (3)0.002 (3)
N50.037 (4)0.030 (3)0.074 (4)0.001 (3)0.022 (3)0.007 (3)
N60.091 (6)0.044 (4)0.076 (5)0.012 (4)0.021 (5)0.000 (4)
O10.050 (3)0.054 (3)0.102 (4)0.018 (3)0.032 (3)0.016 (3)
O20.042 (3)0.033 (3)0.090 (4)0.002 (2)0.026 (3)0.000 (2)
O30.050 (3)0.049 (3)0.096 (4)0.013 (3)0.028 (3)0.011 (3)
O40.036 (3)0.045 (3)0.127 (5)0.002 (3)0.032 (3)0.003 (3)
C10.038 (4)0.034 (4)0.051 (5)0.009 (4)0.018 (4)0.004 (4)
C20.049 (5)0.035 (5)0.069 (6)0.007 (4)0.018 (4)0.012 (4)
C30.058 (5)0.040 (5)0.074 (6)0.021 (4)0.022 (4)0.002 (4)
C40.070 (6)0.033 (4)0.070 (6)0.007 (4)0.022 (5)0.015 (4)
C50.051 (5)0.047 (5)0.044 (5)0.002 (4)0.006 (4)0.001 (4)
C60.039 (5)0.039 (5)0.072 (6)0.008 (4)0.014 (4)0.008 (4)
C70.043 (5)0.078 (6)0.094 (6)0.020 (4)0.029 (4)0.000 (5)
C80.053 (5)0.034 (4)0.077 (6)0.004 (4)0.021 (4)0.011 (4)
C90.039 (5)0.033 (4)0.059 (5)0.004 (4)0.013 (4)0.003 (4)
C100.035 (4)0.031 (4)0.055 (5)0.003 (3)0.020 (4)0.007 (4)
C110.035 (4)0.030 (4)0.090 (6)0.001 (4)0.015 (4)0.004 (4)
C120.058 (6)0.033 (5)0.083 (6)0.004 (4)0.018 (5)0.000 (4)
C130.042 (5)0.043 (5)0.083 (6)0.006 (4)0.018 (4)0.003 (5)
C140.045 (5)0.033 (4)0.063 (5)0.002 (4)0.017 (4)0.009 (4)
C150.040 (5)0.033 (4)0.058 (5)0.003 (4)0.015 (4)0.008 (4)
C160.053 (5)0.034 (4)0.053 (5)0.009 (4)0.018 (4)0.005 (4)
C170.047 (5)0.050 (5)0.069 (6)0.009 (4)0.013 (4)0.000 (4)
C180.067 (6)0.042 (5)0.058 (5)0.000 (4)0.008 (4)0.003 (4)
C190.034 (4)0.045 (5)0.054 (5)0.005 (4)0.004 (4)0.006 (4)
C200.042 (5)0.043 (5)0.059 (5)0.003 (4)0.017 (4)0.000 (4)
C210.053 (5)0.079 (6)0.085 (6)0.033 (5)0.020 (4)0.002 (5)
C220.046 (5)0.041 (5)0.063 (5)0.001 (4)0.023 (4)0.000 (4)
C230.045 (5)0.033 (5)0.069 (5)0.001 (4)0.021 (4)0.002 (4)
C240.039 (4)0.028 (4)0.052 (5)0.000 (4)0.008 (4)0.013 (4)
C250.052 (5)0.048 (5)0.078 (6)0.002 (4)0.016 (4)0.000 (5)
C260.062 (6)0.052 (5)0.092 (7)0.010 (5)0.012 (5)0.011 (5)
C270.106 (8)0.046 (6)0.063 (6)0.013 (5)0.011 (6)0.015 (5)
C280.045 (5)0.045 (5)0.066 (5)0.011 (4)0.004 (4)0.005 (4)
Geometric parameters (Å, º) top
Br1—C51.884 (7)C8—H80.9300
Br2—C191.900 (6)C9—C101.500 (8)
N1—C81.279 (7)C10—C141.373 (8)
N1—N21.382 (6)C10—C111.384 (8)
N2—C91.337 (8)C11—C121.390 (8)
N2—H20.900 (10)C11—H110.9300
N3—C131.313 (8)C12—H120.9300
N3—C121.326 (8)C13—C141.372 (8)
N4—C221.262 (7)C13—H130.9300
N4—N51.388 (6)C14—H140.9300
N5—C231.347 (8)C15—C201.376 (8)
N5—H50.901 (10)C15—C161.395 (8)
N6—C271.312 (9)C15—C221.464 (8)
N6—C261.335 (8)C16—C171.391 (8)
O1—C21.354 (8)C17—C181.384 (9)
O1—C71.437 (7)C17—H170.9300
O2—C91.224 (7)C18—C191.364 (8)
O3—C161.361 (7)C18—H180.9300
O3—C211.430 (7)C19—C201.381 (8)
O4—C231.219 (7)C20—H200.9300
C1—C61.358 (8)C21—H21A0.9600
C1—C21.394 (8)C21—H21B0.9600
C1—C81.463 (8)C21—H21C0.9600
C2—C31.392 (8)C22—H220.9300
C3—C41.382 (9)C23—C241.502 (8)
C3—H30.9300C24—C281.377 (8)
C4—C51.371 (8)C24—C251.383 (8)
C4—H40.9300C25—C261.378 (9)
C5—C61.369 (8)C25—H250.9300
C6—H60.9300C26—H260.9300
C7—H7A0.9600C27—C281.386 (9)
C7—H7B0.9600C27—H270.9300
C7—H7C0.9600C28—H280.9300
C8—N1—N2114.2 (5)N3—C13—C14124.4 (7)
C9—N2—N1120.9 (5)N3—C13—H13117.8
C9—N2—H2124 (4)C14—C13—H13117.8
N1—N2—H2115 (4)C13—C14—C10119.9 (6)
C13—N3—C12116.0 (6)C13—C14—H14120.1
C22—N4—N5114.3 (6)C10—C14—H14120.1
C23—N5—N4119.6 (6)C20—C15—C16118.9 (6)
C23—N5—H5122 (4)C20—C15—C22121.7 (6)
N4—N5—H5118 (4)C16—C15—C22119.3 (6)
C27—N6—C26115.3 (7)O3—C16—C17122.9 (6)
C2—O1—C7119.0 (5)O3—C16—C15116.4 (6)
C16—O3—C21119.1 (5)C17—C16—C15120.7 (7)
C6—C1—C2119.3 (6)C18—C17—C16118.5 (7)
C6—C1—C8122.2 (6)C18—C17—H17120.7
C2—C1—C8118.6 (6)C16—C17—H17120.7
O1—C2—C3123.7 (6)C19—C18—C17121.1 (7)
O1—C2—C1116.3 (6)C19—C18—H18119.4
C3—C2—C1120.1 (7)C17—C18—H18119.4
C4—C3—C2119.1 (6)C18—C19—C20120.0 (6)
C4—C3—H3120.4C18—C19—Br2120.7 (6)
C2—C3—H3120.4C20—C19—Br2119.3 (5)
C5—C4—C3120.1 (6)C15—C20—C19120.6 (6)
C5—C4—H4120.0C15—C20—H20119.7
C3—C4—H4120.0C19—C20—H20119.7
C6—C5—C4120.4 (6)O3—C21—H21A109.5
C6—C5—Br1120.9 (6)O3—C21—H21B109.5
C4—C5—Br1118.7 (6)H21A—C21—H21B109.5
C1—C6—C5121.1 (6)O3—C21—H21C109.5
C1—C6—H6119.5H21A—C21—H21C109.5
C5—C6—H6119.5H21B—C21—H21C109.5
O1—C7—H7A109.5N4—C22—C15122.1 (6)
O1—C7—H7B109.5N4—C22—H22119.0
H7A—C7—H7B109.5C15—C22—H22119.0
O1—C7—H7C109.5O4—C23—N5123.5 (6)
H7A—C7—H7C109.5O4—C23—C24121.0 (6)
H7B—C7—H7C109.5N5—C23—C24115.4 (6)
N1—C8—C1121.3 (6)C28—C24—C25115.9 (6)
N1—C8—H8119.4C28—C24—C23119.8 (6)
C1—C8—H8119.4C25—C24—C23124.3 (6)
O2—C9—N2123.9 (6)C26—C25—C24118.8 (7)
O2—C9—C10121.6 (6)C26—C25—H25120.6
N2—C9—C10114.5 (6)C24—C25—H25120.6
C14—C10—C11117.0 (6)N6—C26—C25125.5 (8)
C14—C10—C9124.8 (6)N6—C26—H26117.3
C11—C10—C9118.2 (6)C25—C26—H26117.3
C10—C11—C12118.4 (6)N6—C27—C28123.6 (7)
C10—C11—H11120.8N6—C27—H27118.2
C12—C11—H11120.8C28—C27—H27118.2
N3—C12—C11124.3 (7)C24—C28—C27120.9 (7)
N3—C12—H12117.9C24—C28—H28119.5
C11—C12—H12117.9C27—C28—H28119.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O20.90 (1)2.06 (2)2.939 (7)164 (6)
N2—H2···O4i0.90 (1)2.11 (2)2.999 (7)168 (6)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H12BrN3O2
Mr334.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.020 (3), 25.732 (2), 11.243 (2)
β (°) 102.199 (3)
V3)2833.4 (10)
Z8
Radiation typeMo Kα
µ (mm1)2.91
Crystal size (mm)0.13 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.704, 0.760
No. of measured, independent and
observed [I > 2σ(I)] reflections
14099, 5922, 2018
Rint0.114
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.143, 0.94
No. of reflections5922
No. of parameters369
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.43

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···O20.901 (10)2.06 (2)2.939 (7)164 (6)
N2—H2···O4i0.900 (10)2.113 (18)2.999 (7)168 (6)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors acknowledge the support of the Youth Foundation of the University of Science and Technology Liaoning (2010Y06) and the Natural Science Foundation of Liaoning Province (20102157).

References

First citationBan, H.-Y. (2010). Acta Cryst. E66, o3240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBan, H.-Y. & Li, C.-M. (2008a). Acta Cryst. E64, o2177.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBan, H.-Y. & Li, C.-M. (2008b). Acta Cryst. E64, o2260.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEjsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008a). Acta Cryst. E64, o1594–o1595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008b). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJimenez-Pulido, S. B., Linares-Ordonez, F. M., Martinez-Martos, J. M., Moreno-Carretero, M. N., Quiros-Olozabal, M. & Ramirez-Exposito, M. J. (2008). J. Inorg. Biochem. 102, 1677–1683.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, C.-M. & Ban, H.-Y. (2009a). Acta Cryst. E65, o876.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, C.-M. & Ban, H.-Y. (2009b). Acta Cryst. E65, o883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425–429.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D.-S. (2006). Acta Cryst. E62, o3792–o3793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYehye, W. A., Rahman, N. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1824.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, X., Wei, H.-L., Liu, W.-S., Wang, D.-Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett. 17, 3774–3777.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds