organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-(2,4-di­methyl­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 22 May 2011; accepted 24 May 2011; online 28 May 2011)

In the title compound, C14H14ClNO2S, the N—H bond points away from the dimethyl­phenyl ring plane. The mol­ecule is twisted at the S atom, with a C—SO2—NH—C torsion angle of −75.5 (2)°. The two aromatic rings are tilted relative to each other by 63.3 (1)°. The Cl atom on the chloro­benzene ring is disordered over two sites with site-occupation factors of 0.59 (3) and 0.41 (3), respectively. The crystal structure features inversion-related dimers linked by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For hydrogen-bonding modes of sulfonamides, see: Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]). For our studies of the effect of substituents on the structures of N-(ar­yl)-amides, see: Gowda et al. (2004[Gowda, B. T., Svoboda, I. & Fuess, H. (2004). Z. Naturforsch. Teil A, 55, 845-852.]), on N-(ar­yl)aryl­sulfonamides, see: Shakuntala et al. (2011a[Shakuntala, K., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o1252.],b[Shakuntala, K., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o1328.],c[Shakuntala, K., Foro, S. & Gowda, B. T. (2011c). Acta Cryst. E67, o1401.]) and on N-(ar­yl)methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2570.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14ClNO2S

  • Mr = 295.77

  • Monoclinic, P 21 /n

  • a = 8.0493 (7) Å

  • b = 11.4980 (9) Å

  • c = 15.505 (1) Å

  • β = 90.512 (8)°

  • V = 1434.94 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 293 K

  • 0.40 × 0.38 × 0.38 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.854, Tmax = 0.860

  • 5316 measured reflections

  • 2920 independent reflections

  • 2299 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.110

  • S = 1.04

  • 2920 reflections

  • 188 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.83 (2) 2.24 (2) 3.052 (2) 165 (2)
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The hydrogen bonding preferences of sulfonamides have been investigated (Adsmond & Grant, 2001). As part of our work on the substituent effects in the structures of this class of compounds (Gowda et al., 2004, 2007; Shakuntala et al., 2011a,b,c), the crystal structure of 4-chloro-N-(2,4-dimethylphenyl)-benzenesulfonamide (I) has been determined (Fig.1). In the structure, the amide H atom is trans to one of the O atoms of the SO2 group. Furthermore, the N—H bond is positioned away from the methyl groups in the aromatic ring.

The molecule is twisted at the S atom with the C—SO2—NH—C torsion angle of -75.5 (2)°, compared to the values of -70.3 (3)° in 4-chloro-N-(2,3-dimethylphenyl)-benzenesulfonamide (II) (Shakuntala et al., 2011b), -70.0 (2)° in 4-chloro-N- (2,6-dimethylphenyl)-benzenesulfonamide (III)(Shakuntala et al., 2011c), and -53.8 (3)° and -63.4 (3)° in the two independent molecules of 4-chloro-N-(phenyl)-benzenesulfonamide (IV) (Shakuntala et al., 2011a).

The sulfonyl and the anilino benzene rings are tilted relative to each other by 63.3 (1)° in (I), compared to the values of 34.7 (1)° in (II), 31.9 (1)° in (III), and 69.1 (1)° and 82.6 (1)° in the two independent molecules of (IV).

The packing of molecules into dimers in the title compound via intermolecular N—H···O hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

For hydrogen-bonding modes of sulfonamides, see: Adsmond & Grant (2001). For our studies of the effect of substituents on the structures of N-(aryl)-amides, see: Gowda et al. (2004), on N-(aryl)arylsulfonamides, see: Shakuntala et al. (2011a,b,c) and on N-(aryl)methanesulfonamides, see: Gowda et al. (2007).

Experimental top

A solution of chlorobenzene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-chlorobenzenesulfonylchloride was treated with 2,4-dimethylaniline in the stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice cold water (100 ml). The resulting 4-chloro-N-(2,4-dimethylphenyl)-benzenesulfonamide was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from aqueous ethanol The compound was characterized by recording its infrared and NMR spectra.

Prism like colorless single crystals used in X-ray diffraction studies were grown in ethanolic solution by slow evaporation at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and its coordinates were refined with the N—H distance restrained to 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å and methyl C—H = 0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom). Atom CL1 is disordered and was refined using a split model. The corresponding site-occupation factors were refined so that their sum was unity with occupancy factors converging to 0.59 (3) and 0.41 (3). The corresponding bond distances in the disordered group were restrained to be equal.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing of (I) with hydrogen bonding shown as dashed lines.
4-Chloro-N-(2,4-dimethylphenyl)benzenesulfonamide top
Crystal data top
C14H14ClNO2SF(000) = 616
Mr = 295.77Dx = 1.369 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2311 reflections
a = 8.0493 (7) Åθ = 2.6–27.8°
b = 11.4980 (9) ŵ = 0.41 mm1
c = 15.505 (1) ÅT = 293 K
β = 90.512 (8)°Prism, colourless
V = 1434.94 (19) Å30.40 × 0.38 × 0.38 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2920 independent reflections
Radiation source: fine-focus sealed tube2299 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
ω scansθmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 109
Tmin = 0.854, Tmax = 0.860k = 1014
5316 measured reflectionsl = 1911
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0596P)2 + 0.340P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2920 reflectionsΔρmax = 0.21 e Å3
188 parametersΔρmin = 0.28 e Å3
3 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (2)
Crystal data top
C14H14ClNO2SV = 1434.94 (19) Å3
Mr = 295.77Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.0493 (7) ŵ = 0.41 mm1
b = 11.4980 (9) ÅT = 293 K
c = 15.505 (1) Å0.40 × 0.38 × 0.38 mm
β = 90.512 (8)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2920 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
2299 reflections with I > 2σ(I)
Tmin = 0.854, Tmax = 0.860Rint = 0.012
5316 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0373 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.21 e Å3
2920 reflectionsΔρmin = 0.28 e Å3
188 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.0604 (2)0.32592 (15)0.64405 (11)0.0432 (4)
C20.1241 (3)0.24160 (19)0.69852 (14)0.0618 (6)
H20.23800.23660.70850.074*
C30.0167 (4)0.1645 (2)0.73809 (15)0.0796 (7)
H30.05750.10670.77450.096*
C40.1506 (4)0.1748 (2)0.72276 (14)0.0746 (7)
C50.2145 (3)0.2570 (2)0.66818 (15)0.0679 (6)
H50.32840.26150.65830.082*
C60.1083 (2)0.33272 (18)0.62807 (13)0.0535 (5)
H60.14990.38850.59020.064*
C70.3261 (2)0.29199 (15)0.47078 (11)0.0388 (4)
C80.2602 (2)0.18976 (17)0.43790 (12)0.0467 (4)
C90.3707 (2)0.10523 (17)0.40995 (14)0.0533 (5)
H90.32800.03610.38780.064*
C100.5409 (2)0.11919 (19)0.41361 (13)0.0515 (5)
C110.6010 (2)0.2211 (2)0.44796 (14)0.0581 (5)
H110.71520.23200.45270.070*
C120.4960 (2)0.30731 (18)0.47550 (13)0.0508 (5)
H120.53950.37630.49740.061*
C130.0765 (2)0.1693 (2)0.43064 (19)0.0756 (7)
H13A0.02780.22670.39320.091*
H13B0.02760.17480.48670.091*
H13C0.05640.09320.40730.091*
C140.6541 (3)0.0252 (2)0.37959 (17)0.0733 (7)
H14A0.67040.03650.31890.088*
H14B0.60440.04950.38910.088*
H14C0.75930.02900.40910.088*
N10.22067 (18)0.38712 (14)0.49490 (10)0.0422 (4)
H1N0.135 (2)0.3982 (17)0.4655 (12)0.051*
O10.34964 (17)0.42218 (13)0.63764 (9)0.0598 (4)
O20.10520 (16)0.53494 (11)0.58902 (9)0.0535 (4)
Cl1A0.3124 (18)0.0933 (11)0.7734 (2)0.086 (2)0.59 (3)
Cl1B0.241 (3)0.0629 (10)0.7776 (4)0.089 (3)0.41 (3)
S10.19347 (5)0.42678 (4)0.59428 (3)0.04223 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0585 (11)0.0365 (9)0.0347 (9)0.0036 (8)0.0073 (8)0.0025 (7)
C20.0819 (15)0.0539 (12)0.0495 (12)0.0129 (11)0.0006 (10)0.0053 (10)
C30.1420 (18)0.0483 (13)0.0485 (12)0.0011 (15)0.0017 (14)0.0120 (10)
C40.1281 (16)0.0603 (14)0.0356 (11)0.0405 (15)0.0183 (12)0.0085 (10)
C50.0748 (15)0.0753 (15)0.0539 (13)0.0250 (12)0.0108 (11)0.0042 (12)
C60.0553 (11)0.0544 (12)0.0508 (11)0.0032 (9)0.0047 (9)0.0063 (9)
C70.0369 (8)0.0433 (10)0.0363 (9)0.0056 (7)0.0035 (7)0.0014 (7)
C80.0362 (9)0.0505 (11)0.0533 (11)0.0013 (8)0.0010 (8)0.0058 (9)
C90.0505 (11)0.0487 (11)0.0609 (13)0.0032 (9)0.0015 (9)0.0143 (9)
C100.0457 (10)0.0594 (12)0.0495 (11)0.0153 (9)0.0033 (8)0.0033 (9)
C110.0338 (9)0.0745 (15)0.0662 (13)0.0062 (9)0.0009 (9)0.0114 (11)
C120.0382 (9)0.0549 (11)0.0592 (12)0.0031 (8)0.0032 (8)0.0103 (10)
C130.0415 (11)0.0741 (16)0.111 (2)0.0044 (10)0.0007 (12)0.0314 (15)
C140.0639 (13)0.0792 (17)0.0769 (16)0.0278 (12)0.0067 (11)0.0135 (13)
N10.0404 (8)0.0463 (8)0.0400 (8)0.0099 (7)0.0027 (6)0.0002 (7)
O10.0516 (8)0.0712 (10)0.0565 (9)0.0007 (7)0.0053 (6)0.0125 (7)
O20.0587 (8)0.0366 (7)0.0655 (9)0.0055 (6)0.0118 (7)0.0034 (6)
Cl1A0.123 (4)0.088 (3)0.0468 (7)0.057 (3)0.0104 (13)0.0026 (10)
Cl1B0.135 (7)0.076 (2)0.0556 (12)0.045 (3)0.015 (2)0.0044 (13)
S10.0442 (3)0.0389 (3)0.0437 (3)0.00330 (18)0.00397 (18)0.00408 (19)
Geometric parameters (Å, º) top
C1—C61.380 (3)C9—C101.380 (3)
C1—C21.382 (3)C9—H90.9300
C1—S11.7613 (18)C10—C111.374 (3)
C2—C31.385 (3)C10—C141.511 (3)
C2—H20.9300C11—C121.373 (3)
C3—C41.371 (4)C11—H110.9300
C3—H30.9300C12—H120.9300
C4—C51.366 (4)C13—H13A0.9600
C4—Cl1B1.710 (5)C13—H13B0.9600
C4—Cl1A1.792 (5)C13—H13C0.9600
C5—C61.373 (3)C14—H14A0.9600
C5—H50.9300C14—H14B0.9600
C6—H60.9300C14—H14C0.9600
C7—C121.380 (2)N1—S11.6236 (16)
C7—C81.385 (3)N1—H1N0.831 (15)
C7—N11.436 (2)O1—S11.4212 (15)
C8—C91.389 (3)O2—S11.4343 (13)
C8—C131.501 (3)
C6—C1—C2120.59 (19)C11—C10—C9117.48 (17)
C6—C1—S1119.02 (14)C11—C10—C14122.26 (19)
C2—C1—S1120.39 (16)C9—C10—C14120.3 (2)
C1—C2—C3119.3 (2)C12—C11—C10121.37 (17)
C1—C2—H2120.3C12—C11—H11119.3
C3—C2—H2120.3C10—C11—H11119.3
C4—C3—C2118.9 (2)C11—C12—C7120.26 (18)
C4—C3—H3120.5C11—C12—H12119.9
C2—C3—H3120.5C7—C12—H12119.9
C5—C4—C3122.1 (2)C8—C13—H13A109.5
C5—C4—Cl1B131.9 (10)C8—C13—H13B109.5
C3—C4—Cl1B105.8 (10)H13A—C13—H13B109.5
C5—C4—Cl1A111.2 (6)C8—C13—H13C109.5
C3—C4—Cl1A126.6 (6)H13A—C13—H13C109.5
Cl1B—C4—Cl1A22.0 (4)H13B—C13—H13C109.5
C4—C5—C6119.1 (2)C10—C14—H14A109.5
C4—C5—H5120.4C10—C14—H14B109.5
C6—C5—H5120.4H14A—C14—H14B109.5
C5—C6—C1119.9 (2)C10—C14—H14C109.5
C5—C6—H6120.1H14A—C14—H14C109.5
C1—C6—H6120.1H14B—C14—H14C109.5
C12—C7—C8120.24 (16)C7—N1—S1123.10 (12)
C12—C7—N1118.46 (16)C7—N1—H1N117.4 (14)
C8—C7—N1121.16 (15)S1—N1—H1N111.2 (14)
C7—C8—C9117.70 (16)O1—S1—O2119.66 (9)
C7—C8—C13122.31 (17)O1—S1—N1108.20 (8)
C9—C8—C13119.98 (18)O2—S1—N1105.10 (8)
C10—C9—C8122.93 (19)O1—S1—C1107.88 (9)
C10—C9—H9118.5O2—S1—C1107.04 (8)
C8—C9—H9118.5N1—S1—C1108.58 (8)
C6—C1—C2—C30.9 (3)C8—C9—C10—C111.1 (3)
S1—C1—C2—C3178.87 (16)C8—C9—C10—C14178.1 (2)
C1—C2—C3—C40.7 (3)C9—C10—C11—C121.7 (3)
C2—C3—C4—C51.5 (4)C14—C10—C11—C12177.5 (2)
C2—C3—C4—Cl1B177.4 (3)C10—C11—C12—C71.4 (3)
C2—C3—C4—Cl1A174.5 (4)C8—C7—C12—C110.3 (3)
C3—C4—C5—C60.8 (4)N1—C7—C12—C11175.95 (18)
Cl1B—C4—C5—C6175.4 (4)C12—C7—N1—S173.9 (2)
Cl1A—C4—C5—C6175.7 (3)C8—C7—N1—S1110.48 (18)
C4—C5—C6—C10.8 (3)C7—N1—S1—O141.30 (16)
C2—C1—C6—C51.6 (3)C7—N1—S1—O2170.21 (14)
S1—C1—C6—C5178.15 (16)C7—N1—S1—C175.53 (16)
C12—C7—C8—C90.4 (3)C6—C1—S1—O1164.67 (15)
N1—C7—C8—C9175.19 (17)C2—C1—S1—O115.08 (18)
C12—C7—C8—C13179.4 (2)C6—C1—S1—O234.68 (17)
N1—C7—C8—C133.9 (3)C2—C1—S1—O2145.06 (16)
C7—C8—C9—C100.1 (3)C6—C1—S1—N178.29 (16)
C13—C8—C9—C10179.0 (2)C2—C1—S1—N1101.96 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.83 (2)2.24 (2)3.052 (2)165 (2)
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H14ClNO2S
Mr295.77
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.0493 (7), 11.4980 (9), 15.505 (1)
β (°) 90.512 (8)
V3)1434.94 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.40 × 0.38 × 0.38
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.854, 0.860
No. of measured, independent and
observed [I > 2σ(I)] reflections
5316, 2920, 2299
Rint0.012
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.110, 1.04
No. of reflections2920
No. of parameters188
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.28

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.831 (15)2.242 (16)3.052 (2)165.1 (19)
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2004). Z. Naturforsch. Teil A, 55, 845–852.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o1252.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o1328.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011c). Acta Cryst. E67, o1401.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds