organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1433-o1434

N,N-Di­ethyl-2-hy­dr­oxy­ethanaminium 2,6-dioxo-5-(2,4,6-tri­nitro­phen­yl)-1,2,3,6-tetra­hydro­pyrimidin-4-olate dihydrate

aPG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Tiruchirappalli 620 002, Tamil Nadu, India
*Correspondence e-mail: kalaivbalaj@yahoo.co.in

(Received 14 March 2011; accepted 8 May 2011; online 20 May 2011)

In the title mol­ecular salt, C6H16NO+·C10H4N5O9·2H2O, which crystallizes as a dihydrate, O—H⋯O hydrogen bonds link the barbiturate anion, the ethanaminium cation and the water mol­ecules of crystallization. The dihedral angle between the rings in the anion is 43.71 (8)°. In the crystal, an R22(8) ring motif hydrogen-bonding pattern is also found involving inversion-related barbiturate rings with N—H⋯O hydrogen bonds. As a result of the various hydrogen bonds an infinite two-dimensional network, propagating in (10[\overline{1}]), is formed.

Related literature

For the anti-epileptic properties of barbiturates, see: Tripathi (2009[Tripathi, K. D. (2009). Essentials of Medical Pharmacology, 6th ed., Chennai, India: Jaypee Brothers.]); Kalaivani & Malarvizhi (2009[Kalaivani, D. & Malarvizhi, R. (2009). Acta Cryst. E65, o2548.]); Kalaivani et al. (2008[Kalaivani, D., Malarvizhi, R. & Subbalakshmi, R. (2008). Med. Chem. Res. 17, 369-373.]). For graph-set analysis of hydrogen bonds, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C6H16NO+·C10H4N5O9·2H2O

  • Mr = 492.41

  • Monoclinic, P 21 /n

  • a = 8.3792 (2) Å

  • b = 21.7673 (4) Å

  • c = 12.0894 (2) Å

  • β = 96.118 (1)°

  • V = 2192.46 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 1999[Bruker (1999). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.892, Tmax = 0.975

  • 23280 measured reflections

  • 4686 independent reflections

  • 3492 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.131

  • S = 1.08

  • 4686 reflections

  • 338 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10⋯O2Wi 0.82 2.05 2.792 (2) 150
O10—H10⋯O4ii 0.82 2.49 3.0648 (19) 129
N6—H6⋯O1Wiii 0.91 (3) 1.95 (3) 2.846 (2) 170 (2)
N1—H1A⋯O10iv 0.85 (2) 2.05 (3) 2.884 (2) 166 (2)
N2—H2A⋯O2v 0.83 (2) 2.03 (2) 2.847 (2) 173 (2)
O1W—H2W⋯O2v 0.91 (1) 1.90 (2) 2.7431 (19) 154 (2)
O2W—H4W⋯O1Wvi 0.93 (1) 1.94 (2) 2.796 (3) 152 (3)
O1W—H1W⋯O3 0.91 (1) 1.91 (1) 2.7783 (17) 160 (2)
O2W—H3W⋯O1 0.93 (1) 1.89 (2) 2.792 (2) 162 (4)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) -x+1, -y+1, -z; (vi) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, XPREP and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, XPREP and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). APEX2, XPREP and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Most of the barbituric acid derivatives (barbiturates) are antiepileptic agents (Tripathi, 2009). The barbiturate prepared in our laboratory from 1-chloro-2,4-dinitrobenzene was obtained as maroon blocks when recrystallized from absolute alcohol (Kalaivani & Malarvizhi, 2009) and has antiepileptic activity (Kalaivani et al., 2008). We report here the crystal structure of a related barbiturate obtained from 1-chloro-2,4,6-trinitrobenzene (TNCB) and barbituric acid in the presence of 2(N,N-diethyl) ethanolamine. It shows an extra ordinary stability and very high solubility in dipolar aprotic solvents, such as dimethyl sulfoxide, which may be attributed to its salt-like structure.

The molecular structure of the title compound is illustrated in Fig. 1. The anion and cation are involved in O—H···O hydrogen bonds with the water molecules of crystallization (Table 1).

In the crystal a R22(8) ring motif hydrogen bonding pattern (Bernstein et al., 1995) is also found involving inversion-related barbiturate rings with N—H···O hydrogen bonds (Table 1 and Fig. 2). These various hydrogen bonds lead finally to the formation of an infinite two-dimensional network propagating in (10–1).

Related literature top

For the anti-epileptic properties of barbiturates, see: Tripathi (2009); Kalaivani & Malarvizhi (2009); Kalaivani et al. (2008). For graph-set analysis of hydrogen bonds, see: Bernstein et al. (1995.)

Experimental top

Equimolar solutions of 1-chloro-2,4,6-trinitrobenzene (TNCB) and barbituric acid were prepared in ethanol and mixed. A three fold excess of 2(N,N-diethyl) ethanolamine was then added and the mixture was shaken well for 5–6 h. Maroon red coloured crystals were obtained after 24 hrs. The crystals were filtered and recrystallized from absolute alcohol (yield of pure crystals 70%, m.p. 507 K). Red block-like single crystals, suitable for X-ray diffraction analysis, were obtained by slow evaporation of an ethanolic solution of the title compound at room temperature.

Refinement top

The NH and water molecule H-atoms were located in difference electron density maps; the NH H-atoms were freely refined, while the water H-atoms were treated as riding atoms. The hydroxyl and C-bound H-atoms were included in calculated positions and treated as riding atoms: O—H = 0.82 Å, C—H = 0.93, 0.96, and 0.97 Å for CH(aromatic), CH3 and CH2 H-atoms, respectively, with Uiso(H) = k × Ueq(O,C) where k = 1.5 for CH3 H-atoms, and k = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound with the numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. The O—H···O and N—H···O hydrogen bonds are shown as dashed lines (see Table 1 for details; C-bound H-atoms have been omitted for clarity).
N,N-Diethyl-2-hydroxyethanaminium 2,6-dioxo-5-(2,4,6-trinitrophenyl)-1,2,3,6-tetrahydropyrimidin-4-olate dihydrate top
Crystal data top
C6H16NO+·C10H4N5O9·2H2OF(000) = 1032
Mr = 492.41Dx = 1.492 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5467 reflections
a = 8.3792 (2) Åθ = 2.6–24.8°
b = 21.7673 (4) ŵ = 0.13 mm1
c = 12.0894 (2) ÅT = 293 K
β = 96.118 (1)°Block, red
V = 2192.46 (8) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4686 independent reflections
Radiation source: fine-focus sealed tube3492 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω and ϕ scansθmax = 26.8°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker 1999)
h = 1010
Tmin = 0.892, Tmax = 0.975k = 2727
23280 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0694P)2 + 0.4079P]
where P = (Fo2 + 2Fc2)/3
4686 reflections(Δ/σ)max < 0.001
338 parametersΔρmax = 0.36 e Å3
6 restraintsΔρmin = 0.32 e Å3
Crystal data top
C6H16NO+·C10H4N5O9·2H2OV = 2192.46 (8) Å3
Mr = 492.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.3792 (2) ŵ = 0.13 mm1
b = 21.7673 (4) ÅT = 293 K
c = 12.0894 (2) Å0.30 × 0.25 × 0.20 mm
β = 96.118 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4686 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 1999)
3492 reflections with I > 2σ(I)
Tmin = 0.892, Tmax = 0.975Rint = 0.037
23280 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0426 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.36 e Å3
4686 reflectionsΔρmin = 0.32 e Å3
338 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7186 (2)0.41169 (8)0.30054 (14)0.0306 (4)
C20.5959 (2)0.43691 (8)0.11393 (15)0.0388 (4)
C30.6102 (2)0.51490 (7)0.25866 (14)0.0300 (4)
C40.6886 (2)0.47250 (7)0.33442 (14)0.0292 (4)
C50.73603 (19)0.49194 (7)0.44825 (13)0.0266 (3)
C60.81044 (19)0.54867 (8)0.47588 (14)0.0302 (4)
C70.8515 (2)0.56930 (8)0.58266 (15)0.0356 (4)
H70.89730.60790.59600.043*
C80.8230 (2)0.53139 (8)0.66853 (15)0.0350 (4)
C90.7534 (2)0.47444 (8)0.65025 (15)0.0327 (4)
H90.73640.44870.70920.039*
C100.70989 (19)0.45705 (7)0.54204 (14)0.0286 (4)
C110.4444 (3)0.22119 (12)0.27523 (19)0.0554 (6)
H11A0.55600.23390.28220.067*
H11B0.43340.18630.22510.067*
C120.3427 (4)0.27264 (14)0.2257 (2)0.0765 (8)
H12A0.23150.26310.22950.115*
H12B0.36160.27820.14940.115*
H12C0.36950.30980.26640.115*
C130.4327 (3)0.25114 (9)0.47133 (18)0.0488 (5)
H13A0.37620.28780.44360.059*
H13B0.54660.26040.47940.059*
C140.3828 (3)0.23605 (10)0.58351 (17)0.0475 (5)
H14A0.45190.20390.61720.057*
H14B0.39690.27210.63070.057*
C150.4762 (3)0.14050 (9)0.42105 (19)0.0504 (5)
H15A0.43780.12760.49030.060*
H15B0.44010.11030.36480.060*
C160.6552 (3)0.14057 (14)0.4358 (2)0.0731 (8)
H16A0.69490.15030.36630.110*
H16B0.69330.10070.46020.110*
H16C0.69260.17070.49050.110*
N10.6672 (2)0.39757 (7)0.19009 (13)0.0372 (4)
N20.5695 (2)0.49417 (7)0.15108 (13)0.0399 (4)
N30.85714 (19)0.59043 (7)0.38903 (14)0.0390 (4)
N40.8702 (2)0.55069 (9)0.78267 (15)0.0504 (4)
N50.62095 (18)0.39864 (6)0.53118 (12)0.0323 (3)
N60.4013 (2)0.20141 (7)0.38774 (14)0.0391 (4)
O10.78610 (16)0.37089 (6)0.35927 (10)0.0405 (3)
O20.5564 (2)0.42190 (6)0.01670 (11)0.0583 (4)
O1W0.42307 (17)0.66131 (6)0.15158 (11)0.0433 (3)
O30.57236 (15)0.56815 (5)0.28132 (10)0.0351 (3)
O2W0.9751 (3)0.27123 (10)0.4379 (2)0.1173 (10)
O40.8348 (2)0.64511 (6)0.40147 (14)0.0615 (4)
O50.92002 (16)0.56847 (7)0.31178 (12)0.0482 (4)
O60.9235 (3)0.60220 (9)0.79794 (14)0.0794 (6)
O70.8528 (3)0.51453 (9)0.85712 (14)0.0882 (7)
O80.66984 (18)0.35673 (6)0.59242 (12)0.0486 (4)
O90.50041 (15)0.39638 (6)0.46545 (11)0.0408 (3)
O100.22086 (17)0.21639 (6)0.57806 (12)0.0449 (3)
H100.16180.24380.55110.071 (8)*
H60.294 (3)0.1935 (11)0.377 (2)0.063 (7)*
H1A0.686 (3)0.3612 (11)0.1685 (19)0.052 (6)*
H2A0.526 (3)0.5191 (10)0.1057 (18)0.044 (6)*
H1W0.467 (3)0.6368 (9)0.2074 (13)0.071 (8)*
H2W0.424 (4)0.6446 (11)0.0830 (10)0.091 (10)*
H4W0.978 (5)0.2365 (12)0.393 (3)0.162 (18)*
H3W0.895 (4)0.2983 (15)0.411 (3)0.160 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0348 (9)0.0271 (8)0.0296 (9)0.0051 (7)0.0016 (7)0.0002 (7)
C20.0517 (11)0.0312 (9)0.0317 (9)0.0083 (8)0.0043 (8)0.0032 (8)
C30.0314 (8)0.0280 (8)0.0301 (9)0.0034 (7)0.0004 (7)0.0016 (7)
C40.0326 (9)0.0261 (8)0.0279 (8)0.0042 (7)0.0011 (7)0.0002 (7)
C50.0244 (8)0.0238 (8)0.0306 (8)0.0049 (6)0.0014 (6)0.0006 (6)
C60.0292 (8)0.0260 (8)0.0347 (9)0.0010 (6)0.0005 (7)0.0006 (7)
C70.0334 (9)0.0296 (9)0.0425 (10)0.0024 (7)0.0016 (7)0.0068 (8)
C80.0330 (9)0.0385 (10)0.0318 (9)0.0007 (7)0.0046 (7)0.0087 (8)
C90.0334 (9)0.0329 (9)0.0306 (9)0.0022 (7)0.0021 (7)0.0028 (7)
C100.0282 (8)0.0234 (8)0.0332 (9)0.0010 (6)0.0017 (6)0.0008 (7)
C110.0560 (13)0.0660 (15)0.0457 (12)0.0002 (11)0.0114 (10)0.0030 (11)
C120.0832 (19)0.085 (2)0.0612 (16)0.0084 (15)0.0074 (14)0.0235 (14)
C130.0556 (13)0.0366 (10)0.0552 (13)0.0108 (9)0.0103 (10)0.0117 (9)
C140.0560 (13)0.0404 (11)0.0445 (11)0.0031 (9)0.0013 (9)0.0096 (9)
C150.0569 (13)0.0376 (11)0.0558 (13)0.0069 (9)0.0021 (10)0.0051 (9)
C160.0578 (15)0.0869 (19)0.0718 (17)0.0213 (14)0.0061 (12)0.0082 (15)
N10.0529 (10)0.0254 (8)0.0319 (8)0.0097 (7)0.0019 (7)0.0048 (6)
N20.0599 (11)0.0290 (8)0.0278 (8)0.0144 (7)0.0094 (7)0.0010 (6)
N30.0379 (8)0.0326 (8)0.0460 (9)0.0053 (6)0.0016 (7)0.0030 (7)
N40.0570 (11)0.0543 (11)0.0378 (9)0.0070 (9)0.0040 (8)0.0117 (8)
N50.0382 (8)0.0256 (7)0.0328 (8)0.0008 (6)0.0016 (6)0.0000 (6)
N60.0398 (9)0.0343 (8)0.0432 (9)0.0031 (7)0.0049 (7)0.0058 (7)
O10.0522 (8)0.0303 (6)0.0374 (7)0.0153 (6)0.0020 (6)0.0024 (5)
O20.0989 (13)0.0384 (8)0.0327 (7)0.0199 (8)0.0160 (7)0.0091 (6)
O1W0.0544 (8)0.0367 (7)0.0372 (8)0.0126 (6)0.0024 (6)0.0005 (6)
O30.0445 (7)0.0252 (6)0.0340 (6)0.0100 (5)0.0029 (5)0.0019 (5)
O2W0.142 (2)0.0625 (13)0.128 (2)0.0511 (14)0.0737 (17)0.0340 (13)
O40.0903 (13)0.0250 (7)0.0697 (11)0.0070 (7)0.0110 (9)0.0037 (7)
O50.0441 (8)0.0523 (8)0.0502 (8)0.0017 (6)0.0148 (7)0.0066 (7)
O60.1110 (16)0.0719 (12)0.0536 (10)0.0391 (11)0.0006 (10)0.0260 (9)
O70.150 (2)0.0752 (13)0.0342 (9)0.0199 (13)0.0119 (10)0.0011 (9)
O80.0660 (10)0.0280 (7)0.0497 (8)0.0008 (6)0.0039 (7)0.0100 (6)
O90.0360 (7)0.0376 (7)0.0469 (8)0.0067 (5)0.0036 (6)0.0036 (6)
O100.0520 (8)0.0322 (7)0.0504 (8)0.0001 (6)0.0049 (6)0.0069 (6)
Geometric parameters (Å, º) top
C1—O11.236 (2)C13—N61.485 (2)
C1—N11.393 (2)C13—C141.497 (3)
C1—C41.416 (2)C13—H13A0.9700
C2—O21.231 (2)C13—H13B0.9700
C2—N11.350 (2)C14—O101.418 (3)
C2—N21.351 (2)C14—H14A0.9700
C3—O31.240 (2)C14—H14B0.9700
C3—N21.385 (2)C15—C161.492 (3)
C3—C41.412 (2)C15—N61.503 (3)
C4—C51.454 (2)C15—H15A0.9700
C5—C101.401 (2)C15—H15B0.9700
C5—C61.407 (2)C16—H16A0.9600
C6—C71.376 (2)C16—H16B0.9600
C6—N31.473 (2)C16—H16C0.9600
C7—C81.367 (3)N1—H1A0.85 (2)
C7—H70.9300N2—H2A0.83 (2)
C8—C91.378 (2)N3—O41.217 (2)
C8—N41.456 (2)N3—O51.218 (2)
C9—C101.373 (2)N4—O61.214 (2)
C9—H90.9300N4—O71.216 (2)
C10—N51.472 (2)N5—O91.2177 (19)
C11—C121.493 (3)N5—O81.2180 (18)
C11—N61.507 (3)N6—H60.91 (3)
C11—H11A0.9700O1W—H1W0.908 (9)
C11—H11B0.9700O1W—H2W0.907 (9)
C12—H12A0.9600O2W—H4W0.933 (10)
C12—H12B0.9600O2W—H3W0.929 (10)
C12—H12C0.9600O10—H100.8200
O1—C1—N1117.90 (15)N6—C13—H13B108.7
O1—C1—C4126.17 (15)C14—C13—H13B108.7
N1—C1—C4115.93 (14)H13A—C13—H13B107.6
O2—C2—N1122.52 (17)O10—C14—C13112.47 (17)
O2—C2—N2121.69 (17)O10—C14—H14A109.1
N1—C2—N2115.79 (16)C13—C14—H14A109.1
O3—C3—N2117.98 (15)O10—C14—H14B109.1
O3—C3—C4125.44 (15)C13—C14—H14B109.1
N2—C3—C4116.56 (15)H14A—C14—H14B107.8
C3—C4—C1120.54 (15)C16—C15—N6114.6 (2)
C3—C4—C5119.01 (14)C16—C15—H15A108.6
C1—C4—C5120.44 (14)N6—C15—H15A108.6
C10—C5—C6112.77 (14)C16—C15—H15B108.6
C10—C5—C4123.89 (15)N6—C15—H15B108.6
C6—C5—C4123.33 (15)H15A—C15—H15B107.6
C7—C6—C5124.70 (16)C15—C16—H16A109.5
C7—C6—N3114.12 (15)C15—C16—H16B109.5
C5—C6—N3121.13 (15)H16A—C16—H16B109.5
C8—C7—C6117.98 (16)C15—C16—H16C109.5
C8—C7—H7121.0H16A—C16—H16C109.5
C6—C7—H7121.0H16B—C16—H16C109.5
C7—C8—C9121.78 (16)C2—N1—C1125.68 (15)
C7—C8—N4119.59 (16)C2—N1—H1A117.5 (15)
C9—C8—N4118.62 (17)C1—N1—H1A116.8 (15)
C10—C9—C8117.76 (16)C2—N2—C3125.47 (16)
C10—C9—H9121.1C2—N2—H2A117.4 (15)
C8—C9—H9121.1C3—N2—H2A117.1 (15)
C9—C10—C5124.95 (15)O4—N3—O5124.29 (17)
C9—C10—N5113.79 (15)O4—N3—C6117.36 (16)
C5—C10—N5121.14 (14)O5—N3—C6118.30 (15)
C12—C11—N6113.3 (2)O6—N4—O7123.81 (18)
C12—C11—H11A108.9O6—N4—C8117.96 (19)
N6—C11—H11A108.9O7—N4—C8118.22 (17)
C12—C11—H11B108.9O9—N5—O8124.63 (15)
N6—C11—H11B108.9O9—N5—C10118.02 (14)
H11A—C11—H11B107.7O8—N5—C10117.27 (14)
C11—C12—H12A109.5C13—N6—C15114.97 (17)
C11—C12—H12B109.5C13—N6—C11111.34 (16)
H12A—C12—H12B109.5C15—N6—C11111.13 (17)
C11—C12—H12C109.5C13—N6—H6109.8 (16)
H12A—C12—H12C109.5C15—N6—H6104.4 (16)
H12B—C12—H12C109.5C11—N6—H6104.5 (16)
N6—C13—C14114.21 (16)H1W—O1W—H2W113.6 (14)
N6—C13—H13A108.7H4W—O2W—H3W111.6 (16)
C14—C13—H13A108.7C14—O10—H10109.5
O3—C3—C4—C1176.75 (17)N6—C13—C14—O1053.0 (2)
N2—C3—C4—C11.6 (2)O2—C2—N1—C1178.4 (2)
O3—C3—C4—C52.4 (3)N2—C2—N1—C12.0 (3)
N2—C3—C4—C5179.24 (16)O1—C1—N1—C2178.03 (18)
O1—C1—C4—C3179.91 (17)C4—C1—N1—C21.6 (3)
N1—C1—C4—C30.3 (2)O2—C2—N2—C3179.9 (2)
O1—C1—C4—C51.0 (3)N1—C2—N2—C30.4 (3)
N1—C1—C4—C5179.45 (15)O3—C3—N2—C2177.22 (18)
C3—C4—C5—C10134.25 (17)C4—C3—N2—C21.3 (3)
C1—C4—C5—C1044.9 (2)C7—C6—N3—O442.6 (2)
C3—C4—C5—C644.4 (2)C5—C6—N3—O4139.73 (18)
C1—C4—C5—C6136.50 (17)C7—C6—N3—O5135.05 (17)
C10—C5—C6—C71.2 (2)C5—C6—N3—O542.6 (2)
C4—C5—C6—C7177.56 (16)C7—C8—N4—O65.1 (3)
C10—C5—C6—N3176.24 (15)C9—C8—N4—O6176.2 (2)
C4—C5—C6—N35.0 (2)C7—C8—N4—O7175.4 (2)
C5—C6—C7—C82.2 (3)C9—C8—N4—O73.3 (3)
N3—C6—C7—C8175.40 (16)C9—C10—N5—O9133.96 (16)
C6—C7—C8—C90.9 (3)C5—C10—N5—O942.3 (2)
C6—C7—C8—N4177.78 (16)C9—C10—N5—O842.9 (2)
C7—C8—C9—C101.3 (3)C5—C10—N5—O8140.79 (16)
N4—C8—C9—C10179.93 (16)C14—C13—N6—C1556.2 (2)
C8—C9—C10—C52.4 (3)C14—C13—N6—C11176.34 (19)
C8—C9—C10—N5173.72 (15)C16—C15—N6—C1364.0 (3)
C6—C5—C10—C91.2 (2)C16—C15—N6—C1163.6 (2)
C4—C5—C10—C9179.92 (16)C12—C11—N6—C1364.7 (3)
C6—C5—C10—N5174.67 (14)C12—C11—N6—C15165.7 (2)
C4—C5—C10—N54.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10···O2Wi0.822.052.792 (2)150
O10—H10···O4ii0.822.493.0648 (19)129
N6—H6···O1Wiii0.91 (3)1.95 (3)2.846 (2)170 (2)
N1—H1A···O10iv0.85 (2)2.05 (3)2.884 (2)166 (2)
N2—H2A···O2v0.83 (2)2.03 (2)2.847 (2)173 (2)
O1W—H2W···O2v0.91 (1)1.90 (2)2.7431 (19)154 (2)
O2W—H4W···O1Wvi0.93 (1)1.94 (2)2.796 (3)152 (3)
O1W—H1W···O30.91 (1)1.91 (1)2.7783 (17)160 (2)
O2W—H3W···O10.93 (1)1.89 (2)2.792 (2)162 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z1/2; (v) x+1, y+1, z; (vi) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H16NO+·C10H4N5O9·2H2O
Mr492.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.3792 (2), 21.7673 (4), 12.0894 (2)
β (°) 96.118 (1)
V3)2192.46 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 1999)
Tmin, Tmax0.892, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
23280, 4686, 3492
Rint0.037
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.131, 1.08
No. of reflections4686
No. of parameters338
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.32

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10···O2Wi0.822.052.792 (2)150
O10—H10···O4ii0.822.493.0648 (19)129
N6—H6···O1Wiii0.91 (3)1.95 (3)2.846 (2)170 (2)
N1—H1A···O10iv0.85 (2)2.05 (3)2.884 (2)166 (2)
N2—H2A···O2v0.83 (2)2.03 (2)2.847 (2)173 (2)
O1W—H2W···O2v0.907 (9)1.902 (15)2.7431 (19)154 (2)
O2W—H4W···O1Wvi0.933 (10)1.937 (18)2.796 (3)152 (3)
O1W—H1W···O30.908 (9)1.908 (13)2.7783 (17)160 (2)
O2W—H3W···O10.929 (10)1.894 (16)2.792 (2)162 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+1/2, y1/2, z+1/2; (iv) x+1/2, y+1/2, z1/2; (v) x+1, y+1, z; (vi) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors are thankful to the SAIF, IIT Madras, for the data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1999). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2, XPREP and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKalaivani, D. & Malarvizhi, R. (2009). Acta Cryst. E65, o2548.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKalaivani, D., Malarvizhi, R. & Subbalakshmi, R. (2008). Med. Chem. Res. 17, 369–373.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTripathi, K. D. (2009). Essentials of Medical Pharmacology, 6th ed., Chennai, India: Jaypee Brothers.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1433-o1434
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds