organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1428-o1429

9-(4-Nitro­phenyl­sulfon­yl)-9H-carbazole

aDepartment of Chemistry, Faculty of Arts and Sciences, Namık Kemal University, 59030 Değirmenaltı, Tekirdağ, Turkey, bDepartment of Physics, Karabük University, 78050 Karabük, Turkey, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 6 May 2011; accepted 11 May 2011; online 14 May 2011)

In the title mol­ecule, C18H12N2O4S, the carbazole skeleton is nearly planar [maximum deviation = 0.037 (1) Å] and is oriented at a dihedral angle of 73.73 (5)° with respect to the benzene ring. An intra­molecular C—H⋯O hydrogen bond links a nitro O atom to the carbazole skeleton. In the crystal, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. ππ contacts between inversion-related benzene rings [centroid–centroid distance = 3.7828 (8) Å] and two weak C—H⋯π inter­actions may also stabilize the structure.

Related literature

For tetra­hydro­carbazole systems present in the framework of a number of indole-type alkaloids of biological inter­est, see: Saxton (1983[Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch. 8 and 11. New York: Wiley.]). For related structures, see: Hökelek et al. (1994[Hökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). Acta Cryst. C50, 450-453.], 1998,[Hökelek, T., Gündüz, H., Patır, S. & Uludağ, N. (1998). Acta Cryst. C54, 1297-1299.] 1999)[Hökelek, T., Patır, S. & Uludağ, N. (1999). Acta Cryst. C55, 114-116.]; Patır et al. (1997[Patır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem., 34, 1239-1242.]); Hökelek & Patır (1999[Hökelek, T. & Patır, S. (1999). Acta Cryst. C55, 675-677.]). For the role of carbazole-based compounds in electroactive materials, see: Morin et al. (2004[Morin, J. F., Drolet, N., Tao, Y. & Leclerc, M. (2004). Chem. Mater. 16, 4619-4626.]); Pasquali et al. (1993[Pasquali, M., Pistoia, G. & Rosati, R. (1993). Synth. Met. 58, 1-15.]). For applications of chemically or electrochemically polymerized carbazole-based heterocyclic polymer systems, see: Sacak (1999[Sacak, M. (1999). J. Appl. Polym. Sci. 74, 1792-1796.]); Santhanam & Sundaresan (1986[Santhanam, K. S. V. & Sundaresan, N. S. (1986). Indian J. Technol. 24, 417-422.]).

[Scheme 1]

Experimental

Crystal data
  • C18H12N2O4S

  • Mr = 352.37

  • Monoclinic, P 21 /c

  • a = 7.4877 (2) Å

  • b = 11.7612 (3) Å

  • c = 17.3744 (4) Å

  • β = 90.119 (2)°

  • V = 1530.06 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 100 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.921, Tmax = 0.943

  • 26862 measured reflections

  • 3824 independent reflections

  • 3269 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.091

  • S = 1.06

  • 3824 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C1–C4/C4A/C9A and C5A/C5–C8/C8A rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1 0.95 2.43 3.0210 (18) 121
C6—H6⋯O2i 0.95 2.57 3.4085 (19) 147
C14—H14⋯O2ii 0.95 2.46 3.2731 (18) 143
C1—H1⋯Cg3iii 0.95 2.94 3.7368 (15) 142
C12—H12⋯Cg2iv 0.95 2.71 3.4376 (15) 134
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Tetrahydrocarbazole systems are present in the framework of a number of indole-type alkaloids of biological interest (Saxton, 1983). The structures of tricyclic, tetracyclic and pentacyclic ring systems with dithiolane and other substituents of the tetrahydrocarbazole core, have been reported previously (Hökelek et al., 1994; Patır et al., 1997; Hökelek et al., 1998; Hökelek et al., 1999; Hökelek & Patır, 1999). Carbazole-based compounds play a very important role in electroactive materials (Morin et al., 2004; Pasquali et al., 1993). Carbazole-based heterocyclic polymer systems can be chemically or electrochemically polymerized to give products with a number of applications, such as rechargable batteries (Sacak, 1999) and electrochromic displays (Santhanam & Sundaresan, 1986). The title compound may be considered as a synthetic precursor of tetracyclic indole alkaloids of biological interests. The present study was undertaken to ascertain its crystal structure.

The title compound consists of a carbazole skeleton with a nitrophenylsulfonyl group (Fig. 1), where the bond lengths and angles are within normal ranges, and generally agree with those in the previously reported compounds mentioned above. In all structures atom N9 is substituted.

An examination of the deviations from the least-squares planes through individual rings shows that rings A (C1—C4/C4a/C9a), B (C4a/C5a/C8a/N9/C9a), C (C5a/C5—C8/C8a) and D (C10—C15) are planar. The carbazole skeleton, containing the rings A, B and C is also nearly coplanar [maximum deviation 0.037 (1) Å for atom C5] with dihedral angles of A/B = 1.10 (7), A/C = 1.94 (7) and B/C = 1.85 (7) °. The phenyl ring is oriented with respect to the carbazole skeleton at a dihedral angle of 73.73 (5)°. Atoms S1 and N10 are displaced by 0.095 (1) and 0.026 (1) Å, respectively, from the phenyl ring mean plane. The intramolecular C—H···O hydrogen bond (Table 1) links the nitro oxygen (O1) to the carbazole skeleton.

In the crystal intermolecular C—H···O hydrogen bonds link the molecules into a three dimensional network (Table 1 and Fig. 2). The ππ contacts between the phenyl rings, Cg4—Cg4i [symmetry code: (i) 1 - x, 1 - y, -z, where Cg4 is the centroid of ring D (C10—C15)] may stabilize the structure, with a centroid-centroid distance of 3.7828 (8) Å, with perpendicular separation of 3.5543 (5) Å and a slipage of 1.295 Å. There also exist two weak C—H···π interactions involving rings A [Cg2 centroid of ring (C1—C4/C4a/C9a)] and C [Cg3 centroid of ring (C5a/C5—C8/C8a)], see Table 1.

Related literature top

For tetrahydrocarbazole systems present in the framework of a number of indole-type alkaloids of biological interest, see: Saxton (1983). For related structures, see: Hökelek et al. (1994, 1998, 1999); Patır et al. (1997); Hökelek & Patır (1999). For the role of carbazole-based compounds in electroactive materials, see: Morin et al. (2004); Pasquali et al. (1993). For applications of chemically or electrochemically polymerized carbazole-based heterocyclic polymer systems, see: Sacak (1999); Santhanam & Sundaresan (1986).

Experimental top

For the preparation of the title compound, carbazole (3.0 g, 19.45 mmol) and 4-nitrobenzene-1-sulfonyl chloride (8.6 g, 38.91 mmol) were dissolved in dichloromethane (300 ml), and then tetramethyl ammonium hydrogen sulphate (0.3 g) and sodium hydroxide (40 ml, 50%) were added. The resulting mixture was stirred at room temperature for 24 h. It was then poured into water (200 ml) and dichloromethane (200 ml). The solvent was evaporated and the residue was purified by column chromatograpy using silica gel, and the product was crystallized from ethylacetate (yield; 4.2 g, 75.12%, m.p. 466 K).

Refinement top

H atoms were positioned geometrically with C—H = 0.95 Å for aromatic H atoms, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the a-axis of the crystal packing of the title compound, showing the C-H···O interactions as dashed lines [H-atoms not involved in hydrogen bonding have been omitted for clarity; see Table 1 for details].
9-(4-Nitrophenylsulfonyl)-9H-carbazole top
Crystal data top
C18H12N2O4SF(000) = 728
Mr = 352.37Dx = 1.530 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8540 reflections
a = 7.4877 (2) Åθ = 2.3–28.2°
b = 11.7612 (3) ŵ = 0.24 mm1
c = 17.3744 (4) ÅT = 100 K
β = 90.119 (2)°Block, yellow
V = 1530.06 (7) Å30.35 × 0.30 × 0.25 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3824 independent reflections
Radiation source: fine-focus sealed tube3269 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 910
Tmin = 0.921, Tmax = 0.943k = 1515
26862 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0412P)2 + 0.8621P]
where P = (Fo2 + 2Fc2)/3
3824 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
C18H12N2O4SV = 1530.06 (7) Å3
Mr = 352.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4877 (2) ŵ = 0.24 mm1
b = 11.7612 (3) ÅT = 100 K
c = 17.3744 (4) Å0.35 × 0.30 × 0.25 mm
β = 90.119 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3824 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3269 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.943Rint = 0.033
26862 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.06Δρmax = 0.43 e Å3
3824 reflectionsΔρmin = 0.54 e Å3
226 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.34852 (5)0.62068 (3)0.145676 (18)0.01632 (10)
O10.42494 (14)0.73081 (8)0.13727 (6)0.0213 (2)
O20.17638 (14)0.59697 (9)0.11410 (6)0.0206 (2)
O31.02664 (14)0.30584 (10)0.02810 (6)0.0245 (2)
O40.82092 (16)0.17612 (9)0.03061 (7)0.0293 (3)
C10.6420 (2)0.67140 (12)0.27841 (8)0.0196 (3)
H10.65110.72440.23730.023*
C20.7764 (2)0.66037 (13)0.33332 (8)0.0212 (3)
H20.87990.70670.32930.025*
C30.7637 (2)0.58338 (13)0.39410 (8)0.0219 (3)
H30.85790.57800.43060.026*
C40.6144 (2)0.51468 (12)0.40160 (8)0.0200 (3)
H40.60500.46250.44310.024*
C4A0.47842 (19)0.52351 (11)0.34712 (8)0.0169 (3)
C50.2241 (2)0.38241 (12)0.38254 (8)0.0207 (3)
H50.27680.35550.42890.025*
C5A0.30977 (19)0.46441 (11)0.33801 (8)0.0170 (3)
C60.0606 (2)0.34090 (13)0.35799 (9)0.0236 (3)
H60.00170.28390.38720.028*
C70.0187 (2)0.38190 (13)0.29076 (9)0.0242 (3)
H70.13050.35170.27490.029*
C80.0618 (2)0.46567 (13)0.24653 (8)0.0217 (3)
H80.00600.49470.20150.026*
C8A0.22741 (19)0.50524 (12)0.27093 (8)0.0171 (3)
C9A0.49421 (19)0.60138 (12)0.28645 (7)0.0167 (3)
N90.33693 (16)0.59368 (10)0.23925 (6)0.0172 (2)
N100.87222 (17)0.27414 (11)0.03883 (7)0.0203 (3)
C100.50149 (19)0.51933 (11)0.11037 (7)0.0161 (3)
C110.44419 (19)0.40771 (12)0.09937 (8)0.0182 (3)
H110.32290.38770.10790.022*
C120.56592 (19)0.32637 (12)0.07590 (8)0.0188 (3)
H120.53080.24950.06850.023*
C130.74049 (19)0.36034 (12)0.06344 (7)0.0171 (3)
C140.79846 (19)0.47121 (12)0.07233 (8)0.0185 (3)
H140.91890.49140.06190.022*
C150.67725 (19)0.55191 (12)0.09676 (8)0.0186 (3)
H150.71330.62860.10420.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01736 (18)0.01617 (17)0.01543 (16)0.00119 (12)0.00067 (12)0.00134 (11)
O10.0250 (6)0.0167 (5)0.0222 (5)0.0004 (4)0.0002 (4)0.0026 (4)
O20.0177 (5)0.0243 (5)0.0199 (5)0.0023 (4)0.0027 (4)0.0017 (4)
O30.0162 (5)0.0306 (6)0.0267 (5)0.0036 (4)0.0001 (4)0.0016 (4)
O40.0294 (6)0.0202 (6)0.0384 (6)0.0028 (5)0.0022 (5)0.0033 (5)
C10.0222 (7)0.0186 (7)0.0180 (6)0.0013 (6)0.0006 (5)0.0012 (5)
C20.0192 (7)0.0214 (7)0.0229 (7)0.0032 (6)0.0002 (5)0.0050 (5)
C30.0215 (8)0.0226 (7)0.0216 (7)0.0028 (6)0.0041 (5)0.0038 (5)
C40.0245 (8)0.0178 (6)0.0177 (6)0.0033 (6)0.0018 (5)0.0007 (5)
C4A0.0189 (7)0.0146 (6)0.0172 (6)0.0015 (5)0.0011 (5)0.0022 (5)
C50.0264 (8)0.0171 (6)0.0186 (6)0.0022 (6)0.0039 (5)0.0001 (5)
C5A0.0194 (7)0.0151 (6)0.0166 (6)0.0024 (5)0.0017 (5)0.0031 (5)
C60.0256 (8)0.0202 (7)0.0250 (7)0.0036 (6)0.0078 (6)0.0008 (6)
C70.0193 (8)0.0275 (8)0.0260 (7)0.0043 (6)0.0036 (6)0.0034 (6)
C80.0191 (7)0.0258 (7)0.0201 (6)0.0008 (6)0.0001 (5)0.0012 (5)
C8A0.0182 (7)0.0161 (6)0.0171 (6)0.0008 (5)0.0032 (5)0.0010 (5)
C9A0.0174 (7)0.0174 (6)0.0153 (6)0.0021 (5)0.0014 (5)0.0031 (5)
N90.0175 (6)0.0191 (6)0.0149 (5)0.0014 (5)0.0011 (4)0.0007 (4)
C100.0179 (7)0.0174 (6)0.0131 (6)0.0013 (5)0.0012 (5)0.0012 (5)
N100.0212 (7)0.0222 (6)0.0176 (5)0.0034 (5)0.0014 (4)0.0012 (4)
C110.0155 (7)0.0195 (7)0.0196 (6)0.0018 (5)0.0003 (5)0.0026 (5)
C120.0209 (7)0.0166 (6)0.0189 (6)0.0020 (5)0.0010 (5)0.0013 (5)
C130.0178 (7)0.0197 (7)0.0139 (6)0.0032 (5)0.0008 (5)0.0008 (5)
C140.0151 (7)0.0238 (7)0.0165 (6)0.0028 (5)0.0009 (5)0.0001 (5)
C150.0202 (7)0.0181 (6)0.0175 (6)0.0030 (5)0.0010 (5)0.0010 (5)
Geometric parameters (Å, º) top
S1—O11.4237 (11)C7—C81.388 (2)
S1—O21.4272 (11)C7—H70.9500
S1—N91.6589 (11)C8—H80.9500
S1—C101.7641 (14)C8A—C81.390 (2)
O3—N101.2295 (17)C8A—C5A1.4023 (19)
O4—N101.2233 (17)C9A—C11.387 (2)
C1—C21.391 (2)C9A—C4A1.4016 (19)
C1—H10.9500N9—C8A1.4349 (18)
C2—H20.9500N9—C9A1.4366 (17)
C3—C21.395 (2)C10—C111.3941 (19)
C3—H30.9500N10—C131.4783 (18)
C4—C31.385 (2)C11—C121.383 (2)
C4—H40.9500C11—H110.9500
C4A—C41.3929 (19)C12—H120.9500
C4A—C5A1.450 (2)C13—C121.384 (2)
C5—C61.384 (2)C13—C141.383 (2)
C5—H50.9500C14—C151.381 (2)
C5A—C51.3938 (19)C14—H140.9500
C6—C71.395 (2)C15—C101.391 (2)
C6—H60.9500C15—H150.9500
O1—S1—O2120.07 (6)C5A—C5—H5120.6
O1—S1—N9107.25 (6)C6—C5—C5A118.74 (13)
O1—S1—C10108.53 (7)C6—C5—H5120.6
O2—S1—N9106.87 (6)C5—C5A—C4A132.31 (13)
O2—S1—C10108.71 (6)C5—C5A—C8A119.75 (13)
N9—S1—C10104.29 (6)C8A—C5A—C4A107.94 (12)
C1—C9A—N9129.31 (13)C5—C6—C7120.69 (14)
C1—C9A—C4A122.17 (13)C5—C6—H6119.7
C4A—C9A—N9108.53 (12)C7—C6—H6119.7
C8A—N9—S1123.08 (9)C8—C7—C6121.65 (14)
C8A—N9—C9A107.17 (11)C8—C7—H7119.2
C9A—N9—S1120.19 (10)C6—C7—H7119.2
C11—C10—S1118.95 (11)C7—C8—C8A117.18 (13)
C15—C10—S1119.21 (11)C7—C8—H8121.4
C15—C10—C11121.80 (13)C8A—C8—H8121.4
O3—N10—C13117.65 (12)C5A—C8A—N9108.44 (12)
O4—N10—O3124.28 (13)C8—C8A—N9129.49 (13)
O4—N10—C13118.07 (12)C8—C8A—C5A121.96 (13)
C2—C1—H1121.6C10—C11—H11120.4
C9A—C1—C2116.86 (13)C12—C11—C10119.26 (13)
C9A—C1—H1121.6C12—C11—H11120.4
C1—C2—C3121.96 (14)C11—C12—C13118.00 (13)
C1—C2—H2119.0C11—C12—H12121.0
C3—C2—H2119.0C13—C12—H12121.0
C2—C3—H3119.8C12—C13—N10118.56 (12)
C4—C3—C2120.42 (13)C14—C13—N10118.00 (13)
C4—C3—H3119.8C14—C13—C12123.44 (13)
C3—C4—C4A118.77 (13)C13—C14—H14120.8
C3—C4—H4120.6C15—C14—C13118.43 (13)
C4A—C4—H4120.6C15—C14—H14120.8
C4—C4A—C5A132.37 (13)C10—C15—H15120.5
C4—C4A—C9A119.81 (13)C14—C15—C10119.05 (13)
C9A—C4A—C5A107.82 (12)C14—C15—H15120.5
O1—S1—N9—C8A163.45 (11)N9—C8A—C8—C7176.89 (14)
O1—S1—N9—C9A54.69 (12)C5A—C8A—C8—C71.1 (2)
O2—S1—N9—C8A33.47 (12)S1—N9—C8A—C5A149.32 (10)
O2—S1—N9—C9A175.33 (10)S1—N9—C8A—C834.4 (2)
C10—S1—N9—C8A81.56 (12)C9A—N9—C8A—C5A3.29 (14)
C10—S1—N9—C9A60.30 (11)C9A—N9—C8A—C8179.53 (14)
O1—S1—C10—C11168.31 (10)S1—N9—C9A—C130.83 (19)
O1—S1—C10—C1513.85 (12)S1—N9—C9A—C4A149.61 (10)
O2—S1—C10—C1136.13 (12)C8A—N9—C9A—C1178.04 (14)
O2—S1—C10—C15146.03 (11)C8A—N9—C9A—C4A2.41 (14)
N9—S1—C10—C1177.60 (11)N9—C9A—C1—C2179.94 (13)
N9—S1—C10—C15100.24 (11)C4A—C9A—C1—C20.6 (2)
C9A—C1—C2—C30.5 (2)C1—C9A—C4A—C40.2 (2)
C4—C3—C2—C10.0 (2)C1—C9A—C4A—C5A179.76 (12)
C4A—C4—C3—C20.4 (2)N9—C9A—C4A—C4179.76 (12)
C5A—C4A—C4—C3179.14 (14)N9—C9A—C4A—C5A0.65 (15)
C9A—C4A—C4—C30.3 (2)O3—N10—C13—C12179.94 (12)
C4—C4A—C5A—C53.1 (3)O3—N10—C13—C140.47 (18)
C4—C4A—C5A—C8A178.12 (14)O4—N10—C13—C120.09 (18)
C9A—C4A—C5A—C5177.34 (14)O4—N10—C13—C14179.68 (12)
C9A—C4A—C5A—C8A1.40 (15)S1—C10—C11—C12176.34 (10)
C5A—C5—C6—C71.2 (2)C15—C10—C11—C121.4 (2)
C4A—C5A—C5—C6179.66 (14)C10—C11—C12—C130.7 (2)
C8A—C5A—C5—C61.7 (2)N10—C13—C12—C11179.61 (12)
C5—C6—C7—C80.5 (2)C14—C13—C12—C110.8 (2)
C6—C7—C8—C8A1.6 (2)N10—C13—C14—C15178.75 (12)
N9—C8A—C5A—C4A2.90 (15)C12—C13—C14—C151.7 (2)
N9—C8A—C5A—C5176.02 (12)C13—C14—C15—C100.94 (19)
C8—C8A—C5A—C4A179.48 (13)C14—C15—C10—S1177.20 (10)
C8—C8A—C5A—C50.6 (2)C14—C15—C10—C110.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1–C4/C4A/C9A and C5A/C5–C8/C8A rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.952.433.0210 (18)121
C6—H6···O2i0.952.573.4085 (19)147
C14—H14···O2ii0.952.463.2731 (18)143
C1—H1···Cg3iii0.952.943.7368 (15)142
C12—H12···Cg2iv0.952.713.4376 (15)134
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H12N2O4S
Mr352.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)7.4877 (2), 11.7612 (3), 17.3744 (4)
β (°) 90.119 (2)
V3)1530.06 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.921, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
26862, 3824, 3269
Rint0.033
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.091, 1.06
No. of reflections3824
No. of parameters226
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.54

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1–C4/C4A/C9A and C5A/C5–C8/C8A rings, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1···O10.952.433.0210 (18)121
C6—H6···O2i0.952.573.4085 (19)147
C14—H14···O2ii0.952.463.2731 (18)143
C1—H1···Cg3iii0.952.943.7368 (15)142
C12—H12···Cg2iv0.952.713.4376 (15)134
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the X-ray diffractometer. This work was supported financially by the Scientific & Technological Research Council of Turkey (grant No. TUBITAK-110T516).

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Gündüz, H., Patır, S. & Uludağ, N. (1998). Acta Cryst. C54, 1297–1299.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Patır, S. (1999). Acta Cryst. C55, 675–677.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Patır, S., Gülce, A. & Okay, G. (1994). Acta Cryst. C50, 450–453.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Patır, S. & Uludağ, N. (1999). Acta Cryst. C55, 114–116.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMorin, J. F., Drolet, N., Tao, Y. & Leclerc, M. (2004). Chem. Mater. 16, 4619–4626.  CrossRef CAS Google Scholar
First citationPasquali, M., Pistoia, G. & Rosati, R. (1993). Synth. Met. 58, 1–15.  CrossRef CAS Google Scholar
First citationPatır, S., Okay, G., Gülce, A., Salih, B. & Hökelek, T. (1997). J. Heterocycl. Chem., 34, 1239–1242.  Google Scholar
First citationSacak, M. (1999). J. Appl. Polym. Sci. 74, 1792–1796.  CAS Google Scholar
First citationSanthanam, K. S. V. & Sundaresan, N. S. (1986). Indian J. Technol. 24, 417–422.  CAS Google Scholar
First citationSaxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch. 8 and 11. New York: Wiley.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1428-o1429
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds