metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m780-m781

Di­aqua­bis­­(N,N′-di­ethyl­nicotinamide-κN1)bis­­(4-ethyl­benzoato-κO)copper(II)

aDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey, bDepartment of Physics, Karabük University, 78050, Karabük, Turkey, and cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 11 May 2011; accepted 17 May 2011; online 20 May 2011)

The title CuII complex, [Cu(C9H9O2)2(C10H14N2O)2(H2O)2], contains two 4-ethyl­benzoate (PEB) ligands, two monodentate diethyl­nicotinamide (DENA) ligands and two water mol­ecules. The four O atoms in the equatorial plane around the CuII ion form a slightly distorted square-planar arrangement, while the distorted octa­hedral coordination is completed by the two N atoms of the DENA ligands in the axial positions. Intra­molecular O—H⋯O hydrogen bonds link the water mol­ecules to the carboxyl­ate groups. The dihedral angles between the carboxyl­ate groups and the adjacent benzene rings are 4.6 (3) and 3.7 (2)°, while the pyridine rings and the benzene rings are oriented at dihedral angles of 6.82 (11) and 3.63 (14)°. In the crystal, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into chains propagating along [010]. C—H⋯O inter­actions and a ππ contact between the pyridine rings [centroid–centroid distance = 3.469 (2) Å] are also observed.

Related literature

For literature on niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For information on the nicotinic acid derivative N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Hökelek et al. (1996[Hökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470-2473.], 2009a[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466-m467.],b[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m607-m608.]); Hökelek & Necefoğlu (1998[Hökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242-1244.], 2007[Hökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821-m823.]); Necefoğlu et al. (2011[Necefoğlu, H., Maracı, A., Özbek, F. E., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m619-m620.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C9H9O2)2(C10H14N2O)2(H2O)2]

  • Mr = 754.37

  • Monoclinic, P 21

  • a = 8.3607 (2) Å

  • b = 12.4053 (4) Å

  • c = 17.8932 (6) Å

  • β = 98.132 (3)°

  • V = 1837.17 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 100 K

  • 0.34 × 0.32 × 0.24 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • 18349 measured reflections

  • 8952 independent reflections

  • 6851 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.130

  • S = 1.06

  • 8952 reflections

  • 479 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.88 e Å−3

  • Δρmin = −1.09 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4105 Friedel pairs

  • Flack parameter: 0.394 (13)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H71⋯O2 0.85 (2) 1.86 (2) 2.706 (4) 170 (5)
O7—H72⋯O6i 0.83 (4) 2.03 (4) 2.846 (4) 166 (5)
O8—H81⋯O4 0.85 (2) 1.88 (2) 2.699 (4) 161 (5)
O8—H82⋯O2ii 0.86 (4) 2.00 (4) 2.852 (4) 167 (5)
C6—H6⋯O5iii 0.93 2.55 3.240 (5) 131
C20—H20⋯O2iii 0.93 2.53 3.412 (5) 158
C30—H30⋯O6iv 0.93 2.43 3.316 (5) 158
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z]; (ii) [-x+2, y-{\script{1\over 2}}, -z]; (iii) [-x+1, y-{\script{1\over 2}}, -z]; (iv) [-x+3, y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigations of transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title mononuclear CuIIcomplex, (Fig. 1), consisting of two N,N-diethylnicotinamide (DENA), two 4-ethylbenzoate (PEB) ligands and two coordinated water molecules, all ligands coordinating in a monodentate manner. The crystal structures of similar omplexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C7H5O2)2(C10H14N2O)2] (Hökelek et al., 1996), [Co(C6H6N2O)2(C7H4NO4)2(H2O)2] (Hökelek & Necefoğlu, 1998), [Co(C9H9O2)2(C10H14N2O)2(H2O)2] (Necefoğlu et al., 2011), [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009a), [Mn(C9H10NO2)2(H2O)4].2H2O (Hökelek & Necefoğlu, 2007) and [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2] (Hökelek et al., 2009b) have also been reported. In the copper(II) complex mentioned above the two benzoate ions coordinate to the CuII atom as bidentate ligands, while in the other structures all the ligands coordinate in a monodentate manner.

In the title complex, the four O atoms (O1, O3, O7 and O8) in the equatorial plane around the CuII ion form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the DENA ligands (N1 and N3) in the axial positions. Intramolecular O-H···O hydrogen bonds link the water molecules to the carboxylate groups (Table 1 and Fig. 1). The near equalities of the C1—O1 [1.275 (4) Å], C1—O2 [1.253 (4) Å] and C10—O3 [1.268 (4) Å], C10—O4 [1.234 (4) Å] bonds in the carboxylate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The Cu—O bond lengths are 1.968 (2) and 1.979 (2) Å (for benzoate oxygens) and 2.486 (3) and 2.439 (3) Å (for water oxygens), and the Cu—N bond lengths are 2.004 (3) and 2.004 (3) Å, close to standard values (Allen et al., 1987). The Cu atom is displaced out of the mean-planes of the carboxylate groups (O1/C1/O2) and (O3/C10/O4) by -0.7205 (4) and 0.7343 (4) Å, respectively. The dihedral angles between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and B (C11—C16) are 4.64 (25) and 3.67 (23) °, respectively. The benzene A (C2—C7) and B (C11—C16) rings and the pyridine C (N1/C19—C23) and D (N3/C29—C33) rings are oriented at dihedral angles of A/B = 3.63 (14), A/C = 66.65 (14), A/D = 61.40 (14), B/C = 66.93 (13), B/D = 61.39 (13) and C/D = 6.82 (11) °.

In the crystal, intermolecular O—H···O hydrogen bonds link the molecules into chains propagating along [010] (Table 1 and Fig. 2). There also exist C-H···O interactions leading to the formation of two-dimensional networks lying parallel to (110). The ππ contact between the pyridine rings, Cg3—Cg4i, may further stabilize the structure [centroid-centroid distance = 3.469 (2) Å; symmetry code: (i) x - 1, y, z; Cg3 and Cg4 are the centroids of the rings C (N1/C19—C23) and D (N3/C29—C33), respectively].

Related literature top

For literature on niacin, see: Krishnamachari (1974). For infomation on the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (1996, 2009a,b); Hökelek & Necefoğlu (1998, 2007); Necefoğlu et al. (2011). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the reaction of CuSO4.5H2O (1.23 g, 5 mmol) in H2O (100 ml) and DENA (1.78 g, 10 mmol) in H2O (50 ml) with sodium 4-ethylbenzoate (1.72 g, 10 mmol) in H2O (100 ml) at room temperature. The mixture was filtered and set aside to crystallize at ambient temperature for three days, giving blue single crystals.

Refinement top

The compound crystallized as an inversion twin: refined BASF parameter = 0.394 (13), for 4105 Friedel pairs (84.7% coverage). Atoms H71, H72, H81 and H82 (for water molecules) were located in a difference Fourier map and were freely refined. The C-bound H-atoms were positioned geometrically with C—H = 0.93, 0.97 and 0.96 Å, for aromatic, methylene and methyl H-atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = k × Ueq(C), where k = 1.5 for methyl H-atoms and k = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular O-H···O hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A view along the c-axis of the crystal packing of the title compound. Only the O-H···O hydrogen bonds are shown as dashed lines [H-atoms not involved in hydrogen bonding have been omitted for clarity; see Table 1 for details].
Diaquabis(N,N'-diethylnicotinamide-κN1)bis(4- ethylbenzoato-κO)copper(II) top
Crystal data top
[Cu(C9H9O2)2(C10H14N2O)2(H2O)2]F(000) = 798
Mr = 754.37Dx = 1.364 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3109 reflections
a = 8.3607 (2) Åθ = 2.8–26.9°
b = 12.4053 (4) ŵ = 0.65 mm1
c = 17.8932 (6) ÅT = 100 K
β = 98.132 (3)°Block, blue
V = 1837.17 (10) Å30.34 × 0.32 × 0.24 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6851 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.068
Graphite monochromatorθmax = 28.5°, θmin = 2.3°
ϕ and ω scansh = 1011
18349 measured reflectionsk = 1616
8952 independent reflectionsl = 2320
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0415P)2 + 0.0395P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
8952 reflectionsΔρmax = 0.88 e Å3
479 parametersΔρmin = 1.09 e Å3
5 restraintsAbsolute structure: Flack (1983), 4105 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.394 (13)
Crystal data top
[Cu(C9H9O2)2(C10H14N2O)2(H2O)2]V = 1837.17 (10) Å3
Mr = 754.37Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.3607 (2) ŵ = 0.65 mm1
b = 12.4053 (4) ÅT = 100 K
c = 17.8932 (6) Å0.34 × 0.32 × 0.24 mm
β = 98.132 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
6851 reflections with I > 2σ(I)
18349 measured reflectionsRint = 0.068
8952 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.056H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.130Δρmax = 0.88 e Å3
S = 1.06Δρmin = 1.09 e Å3
8952 reflectionsAbsolute structure: Flack (1983), 4105 Friedel pairs
479 parametersAbsolute structure parameter: 0.394 (13)
5 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.90474 (5)0.00022 (4)0.08866 (2)0.01551 (11)
O10.8037 (3)0.0117 (2)0.01725 (13)0.0158 (5)
O20.8098 (4)0.1582 (2)0.05880 (15)0.0207 (6)
O31.0046 (3)0.0129 (2)0.19537 (13)0.0185 (6)
O41.0117 (4)0.1561 (2)0.23888 (16)0.0283 (7)
O50.4397 (4)0.1513 (2)0.27561 (17)0.0295 (7)
O61.3973 (3)0.1478 (2)0.08725 (15)0.0217 (6)
O70.8548 (4)0.1972 (2)0.09151 (16)0.0236 (7)
H710.843 (6)0.193 (4)0.0436 (11)0.040*
H720.781 (5)0.240 (3)0.098 (3)0.040*
O80.9451 (4)0.1949 (2)0.08928 (16)0.0228 (7)
H810.984 (6)0.192 (4)0.1360 (12)0.040*
H821.012 (5)0.239 (3)0.073 (3)0.040*
N10.6909 (4)0.0310 (2)0.12257 (17)0.0154 (7)
N20.4762 (3)0.0024 (3)0.34583 (15)0.0173 (6)
N31.1134 (4)0.0359 (2)0.05150 (17)0.0156 (7)
N41.3057 (4)0.0215 (2)0.17411 (17)0.0159 (7)
C10.8017 (4)0.0584 (3)0.0694 (2)0.0143 (8)
C20.7873 (4)0.0155 (3)0.1482 (2)0.0161 (8)
C30.7745 (5)0.0849 (3)0.2100 (2)0.0193 (9)
H30.77390.15910.20280.023*
C40.7626 (6)0.0422 (4)0.2826 (3)0.0224 (10)
H40.75400.08860.32380.027*
C50.7634 (6)0.0679 (4)0.2946 (3)0.0215 (10)
C60.7803 (5)0.1364 (3)0.2331 (2)0.0213 (9)
H60.78400.21050.24040.026*
C70.7917 (5)0.0953 (3)0.1607 (2)0.0187 (9)
H70.80240.14230.11980.022*
C80.7400 (5)0.1134 (4)0.3746 (2)0.0286 (10)
H8A0.79030.06550.40730.034*
H8B0.79300.18290.37460.034*
C90.5623 (5)0.1262 (4)0.4056 (2)0.0294 (10)
H9A0.55200.15220.45660.044*
H9B0.50900.05780.40470.044*
H9C0.51350.17680.37510.044*
C101.0113 (5)0.0573 (3)0.2473 (2)0.0172 (8)
C111.0164 (4)0.0133 (4)0.3264 (2)0.0163 (8)
C121.0053 (5)0.0963 (3)0.3396 (2)0.0186 (8)
H120.99740.14450.29940.022*
C131.0058 (5)0.1342 (3)0.4124 (2)0.0202 (9)
H130.99580.20790.42030.024*
C141.0208 (5)0.0653 (3)0.4734 (2)0.0193 (9)
C151.0304 (6)0.0448 (3)0.4603 (3)0.0225 (10)
H151.03890.09270.50060.027*
C161.0274 (5)0.0837 (3)0.3869 (2)0.0189 (8)
H161.03280.15750.37860.023*
C171.0308 (5)0.1098 (4)0.5526 (2)0.0256 (9)
H17A0.94630.16300.55400.031*
H17B1.01240.05180.58680.031*
C181.1927 (6)0.1611 (4)0.5792 (3)0.0330 (11)
H18A1.19410.18800.62960.050*
H18B1.21030.21960.54620.050*
H18C1.27670.10840.57870.050*
C190.5897 (5)0.1049 (3)0.0867 (2)0.0159 (8)
H190.61900.13970.04460.019*
C200.4438 (5)0.1308 (3)0.1102 (2)0.0173 (8)
H200.37400.17980.08320.021*
C210.4034 (5)0.0825 (3)0.1749 (2)0.0177 (8)
H210.30820.10110.19300.021*
C220.5073 (4)0.0054 (4)0.21259 (18)0.0148 (7)
C230.6480 (4)0.0176 (3)0.18347 (19)0.0166 (8)
H230.71680.06980.20760.020*
C240.4714 (5)0.0550 (3)0.2805 (2)0.0188 (9)
C250.5422 (5)0.1111 (3)0.3563 (2)0.0202 (9)
H25A0.62130.11260.40150.024*
H25B0.59730.12920.31380.024*
C260.4135 (5)0.1956 (3)0.3633 (2)0.0264 (10)
H26A0.46330.26530.37080.040*
H26B0.33680.19640.31800.040*
H26C0.35900.17860.40560.040*
C270.4392 (5)0.0549 (3)0.4128 (2)0.0210 (9)
H27A0.38950.00530.44460.025*
H27B0.36240.11200.39740.025*
C280.5903 (5)0.1029 (4)0.4578 (2)0.0274 (10)
H28A0.56350.13420.50350.041*
H28B0.63330.15760.42830.041*
H28C0.66950.04730.47000.041*
C291.2063 (5)0.1172 (3)0.0815 (2)0.0167 (8)
H291.17710.15340.12300.020*
C301.3441 (5)0.1496 (3)0.0530 (2)0.0174 (8)
H301.40690.20580.07550.021*
C311.3871 (5)0.0969 (3)0.0093 (2)0.0182 (9)
H311.47780.11830.03010.022*
C321.2920 (4)0.0111 (3)0.04045 (19)0.0152 (7)
C331.1567 (4)0.0163 (3)0.00806 (19)0.0150 (8)
H331.09310.07350.02850.018*
C341.3359 (5)0.0583 (3)0.1027 (2)0.0152 (8)
C351.3510 (5)0.0871 (3)0.2355 (2)0.0211 (9)
H35A1.44130.13300.21600.025*
H35B1.38590.04020.27340.025*
C361.2124 (5)0.1569 (4)0.2719 (2)0.0295 (10)
H36A1.24790.19960.31120.044*
H36B1.12420.11170.29310.044*
H36C1.17750.20350.23460.044*
C371.2226 (5)0.0805 (3)0.1947 (2)0.0196 (9)
H37A1.16670.10360.15350.024*
H37B1.14230.06910.23870.024*
C381.3381 (6)0.1688 (3)0.2118 (2)0.0267 (10)
H38A1.27840.23380.22520.040*
H38B1.39260.14680.25300.040*
H38C1.41610.18170.16800.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0124 (2)0.02013 (19)0.0137 (2)0.0006 (2)0.00064 (15)0.00015 (19)
O10.0138 (12)0.0190 (13)0.0145 (12)0.0019 (13)0.0022 (10)0.0001 (13)
O20.0265 (17)0.0162 (13)0.0196 (15)0.0010 (12)0.0035 (13)0.0011 (11)
O30.0157 (13)0.0243 (15)0.0154 (12)0.0010 (13)0.0021 (10)0.0012 (13)
O40.042 (2)0.0207 (15)0.0213 (16)0.0028 (14)0.0005 (15)0.0015 (13)
O50.043 (2)0.0183 (14)0.0282 (17)0.0087 (14)0.0101 (15)0.0005 (12)
O60.0207 (16)0.0195 (13)0.0252 (16)0.0023 (12)0.0047 (13)0.0013 (12)
O70.0251 (17)0.0230 (15)0.0217 (16)0.0059 (14)0.0002 (14)0.0019 (12)
O80.0275 (18)0.0218 (15)0.0191 (17)0.0046 (14)0.0028 (14)0.0021 (12)
N10.0127 (16)0.0199 (16)0.0127 (15)0.0003 (12)0.0018 (13)0.0023 (11)
N20.0167 (15)0.0218 (14)0.0135 (14)0.0033 (18)0.0023 (11)0.0025 (16)
N30.0147 (17)0.0169 (14)0.0143 (16)0.0018 (12)0.0015 (13)0.0012 (12)
N40.0111 (15)0.0173 (18)0.0193 (16)0.0017 (13)0.0022 (13)0.0000 (12)
C10.0047 (18)0.0219 (19)0.016 (2)0.0002 (15)0.0014 (16)0.0015 (15)
C20.0100 (17)0.023 (2)0.0151 (17)0.0005 (16)0.0015 (14)0.0015 (16)
C30.019 (2)0.022 (2)0.017 (2)0.0030 (17)0.0022 (18)0.0007 (17)
C40.018 (2)0.032 (2)0.016 (2)0.0010 (18)0.0011 (18)0.0065 (17)
C50.013 (2)0.032 (2)0.020 (2)0.0014 (18)0.0024 (18)0.0015 (18)
C60.018 (2)0.0206 (19)0.025 (2)0.0023 (17)0.0010 (18)0.0026 (17)
C70.018 (2)0.0207 (19)0.016 (2)0.0005 (17)0.0019 (17)0.0003 (17)
C80.030 (3)0.037 (2)0.020 (2)0.004 (2)0.0038 (19)0.0036 (18)
C90.032 (3)0.037 (2)0.017 (2)0.003 (2)0.0037 (19)0.0044 (18)
C100.012 (2)0.025 (2)0.013 (2)0.0007 (16)0.0015 (16)0.0025 (15)
C110.0102 (17)0.025 (2)0.0131 (16)0.0027 (18)0.0017 (13)0.0030 (17)
C120.016 (2)0.0215 (18)0.018 (2)0.0017 (17)0.0013 (17)0.0015 (17)
C130.016 (2)0.0208 (19)0.024 (2)0.0016 (16)0.0032 (18)0.0032 (16)
C140.012 (2)0.030 (2)0.015 (2)0.0048 (17)0.0006 (17)0.0030 (17)
C150.023 (2)0.027 (2)0.017 (2)0.0028 (18)0.0006 (19)0.0028 (16)
C160.019 (2)0.022 (2)0.015 (2)0.0013 (17)0.0012 (17)0.0003 (17)
C170.025 (2)0.033 (2)0.019 (2)0.0076 (19)0.0046 (18)0.0087 (18)
C180.030 (3)0.041 (3)0.026 (2)0.005 (2)0.005 (2)0.010 (2)
C190.015 (2)0.0157 (16)0.0167 (19)0.0004 (15)0.0004 (16)0.0012 (15)
C200.014 (2)0.0180 (18)0.0182 (19)0.0005 (15)0.0045 (16)0.0027 (15)
C210.013 (2)0.0201 (18)0.020 (2)0.0013 (16)0.0022 (16)0.0062 (16)
C220.0128 (17)0.0175 (15)0.0131 (16)0.005 (2)0.0017 (13)0.0017 (19)
C230.0154 (18)0.021 (2)0.0127 (17)0.0006 (16)0.0013 (14)0.0026 (15)
C240.011 (2)0.023 (2)0.022 (2)0.0009 (16)0.0042 (17)0.0001 (16)
C250.026 (2)0.0157 (18)0.019 (2)0.0060 (17)0.0014 (17)0.0002 (15)
C260.030 (3)0.0201 (19)0.028 (2)0.0008 (18)0.001 (2)0.0021 (16)
C270.016 (2)0.028 (2)0.020 (2)0.0004 (16)0.0063 (17)0.0047 (16)
C280.025 (2)0.029 (2)0.027 (2)0.0029 (19)0.0009 (19)0.0049 (19)
C290.019 (2)0.0158 (18)0.0143 (19)0.0020 (15)0.0001 (16)0.0024 (14)
C300.017 (2)0.0174 (18)0.017 (2)0.0024 (16)0.0003 (16)0.0006 (15)
C310.012 (2)0.0177 (18)0.025 (2)0.0021 (16)0.0022 (17)0.0027 (17)
C320.0130 (17)0.0173 (19)0.0150 (16)0.0031 (18)0.0007 (14)0.0014 (16)
C330.0129 (18)0.0157 (19)0.0147 (17)0.0031 (15)0.0041 (14)0.0009 (15)
C340.0103 (19)0.0168 (18)0.018 (2)0.0027 (15)0.0011 (16)0.0000 (15)
C350.019 (2)0.028 (2)0.018 (2)0.0010 (17)0.0047 (16)0.0030 (17)
C360.026 (3)0.034 (2)0.028 (2)0.006 (2)0.002 (2)0.012 (2)
C370.020 (2)0.0191 (19)0.020 (2)0.0014 (17)0.0027 (17)0.0008 (15)
C380.037 (3)0.0176 (18)0.025 (2)0.0008 (18)0.001 (2)0.0027 (17)
Geometric parameters (Å, º) top
Cu1—O11.968 (2)C15—C161.395 (6)
Cu1—O31.979 (2)C15—H150.9300
Cu1—O72.486 (3)C16—H160.9300
Cu1—O82.439 (3)C17—H17A0.9700
Cu1—N12.004 (3)C17—H17B0.9700
Cu1—N32.004 (3)C18—C171.511 (6)
O1—C11.275 (4)C18—H18A0.9600
O2—C11.253 (4)C18—H18B0.9600
O3—C101.268 (4)C18—H18C0.9600
O4—C101.234 (4)C19—C201.384 (5)
O5—C241.224 (5)C19—H190.9300
O6—C341.237 (4)C20—H200.9300
O7—H710.851 (19)C21—C201.386 (5)
O7—H720.839 (19)C21—H210.9300
O8—H810.854 (19)C22—C211.400 (6)
O8—H820.859 (19)C22—C231.382 (5)
N1—C191.347 (5)C22—C241.493 (5)
N1—C231.338 (4)C23—H230.9300
N2—C241.365 (5)C25—C261.520 (6)
N2—C251.459 (5)C25—H25A0.9700
N2—C271.463 (5)C25—H25B0.9700
N3—C291.338 (5)C26—H26A0.9600
N3—C331.340 (4)C26—H26B0.9600
N4—C341.346 (5)C26—H26C0.9600
N4—C351.459 (5)C27—H27A0.9700
C2—C11.495 (5)C27—H27B0.9700
C2—C31.394 (5)C28—C271.520 (6)
C3—H30.9300C28—H28A0.9600
C4—C31.394 (6)C28—H28B0.9600
C4—C51.383 (6)C28—H28C0.9600
C4—H40.9300C29—H290.9300
C5—C61.381 (6)C30—C291.383 (5)
C5—C81.526 (6)C30—C311.383 (5)
C6—H60.9300C30—H300.9300
C7—C21.394 (6)C31—H310.9300
C7—C61.382 (5)C32—C311.396 (6)
C7—H70.9300C32—C331.384 (5)
C8—C91.519 (6)C32—C341.495 (5)
C8—H8A0.9700C33—H330.9300
C8—H8B0.9700C35—C361.517 (5)
C9—H9A0.9600C35—H35A0.9700
C9—H9B0.9600C35—H35B0.9700
C9—H9C0.9600C36—H36A0.9600
C11—C101.513 (5)C36—H36B0.9600
C11—C121.385 (6)C36—H36C0.9600
C11—C161.384 (5)C37—N41.466 (5)
C12—H120.9300C37—C381.520 (6)
C13—C121.384 (5)C37—H37A0.9700
C13—C141.379 (6)C37—H37B0.9700
C13—H130.9300C38—H38A0.9600
C14—C171.512 (5)C38—H38B0.9600
C15—C141.390 (5)C38—H38C0.9600
O1—Cu1—O3179.27 (14)C17—C18—H18B109.5
O1—Cu1—O888.46 (11)C17—C18—H18C109.5
O1—Cu1—N189.89 (11)H18A—C18—H18B109.5
O1—Cu1—N388.39 (11)H18A—C18—H18C109.5
O3—Cu1—O892.16 (11)H18B—C18—H18C109.5
O3—Cu1—N189.77 (11)N1—C19—C20122.3 (3)
O3—Cu1—N391.93 (12)N1—C19—H19118.8
N1—Cu1—O886.48 (11)C20—C19—H19118.8
N3—Cu1—O895.55 (11)C19—C20—C21118.9 (4)
N3—Cu1—N1177.30 (13)C19—C20—H20120.6
C1—O1—Cu1128.0 (3)C21—C20—H20120.6
C10—O3—Cu1128.3 (3)C20—C21—C22119.4 (4)
H71—O7—H72101 (5)C20—C21—H21120.3
Cu1—O8—H8190 (3)C22—C21—H21120.3
Cu1—O8—H82137 (3)C21—C22—C24123.5 (3)
H81—O8—H82100 (4)C23—C22—C21117.5 (3)
C19—N1—Cu1120.8 (2)C23—C22—C24118.9 (4)
C23—N1—Cu1120.9 (2)N1—C23—C22123.7 (3)
C23—N1—C19118.2 (3)N1—C23—H23118.2
C24—N2—C25123.9 (3)C22—C23—H23118.2
C24—N2—C27117.6 (4)O5—C24—N2123.4 (4)
C25—N2—C27117.6 (3)O5—C24—C22119.9 (4)
C29—N3—Cu1121.3 (3)N2—C24—C22116.8 (3)
C29—N3—C33118.5 (3)N2—C25—C26112.9 (3)
C33—N3—Cu1120.1 (2)N2—C25—H25A109.0
C34—N4—C35119.4 (3)N2—C25—H25B109.0
C34—N4—C37123.4 (3)C26—C25—H25A109.0
C35—N4—C37117.2 (3)C26—C25—H25B109.0
O1—C1—C2116.0 (3)H25A—C25—H25B107.8
O2—C1—O1124.6 (4)C25—C26—H26A109.5
O2—C1—C2119.4 (3)C25—C26—H26B109.5
C3—C2—C1120.9 (4)C25—C26—H26C109.5
C3—C2—C7118.8 (3)H26A—C26—H26B109.5
C7—C2—C1120.2 (3)H26A—C26—H26C109.5
C2—C3—C4119.5 (4)H26B—C26—H26C109.5
C2—C3—H3120.3N2—C27—C28111.6 (3)
C4—C3—H3120.3N2—C27—H27A109.3
C3—C4—H4119.4N2—C27—H27B109.3
C5—C4—C3121.2 (4)C28—C27—H27A109.3
C5—C4—H4119.4C28—C27—H27B109.3
C4—C5—C8120.5 (5)H27A—C27—H27B108.0
C6—C5—C4119.1 (4)C27—C28—H28A109.5
C6—C5—C8120.3 (4)C27—C28—H28B109.5
C5—C6—C7120.3 (4)C27—C28—H28C109.5
C5—C6—H6119.8H28A—C28—H28B109.5
C7—C6—H6119.8H28A—C28—H28C109.5
C2—C7—H7119.5H28B—C28—H28C109.5
C6—C7—C2121.0 (4)N3—C29—C30122.5 (3)
C6—C7—H7119.5N3—C29—H29118.7
C5—C8—H8A109.3C30—C29—H29118.7
C5—C8—H8B109.3C29—C30—H30120.5
C9—C8—C5111.7 (4)C31—C30—C29119.0 (4)
C9—C8—H8A109.3C31—C30—H30120.5
C9—C8—H8B109.3C30—C31—C32118.9 (4)
H8A—C8—H8B107.9C30—C31—H31120.5
C8—C9—H9A109.5C32—C31—H31120.5
C8—C9—H9B109.5C31—C32—C34123.4 (3)
C8—C9—H9C109.5C33—C32—C31118.2 (3)
H9A—C9—H9B109.5C33—C32—C34118.2 (4)
H9A—C9—H9C109.5N3—C33—C32122.8 (3)
H9B—C9—H9C109.5N3—C33—H33118.6
O3—C10—C11115.5 (3)C32—C33—H33118.6
O4—C10—O3126.3 (4)O6—C34—N4122.2 (4)
O4—C10—C11118.2 (4)O6—C34—C32119.2 (4)
C12—C11—C10121.3 (4)N4—C34—C32118.6 (3)
C16—C11—C10119.6 (4)N4—C35—C36112.2 (3)
C16—C11—C12119.0 (3)N4—C35—H35A109.2
C11—C12—H12119.9N4—C35—H35B109.2
C13—C12—C11120.1 (4)C36—C35—H35A109.2
C13—C12—H12119.9C36—C35—H35B109.2
C12—C13—H13119.3H35A—C35—H35B107.9
C14—C13—C12121.5 (4)C35—C36—H36A109.5
C14—C13—H13119.3C35—C36—H36B109.5
C13—C14—C15118.5 (4)C35—C36—H36C109.5
C13—C14—C17120.2 (4)H36A—C36—H36B109.5
C15—C14—C17121.3 (4)H36A—C36—H36C109.5
C14—C15—C16120.3 (4)H36B—C36—H36C109.5
C14—C15—H15119.8N4—C37—C38112.4 (3)
C16—C15—H15119.8N4—C37—H37A109.1
C11—C16—C15120.5 (4)N4—C37—H37B109.1
C11—C16—H16119.7C38—C37—H37A109.1
C15—C16—H16119.7C38—C37—H37B109.1
C14—C17—H17A109.2H37A—C37—H37B107.9
C14—C17—H17B109.2C37—C38—H38A109.5
C18—C17—C14112.2 (4)C37—C38—H38B109.5
C18—C17—H17A109.2C37—C38—H38C109.5
C18—C17—H17B109.2H38A—C38—H38B109.5
H17A—C17—H17B107.9H38A—C38—H38C109.5
C17—C18—H18A109.5H38B—C38—H38C109.5
O8—Cu1—O1—C1150.2 (3)C7—C2—C3—C41.5 (6)
N1—Cu1—O1—C1123.4 (3)C5—C4—C3—C20.1 (7)
N3—Cu1—O1—C154.6 (3)C3—C4—C5—C61.6 (8)
O8—Cu1—O3—C1027.2 (3)C3—C4—C5—C8176.3 (4)
N1—Cu1—O3—C1059.3 (3)C4—C5—C6—C71.8 (7)
N3—Cu1—O3—C10122.8 (3)C8—C5—C6—C7176.1 (4)
O1—Cu1—N1—C1939.5 (3)C4—C5—C8—C986.2 (6)
O1—Cu1—N1—C23143.5 (3)C6—C5—C8—C991.7 (5)
O3—Cu1—N1—C19141.1 (3)C6—C7—C2—C1179.3 (4)
O3—Cu1—N1—C2335.8 (3)C6—C7—C2—C31.3 (6)
O8—Cu1—N1—C1948.9 (3)C2—C7—C6—C50.4 (6)
O8—Cu1—N1—C23128.0 (3)C12—C11—C10—O33.4 (5)
O1—Cu1—N3—C29134.7 (3)C12—C11—C10—O4175.6 (4)
O1—Cu1—N3—C3340.3 (3)C16—C11—C10—O3178.6 (3)
O3—Cu1—N3—C2944.7 (3)C16—C11—C10—O42.4 (6)
O3—Cu1—N3—C33140.3 (3)C10—C11—C12—C13178.2 (4)
O8—Cu1—N3—C29137.0 (3)C16—C11—C12—C130.2 (6)
O8—Cu1—N3—C3348.0 (3)C10—C11—C16—C15179.3 (4)
Cu1—O1—C1—O227.7 (5)C12—C11—C16—C151.3 (6)
Cu1—O1—C1—C2152.8 (2)C14—C13—C12—C111.4 (6)
Cu1—O3—C10—O428.2 (6)C12—C13—C14—C152.0 (7)
Cu1—O3—C10—C11150.8 (2)C12—C13—C14—C17176.4 (4)
Cu1—N1—C23—C22175.6 (3)C13—C14—C17—C1873.7 (6)
C19—N1—C23—C221.4 (5)C15—C14—C17—C18104.7 (6)
Cu1—N1—C19—C20177.7 (3)C16—C15—C14—C131.0 (8)
C23—N1—C19—C200.7 (5)C16—C15—C14—C17177.4 (4)
C25—N2—C24—O5168.2 (4)C14—C15—C16—C110.7 (7)
C25—N2—C24—C2211.8 (5)N1—C19—C20—C212.8 (6)
C27—N2—C24—O50.8 (6)C22—C21—C20—C192.9 (6)
C27—N2—C24—C22179.2 (3)C23—C22—C21—C201.0 (6)
C24—N2—C25—C26111.3 (4)C24—C22—C21—C20177.1 (4)
C27—N2—C25—C2679.6 (4)C21—C22—C23—N11.3 (6)
C24—N2—C27—C2890.0 (4)C24—C22—C23—N1179.4 (3)
C25—N2—C27—C2879.7 (4)C21—C22—C24—O5109.8 (5)
Cu1—N3—C29—C30174.7 (3)C21—C22—C24—N270.3 (5)
C33—N3—C29—C300.4 (5)C23—C22—C24—O568.3 (5)
Cu1—N3—C33—C32174.3 (3)C23—C22—C24—N2111.7 (4)
C29—N3—C33—C320.9 (5)C31—C30—C29—N30.7 (6)
C35—N4—C34—O61.9 (6)C29—C30—C31—C321.5 (6)
C35—N4—C34—C32178.7 (3)C33—C32—C31—C301.0 (6)
C37—N4—C34—O6175.4 (4)C34—C32—C31—C30173.7 (4)
C37—N4—C34—C324.0 (5)C31—C32—C33—N30.2 (5)
C34—N4—C35—C3694.1 (4)C34—C32—C33—N3175.2 (3)
C37—N4—C35—C3683.4 (4)C31—C32—C34—O6100.3 (5)
C3—C2—C1—O1176.3 (3)C31—C32—C34—N480.3 (5)
C3—C2—C1—O23.3 (6)C33—C32—C34—O674.4 (5)
C7—C2—C1—O15.8 (5)C33—C32—C34—N4105.0 (4)
C7—C2—C1—O2174.7 (4)C38—C37—N4—C34104.0 (4)
C1—C2—C3—C4179.5 (4)C38—C37—N4—C3578.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H71···O20.85 (2)1.86 (2)2.706 (4)170 (5)
O7—H72···O6i0.83 (4)2.03 (4)2.846 (4)166 (5)
O8—H81···O40.85 (2)1.88 (2)2.699 (4)161 (5)
O8—H82···O2ii0.86 (4)2.00 (4)2.852 (4)167 (5)
C6—H6···O5iii0.932.553.240 (5)131
C20—H20···O2iii0.932.533.412 (5)158
C30—H30···O6iv0.932.433.316 (5)158
Symmetry codes: (i) x+2, y+1/2, z; (ii) x+2, y1/2, z; (iii) x+1, y1/2, z; (iv) x+3, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Cu(C9H9O2)2(C10H14N2O)2(H2O)2]
Mr754.37
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)8.3607 (2), 12.4053 (4), 17.8932 (6)
β (°) 98.132 (3)
V3)1837.17 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.34 × 0.32 × 0.24
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18349, 8952, 6851
Rint0.068
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.130, 1.06
No. of reflections8952
No. of parameters479
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.88, 1.09
Absolute structureFlack (1983), 4105 Friedel pairs
Absolute structure parameter0.394 (13)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H71···O20.85 (2)1.86 (2)2.706 (4)170 (5)
O7—H72···O6i0.83 (4)2.03 (4)2.846 (4)166 (5)
O8—H81···O40.85 (2)1.88 (2)2.699 (4)161 (5)
O8—H82···O2ii0.86 (4)2.00 (4)2.852 (4)167 (5)
C6—H6···O5iii0.932.553.240 (5)131
C20—H20···O2iii0.932.533.412 (5)158
C30—H30···O6iv0.932.433.316 (5)158
Symmetry codes: (i) x+2, y+1/2, z; (ii) x+2, y1/2, z; (iii) x+1, y1/2, z; (iv) x+3, y+1/2, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer. This work was supported financially by the Scientific and Technological Research Council of Turkey (grant No. 108 T657).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m607–m608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470–2473.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242–1244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (2007). Acta Cryst. E63, m821–m823.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationNecefoğlu, H., Maracı, A., Özbek, F. E., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, m619–m620.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m780-m781
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds