organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1388-o1389

12-Anilino­methyl-9α-hy­dr­oxy-4,8-di­methyl-3,14-dioxatri­cyclo­[9.3.0.02,4]tetra­dec-7-en-13-one

aLaboratoire de Chimie Bioorganique et Analytique, URAC 22, BP 146, FSTM, Université Hassan II, Mohammedia-Casablanca 20810 Mohammedia, Morocco, bLaboratoire de Chimie des Substances Naturelles, URAC16, Faculté des Sciences Semlalia, BP 2390 Bd My Abdellah, 40000 Marrakech, Morocco, and cUniversité Blaise Pascal, Laboratoire des Matériaux, Inorganiques, UMR CNRS 6002, 24 Avenue des Landais, 63177 Aubière, France
*Correspondence e-mail: abenharref@yahoo.fr

(Received 13 April 2011; accepted 22 April 2011; online 11 May 2011)

The title compound, C21H27NO4, was synthesized from 9α-hy­droxy­parthenolide, which was isolated from the chloro­form extract of the aerial parts of Anvillea radiata. The asymmetric unit contains two independent mol­ecules. In each, the ten-membered ring displays an approximative chair-chair conformation. Each of the five-membered rings adopts a flattened envelope conformation, the C(H)—C—C(H) atoms representing the flap lie out of the mean plane through the remaining four atoms by 0.443 (2) and 0.553 (2) Å. The dihedral angle between the least-squares planes through the ten- and five-membered rings in the two mol­ecules are similar [22.54 (17) and 23.39 (14)°]. In the crystal, mol­ecules are linked by O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds.

Related literature

For the isolation and biological activity of 9α-hy­droxy­parthenolide, see: El Hassany et al. (2004[El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573-576.]). For the reactivity of this sesquiterpene, see: Castaneda-Acosta et al. (1997[Castaneda-Acosta, J., Pentes, H. G., Fronczek, F. R. & Fischer, N. H. (1997). J. Chem. Crystallogr. 27, 635-639.]); Neukirch et al. (2003[Neukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503-1510.]); Der-Ren et al. (2006[Der-Ren, H., Yu-Shan, W., Chun-Wei, C., Tzu-Wen, L., Wei-Cheng, C., Uan-Kang, T., John, T. A. H. & Hsing-Pang, H. (2006). Bioorg. Med. Chem. Lett. 14, 83-91.]); Neelakantan et al.(2009[Neelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346-4349.]). For conformations of ten-membered rings, see: Watson & Zabel (1982[Watson, W. H. & Zabel, V. (1982). Acta Cryst. B38, 834-838.]). For conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C21H27NO4

  • Mr = 357.44

  • Monoclinic, P 21

  • a = 11.1067 (8) Å

  • b = 11.9406 (9) Å

  • c = 14.6930 (11) Å

  • β = 106.315 (2)°

  • V = 1870.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.27 × 0.18 × 0.12 mm

Data collection
  • Bruker X8 APEXII CCD area-detector diffractometer

  • 18091 measured reflections

  • 4005 independent reflections

  • 3651 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.131

  • S = 1.04

  • 4005 reflections

  • 474 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O6i 0.86 2.54 3.311 (3) 150
O1—H01⋯N2 0.82 2.41 3.221 (4) 169
O5—H05⋯O1 0.82 1.97 2.778 (3) 170
Symmetry code: (i) [-x+2, y-{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2005[Bruker, (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker, (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Our work lies within the framework of the evaluation of medicinal plants and in particular, Anvillea radiate. The main constituent of the chloroform extract of aerial parts of this plant is 9α-hydroxypartenolide (El Hassany et al., 2004). The reactivity of this sesquiterpene lactone and its derivatives has been the subject of several studies (Castaneda-Acosta et al.,1997; Neukirch et al., 2003; Der-Ren et al., 2006; Neelakantan et al., 2009), in order to prepare high value added products for use in industrial pharmacology. In this context, we have treated 9α-hydroxyparthenolide with an equivalent amount of aniline in the presence of a catalytic amount of Lewis acid (ZnCl2) and isolated 9α -hydroxy-4,8-dimethyl-12-phenylaminomethyl-3,14-dioxa-tricyclo [9.3.0.02,4] tetradec-7-in-13-one in a yield of 50%. The structure of this new product was confirmed by its single crystal X-ray structure.

The asymmetric unit contains two crystallographically independent molecules (Fig. 1). Each molecule is built up from two fused five- and ten-membered rings with the phenylaminomethyl group at positions 11 and 33 in the β configuration. The ten-membered ring displays an approximate chair-chair conformation. Whereas the five-membered rings shows an envelope conformation as indicated by Cremer & Pople (1975) puckering parameters Q = 0.275 (3) Å and ϕ = 72.1 (6) ° for the ring (C6,C7···O3), and Q = 0.350 (2) Å; ϕ = 74.7 (4)° for the other five membered ring (C27, C28···O7). The atoms C7 and C28 deviate from the respective mean plane through other four atoms in the ring by 0.443 (2) and 0.553 (2) Å respectively. In the first molecule (C1 to C21), the dihedral angle between the rings is 22.54 (17) °. The corresponding value in the second molecule (C22 to C42) is 23.39 (14) °. This is the typical conformation found for other sesquiterpenes lactones (Watson & Zabel, 1982). Intermolecular O—H···O(N) and N—H···O hydrogen bonds ensures the cohesion of the crystal structure, Table 1.

Related literature top

For the isolation and biological activity of 9α-hydroxyparthenolide, see: El Hassany et al. (2004). For the reactivity of this sesquiterpene, see: Castaneda-Acosta et al. (1997); Neukirch et al. (2003); Der-Ren et al. (2006); Neelakantan et al.(2009). For conformations of ten-membered rings, see: Watson & Zabel (1982). For conformational analysis, see: Cremer & Pople (1975).

Experimental top

In a screw capped vial equipped with a magnetic stirrer, ZnCl2 (20 mg, 0.142 mmol) was added to aniline (270 mg, 2.91 mmol) and 9α-hydroxyparthenolide (753 mg, 2.85 mmol) in THF (5 ml). The resulting mixture was left under vigorous stirring at 40 °C for 10 days. The mixture was extracted with AcOEt (2 x 10 ml). The combined organic layers were dried over anhydrous Na2SO4 and concentrated under reduced pressure. Chromatography of the residue obtained on a column of silica gel eluting with hexane ethyl acetate (85/15) allowed the isolation of pure 9α -hydroxy-4,8-dimethyl-12-phenylaminomethyl-3,14-dioxa-tricyclo [9.3.0.02,4]tetradec-7-en-13-one (508 mg, 1.42 mmol). The title compound was recrystallized from its ethyl acetate solution.

Refinement top

All H atoms were fixed geometrically and treated as riding with O—H = 0.82 Å, N—H = 0.86 Å and C—H = 0.93-0.98 Å, and with Uiso(H) = 1.2Ueq(O, N and C) or Uiso(H) = 1.5Ueq(methyl). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and thus 3180 Friedel pairs were merged.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the two independent molecules comprising the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
12-Anilinomethyl-9α-hydroxy-4,8-dimethyl-3,14- dioxatricyclo[9.3.0.02,4]tetradec-7-en-13-one top
Crystal data top
C21H27NO4F(000) = 768
Mr = 357.44Dx = 1.270 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 18901 reflections
a = 11.1067 (8) Åθ = 1.9–26.4°
b = 11.9406 (9) ŵ = 0.09 mm1
c = 14.6930 (11) ÅT = 298 K
β = 106.315 (2)°Prism, colourless
V = 1870.1 (2) Å30.27 × 0.18 × 0.12 mm
Z = 4
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
3651 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 26.4°, θmin = 1.9°
ϕ and ω scansh = 1113
18091 measured reflectionsk = 1413
4005 independent reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.1035P)2 + 0.0818P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4005 reflectionsΔρmax = 0.28 e Å3
474 parametersΔρmin = 0.28 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.026 (4)
Crystal data top
C21H27NO4V = 1870.1 (2) Å3
Mr = 357.44Z = 4
Monoclinic, P21Mo Kα radiation
a = 11.1067 (8) ŵ = 0.09 mm1
b = 11.9406 (9) ÅT = 298 K
c = 14.6930 (11) Å0.27 × 0.18 × 0.12 mm
β = 106.315 (2)°
Data collection top
Bruker X8 APEXII CCD area-detector
diffractometer
3651 reflections with I > 2σ(I)
18091 measured reflectionsRint = 0.037
4005 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.131H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
4005 reflectionsΔρmin = 0.28 e Å3
474 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7915 (3)0.3012 (3)0.74747 (18)0.0488 (6)
H10.81270.25370.70420.059*
C20.7993 (3)0.2517 (3)0.8428 (2)0.0614 (8)
H2A0.79100.31070.88600.074*
H2B0.88060.21670.86820.074*
C30.6953 (3)0.1641 (3)0.8353 (2)0.0660 (8)
H3A0.71210.09870.80160.079*
H3B0.69420.14090.89830.079*
C40.5702 (3)0.2127 (3)0.78344 (19)0.0540 (7)
C50.5359 (3)0.2050 (2)0.67912 (19)0.0476 (6)
H50.59700.16500.65440.057*
C60.4602 (2)0.2914 (2)0.61274 (18)0.0464 (6)
H60.44020.35430.64870.056*
C70.5235 (2)0.3342 (2)0.53782 (15)0.0390 (5)
H70.57750.27490.52510.047*
C80.5993 (3)0.4438 (2)0.55866 (19)0.0506 (6)
H8A0.59470.47950.49850.061*
H8B0.55790.49310.59290.061*
C90.7378 (3)0.4360 (2)0.61507 (18)0.0503 (6)
H90.77500.51020.61400.060*
C100.7584 (2)0.4040 (2)0.71752 (17)0.0440 (6)
C110.4094 (2)0.3478 (2)0.45040 (17)0.0423 (5)
H110.37570.42290.45470.051*
C120.3140 (2)0.2666 (3)0.4665 (2)0.0520 (6)
C130.4276 (2)0.3389 (2)0.35209 (17)0.0456 (6)
H13A0.34640.34100.30520.055*
H13B0.47570.40280.34120.055*
C140.7369 (3)0.4992 (3)0.7781 (2)0.0616 (8)
H14A0.64970.51930.75930.092*
H14B0.78640.56250.77020.092*
H14C0.76100.47660.84340.092*
C300.7524 (2)0.4204 (2)0.31645 (16)0.0396 (5)
H300.66740.43980.31840.047*
C150.5203 (4)0.3023 (4)0.8337 (2)0.0699 (9)
H15A0.44330.33090.79260.105*
H15B0.58050.36180.85090.105*
H15C0.50490.27180.88980.105*
C160.4981 (2)0.2039 (2)0.25042 (18)0.0445 (5)
C170.5847 (3)0.1218 (2)0.2441 (2)0.0501 (6)
H170.63890.09300.29930.060*
C180.5912 (3)0.0826 (3)0.1573 (2)0.0586 (7)
H180.64910.02730.15470.070*
C310.7456 (2)0.3887 (2)0.21551 (15)0.0392 (5)
C190.5129 (4)0.1244 (4)0.0742 (2)0.0729 (10)
H190.51720.09790.01570.087*
C200.4291 (4)0.2054 (4)0.0799 (2)0.0813 (11)
H200.37630.23440.02420.098*
C210.4198 (3)0.2465 (3)0.1671 (2)0.0617 (8)
H210.36150.30180.16890.074*
C220.8099 (2)0.3026 (2)0.19730 (17)0.0423 (5)
H220.84660.25600.24820.051*
C230.8304 (3)0.2713 (2)0.10338 (19)0.0509 (6)
H23A0.77580.31570.05320.061*
H23B0.80980.19300.09000.061*
C240.9686 (3)0.2921 (3)0.10614 (19)0.0571 (7)
H24A1.02160.23690.14680.068*
H24B0.97820.28390.04290.068*
C251.0089 (2)0.4075 (3)0.14274 (16)0.0492 (6)
C261.0604 (2)0.4175 (2)0.24703 (16)0.0421 (5)
H261.06490.34650.28130.051*
C271.0517 (2)0.5191 (2)0.30495 (15)0.0381 (5)
H271.01720.58260.26350.046*
C280.9797 (2)0.50289 (19)0.37965 (14)0.0344 (4)
H280.99560.42660.40480.041*
C290.8374 (2)0.5233 (2)0.35161 (17)0.0402 (5)
H29A0.81750.57960.30210.048*
H29B0.81600.55430.40610.048*
C331.0515 (2)0.58488 (19)0.45719 (15)0.0365 (5)
H331.01990.66020.43710.044*
C321.1838 (2)0.5786 (2)0.44833 (16)0.0396 (5)
C350.9483 (3)0.5033 (3)0.08128 (19)0.0646 (9)
H35B0.85880.49430.06370.097*
H35C0.97650.50500.02520.097*
H35A0.97060.57230.11550.097*
C340.6593 (3)0.4624 (3)0.1425 (2)0.0610 (8)
H34C0.57790.46350.15310.092*
H34B0.65250.43360.08030.092*
H34A0.69260.53710.14770.092*
C361.0443 (2)0.5693 (2)0.55869 (16)0.0415 (5)
H36A1.10090.62180.59990.050*
H36B0.95980.58580.56120.050*
C371.0992 (2)0.4316 (2)0.68938 (16)0.0404 (5)
C381.0581 (3)0.5010 (3)0.75004 (17)0.0485 (6)
H381.01790.56800.72780.058*
C391.0775 (3)0.4699 (3)0.8449 (2)0.0605 (8)
H391.04990.51680.88550.073*
C401.1361 (3)0.3719 (3)0.8788 (2)0.0667 (9)
H401.14770.35160.94170.080*
C411.1782 (3)0.3030 (3)0.8184 (2)0.0638 (8)
H411.21910.23650.84130.077*
C421.1600 (3)0.3320 (3)0.7240 (2)0.0520 (6)
H421.18840.28490.68400.062*
N10.4918 (2)0.2371 (2)0.34005 (15)0.0489 (5)
H1A0.52660.19660.38870.059*
N21.0773 (3)0.45606 (19)0.59289 (14)0.0527 (6)
H21.08340.40410.55390.063*
O10.7980 (2)0.3611 (2)0.56602 (15)0.0659 (7)
H010.87240.37760.57750.099*
O20.4732 (3)0.1356 (2)0.73250 (17)0.0710 (7)
O30.34515 (19)0.2358 (2)0.55866 (15)0.0637 (6)
O40.2194 (2)0.2324 (3)0.41145 (19)0.0765 (8)
O50.7933 (2)0.32770 (17)0.37792 (12)0.0524 (5)
H050.79650.34580.43240.079*
O61.28143 (17)0.59853 (19)0.50680 (14)0.0552 (5)
O71.18128 (16)0.54301 (16)0.36102 (11)0.0430 (4)
O81.14237 (18)0.4236 (2)0.18592 (14)0.0618 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0482 (13)0.0575 (15)0.0426 (12)0.0078 (12)0.0162 (10)0.0083 (11)
C20.0603 (17)0.073 (2)0.0473 (14)0.0220 (16)0.0093 (12)0.0034 (14)
C30.082 (2)0.0701 (19)0.0481 (14)0.0188 (18)0.0226 (14)0.0164 (14)
C40.0630 (16)0.0602 (16)0.0436 (13)0.0008 (14)0.0229 (12)0.0092 (12)
C50.0555 (15)0.0461 (13)0.0459 (12)0.0014 (12)0.0222 (11)0.0029 (11)
C60.0454 (13)0.0529 (14)0.0432 (12)0.0018 (12)0.0163 (10)0.0016 (11)
C70.0346 (11)0.0442 (12)0.0369 (10)0.0007 (10)0.0081 (8)0.0010 (9)
C80.0507 (14)0.0475 (14)0.0472 (12)0.0077 (12)0.0035 (11)0.0057 (11)
C90.0454 (14)0.0571 (15)0.0467 (13)0.0132 (12)0.0101 (11)0.0005 (12)
C100.0354 (11)0.0552 (14)0.0414 (12)0.0021 (11)0.0107 (9)0.0111 (11)
C110.0328 (11)0.0484 (13)0.0443 (12)0.0039 (10)0.0088 (9)0.0043 (10)
C120.0338 (12)0.0651 (17)0.0575 (15)0.0002 (12)0.0135 (11)0.0071 (13)
C130.0384 (11)0.0562 (15)0.0404 (12)0.0022 (11)0.0079 (9)0.0050 (11)
C140.0629 (17)0.0616 (17)0.0625 (16)0.0081 (15)0.0211 (14)0.0163 (14)
C300.0348 (11)0.0490 (13)0.0375 (11)0.0047 (10)0.0144 (8)0.0006 (10)
C150.072 (2)0.096 (3)0.0502 (14)0.0136 (19)0.0310 (14)0.0030 (17)
C160.0385 (12)0.0522 (14)0.0425 (12)0.0119 (11)0.0110 (9)0.0012 (10)
C170.0448 (13)0.0544 (15)0.0503 (13)0.0073 (12)0.0120 (11)0.0018 (12)
C180.0538 (15)0.0599 (17)0.0671 (17)0.0124 (14)0.0251 (13)0.0137 (14)
C310.0365 (11)0.0467 (12)0.0340 (10)0.0103 (10)0.0095 (8)0.0004 (9)
C190.081 (2)0.091 (3)0.0499 (15)0.012 (2)0.0235 (15)0.0146 (17)
C200.090 (2)0.107 (3)0.0412 (15)0.006 (2)0.0083 (15)0.0066 (18)
C210.0651 (18)0.0718 (19)0.0450 (14)0.0087 (16)0.0100 (12)0.0063 (13)
C220.0474 (13)0.0432 (12)0.0373 (11)0.0073 (11)0.0132 (9)0.0005 (9)
C230.0587 (15)0.0519 (14)0.0432 (12)0.0102 (13)0.0160 (11)0.0105 (11)
C240.0625 (16)0.0734 (19)0.0391 (12)0.0036 (15)0.0204 (11)0.0149 (13)
C250.0463 (13)0.0719 (18)0.0335 (11)0.0125 (13)0.0179 (10)0.0062 (11)
C260.0382 (11)0.0553 (14)0.0336 (10)0.0017 (11)0.0113 (9)0.0008 (10)
C270.0339 (11)0.0470 (12)0.0319 (10)0.0038 (10)0.0065 (8)0.0030 (9)
C280.0363 (10)0.0343 (10)0.0320 (9)0.0009 (9)0.0088 (8)0.0007 (8)
C290.0382 (11)0.0421 (12)0.0406 (11)0.0012 (10)0.0115 (9)0.0032 (9)
C330.0394 (11)0.0337 (10)0.0360 (10)0.0019 (9)0.0097 (8)0.0016 (9)
C320.0402 (12)0.0379 (11)0.0400 (11)0.0043 (10)0.0100 (9)0.0019 (9)
C350.077 (2)0.081 (2)0.0340 (12)0.0202 (18)0.0122 (12)0.0104 (13)
C340.0603 (17)0.0706 (19)0.0451 (13)0.0094 (16)0.0032 (12)0.0035 (13)
C360.0486 (12)0.0393 (12)0.0369 (11)0.0018 (10)0.0122 (9)0.0047 (9)
C370.0401 (12)0.0414 (12)0.0382 (11)0.0087 (10)0.0085 (9)0.0007 (9)
C380.0510 (14)0.0539 (15)0.0423 (12)0.0043 (12)0.0160 (10)0.0003 (11)
C390.0647 (18)0.078 (2)0.0449 (13)0.0093 (16)0.0255 (13)0.0008 (14)
C400.0673 (19)0.088 (2)0.0457 (14)0.0106 (18)0.0168 (13)0.0184 (15)
C410.0653 (18)0.0669 (18)0.0585 (16)0.0050 (16)0.0165 (14)0.0261 (15)
C420.0574 (16)0.0480 (14)0.0508 (14)0.0011 (12)0.0155 (11)0.0030 (12)
N10.0478 (11)0.0582 (13)0.0358 (9)0.0090 (10)0.0038 (8)0.0039 (9)
N20.0830 (17)0.0409 (11)0.0326 (9)0.0061 (11)0.0136 (10)0.0028 (9)
O10.0464 (10)0.1072 (19)0.0495 (10)0.0175 (12)0.0223 (9)0.0218 (12)
O20.0815 (16)0.0694 (14)0.0646 (13)0.0191 (12)0.0244 (11)0.0158 (11)
O30.0457 (10)0.0896 (17)0.0575 (11)0.0153 (11)0.0173 (9)0.0120 (11)
O40.0414 (11)0.0991 (19)0.0785 (15)0.0171 (12)0.0001 (10)0.0144 (14)
O50.0671 (12)0.0554 (11)0.0368 (8)0.0122 (9)0.0182 (8)0.0066 (8)
O60.0402 (9)0.0663 (12)0.0538 (10)0.0085 (9)0.0047 (8)0.0156 (9)
O70.0371 (8)0.0533 (10)0.0392 (8)0.0073 (8)0.0120 (6)0.0037 (7)
O80.0455 (10)0.0931 (17)0.0533 (10)0.0095 (11)0.0244 (8)0.0165 (11)
Geometric parameters (Å, º) top
C1—C101.320 (4)C19—H190.9300
C1—C21.500 (4)C20—C211.403 (5)
C1—H10.9300C20—H200.9300
C2—C31.539 (5)C21—H210.9300
C2—H2A0.9700C22—C231.507 (3)
C2—H2B0.9700C22—H220.9300
C3—C41.501 (5)C23—C241.544 (4)
C3—H3A0.9700C23—H23A0.9700
C3—H3B0.9700C23—H23B0.9700
C4—O21.454 (4)C24—C251.501 (4)
C4—C51.475 (4)C24—H24A0.9700
C4—C151.492 (5)C24—H24B0.9700
C5—O21.446 (3)C25—O81.452 (3)
C5—C61.504 (4)C25—C261.482 (3)
C5—H50.9800C25—C351.495 (5)
C6—O31.461 (3)C26—O81.449 (3)
C6—C71.550 (3)C26—C271.500 (4)
C6—H60.9800C26—H260.9800
C7—C111.539 (3)C27—O71.471 (3)
C7—C81.539 (4)C27—C281.541 (3)
C7—H70.9800C27—H270.9800
C8—C91.532 (4)C28—C291.537 (3)
C8—H8A0.9700C28—C331.543 (3)
C8—H8B0.9700C28—H280.9800
C9—O11.427 (4)C29—H29A0.9700
C9—C101.507 (4)C29—H29B0.9700
C9—H90.9800C33—C321.513 (3)
C10—C141.504 (4)C33—C361.527 (3)
C11—C121.503 (4)C33—H330.9800
C11—C131.518 (3)C32—O61.203 (3)
C11—H110.9800C32—O71.344 (3)
C12—O41.203 (4)C35—H35B0.9600
C12—O31.351 (4)C35—H35C0.9600
C13—N11.444 (4)C35—H35A0.9600
C13—H13A0.9700C34—H34C0.9600
C13—H13B0.9700C34—H34B0.9600
C14—H14A0.9600C34—H34A0.9600
C14—H14B0.9600C36—N21.453 (3)
C14—H14C0.9600C36—H36A0.9700
C30—O51.420 (3)C36—H36B0.9700
C30—C311.512 (3)C37—C381.385 (4)
C30—C291.548 (3)C37—C421.391 (4)
C30—H300.9800C37—N21.400 (3)
C15—H15A0.9600C38—C391.400 (4)
C15—H15B0.9600C38—H380.9300
C15—H15C0.9600C39—C401.363 (5)
C16—C211.384 (4)C39—H390.9300
C16—C171.395 (4)C40—C411.384 (5)
C16—N11.396 (3)C40—H400.9300
C17—C181.380 (4)C41—C421.388 (4)
C17—H170.9300C41—H410.9300
C18—C191.377 (5)C42—H420.9300
C18—H180.9300N1—H1A0.8600
C31—C221.321 (4)N2—H20.8600
C31—C341.505 (4)O1—H010.8200
C19—C201.361 (6)O5—H050.8200
C10—C1—C2127.9 (3)C16—C21—C20119.3 (3)
C10—C1—H1116.0C16—C21—H21120.3
C2—C1—H1116.0C20—C21—H21120.3
C1—C2—C3110.8 (3)C31—C22—C23127.4 (2)
C1—C2—H2A109.5C31—C22—H22116.3
C3—C2—H2A109.5C23—C22—H22116.3
C1—C2—H2B109.5C22—C23—C24109.9 (2)
C3—C2—H2B109.5C22—C23—H23A109.7
H2A—C2—H2B108.1C24—C23—H23A109.7
C4—C3—C2110.1 (3)C22—C23—H23B109.7
C4—C3—H3A109.6C24—C23—H23B109.7
C2—C3—H3A109.6H23A—C23—H23B108.2
C4—C3—H3B109.6C25—C24—C23110.6 (3)
C2—C3—H3B109.6C25—C24—H24A109.5
H3A—C3—H3B108.2C23—C24—H24A109.5
O2—C4—C559.19 (18)C25—C24—H24B109.5
O2—C4—C15112.6 (3)C23—C24—H24B109.5
C5—C4—C15122.4 (3)H24A—C24—H24B108.1
O2—C4—C3117.6 (3)O8—C25—C2659.19 (15)
C5—C4—C3115.8 (3)O8—C25—C35113.2 (3)
C15—C4—C3116.5 (3)C26—C25—C35122.7 (3)
O2—C5—C459.69 (19)O8—C25—C24116.3 (3)
O2—C5—C6118.5 (2)C26—C25—C24115.7 (2)
C4—C5—C6124.4 (3)C35—C25—C24116.6 (2)
O2—C5—H5114.4O8—C26—C2559.37 (15)
C4—C5—H5114.4O8—C26—C27117.5 (2)
C6—C5—H5114.4C25—C26—C27125.7 (2)
O3—C6—C5106.6 (2)O8—C26—H26114.2
O3—C6—C7105.40 (19)C25—C26—H26114.2
C5—C6—C7113.9 (2)C27—C26—H26114.2
O3—C6—H6110.3O7—C27—C26105.43 (19)
C5—C6—H6110.3O7—C27—C28104.31 (16)
C7—C6—H6110.3C26—C27—C28115.5 (2)
C11—C7—C8110.6 (2)O7—C27—H27110.4
C11—C7—C6101.32 (19)C26—C27—H27110.4
C8—C7—C6118.1 (2)C28—C27—H27110.4
C11—C7—H7108.8C29—C28—C27119.32 (18)
C8—C7—H7108.8C29—C28—C33112.10 (19)
C6—C7—H7108.8C27—C28—C33100.51 (17)
C9—C8—C7117.8 (2)C29—C28—H28108.1
C9—C8—H8A107.9C27—C28—H28108.1
C7—C8—H8A107.9C33—C28—H28108.1
C9—C8—H8B107.9C28—C29—C30116.7 (2)
C7—C8—H8B107.9C28—C29—H29A108.1
H8A—C8—H8B107.2C30—C29—H29A108.1
O1—C9—C10112.6 (2)C28—C29—H29B108.1
O1—C9—C8107.9 (2)C30—C29—H29B108.1
C10—C9—C8113.7 (2)H29A—C29—H29B107.3
O1—C9—H9107.4C32—C33—C36113.35 (19)
C10—C9—H9107.4C32—C33—C28102.57 (18)
C8—C9—H9107.4C36—C33—C28119.1 (2)
C1—C10—C14125.5 (3)C32—C33—H33107.1
C1—C10—C9121.2 (2)C36—C33—H33107.1
C14—C10—C9113.3 (3)C28—C33—H33107.1
C12—C11—C13113.1 (2)O6—C32—O7121.1 (2)
C12—C11—C7104.6 (2)O6—C32—C33129.1 (2)
C13—C11—C7119.2 (2)O7—C32—C33109.72 (18)
C12—C11—H11106.4C25—C35—H35B109.5
C13—C11—H11106.4C25—C35—H35C109.5
C7—C11—H11106.4H35B—C35—H35C109.5
O4—C12—O3120.7 (3)C25—C35—H35A109.5
O4—C12—C11129.4 (3)H35B—C35—H35A109.5
O3—C12—C11109.9 (2)H35C—C35—H35A109.5
N1—C13—C11112.2 (2)C31—C34—H34C109.5
N1—C13—H13A109.2C31—C34—H34B109.5
C11—C13—H13A109.2H34C—C34—H34B109.5
N1—C13—H13B109.2C31—C34—H34A109.5
C11—C13—H13B109.2H34C—C34—H34A109.5
H13A—C13—H13B107.9H34B—C34—H34A109.5
C10—C14—H14A109.5N2—C36—C33111.98 (19)
C10—C14—H14B109.5N2—C36—H36A109.2
H14A—C14—H14B109.5C33—C36—H36A109.2
C10—C14—H14C109.5N2—C36—H36B109.2
H14A—C14—H14C109.5C33—C36—H36B109.2
H14B—C14—H14C109.5H36A—C36—H36B107.9
O5—C30—C31110.4 (2)C38—C37—C42119.3 (2)
O5—C30—C29110.49 (18)C38—C37—N2122.1 (2)
C31—C30—C29112.54 (19)C42—C37—N2118.5 (2)
O5—C30—H30107.8C37—C38—C39119.8 (3)
C31—C30—H30107.8C37—C38—H38120.1
C29—C30—H30107.8C39—C38—H38120.1
C4—C15—H15A109.5C40—C39—C38121.0 (3)
C4—C15—H15B109.5C40—C39—H39119.5
H15A—C15—H15B109.5C38—C39—H39119.5
C4—C15—H15C109.5C39—C40—C41119.3 (3)
H15A—C15—H15C109.5C39—C40—H40120.4
H15B—C15—H15C109.5C41—C40—H40120.4
C21—C16—C17118.2 (3)C40—C41—C42120.8 (3)
C21—C16—N1123.0 (3)C40—C41—H41119.6
C17—C16—N1118.8 (2)C42—C41—H41119.6
C18—C17—C16121.1 (3)C41—C42—C37119.9 (3)
C18—C17—H17119.5C41—C42—H42120.1
C16—C17—H17119.5C37—C42—H42120.1
C19—C18—C17120.8 (3)C16—N1—C13120.8 (2)
C19—C18—H18119.6C16—N1—H1A119.6
C17—C18—H18119.6C13—N1—H1A119.6
C22—C31—C34125.7 (2)C37—N2—C36120.0 (2)
C22—C31—C30120.8 (2)C37—N2—H2120.0
C34—C31—C30113.5 (2)C36—N2—H2120.0
C20—C19—C18118.4 (3)C9—O1—H01109.5
C20—C19—H19120.8C5—O2—C461.12 (17)
C18—C19—H19120.8C12—O3—C6111.1 (2)
C19—C20—C21122.1 (3)C30—O5—H05109.5
C19—C20—H20118.9C32—O7—C27110.52 (18)
C21—C20—H20118.9C26—O8—C2561.44 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6i0.862.543.311 (3)150
O1—H01···N20.822.413.221 (4)169
O5—H05···O10.821.972.778 (3)170
Symmetry code: (i) x+2, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC21H27NO4
Mr357.44
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)11.1067 (8), 11.9406 (9), 14.6930 (11)
β (°) 106.315 (2)
V3)1870.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.27 × 0.18 × 0.12
Data collection
DiffractometerBruker X8 APEXII CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
18091, 4005, 3651
Rint0.037
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.131, 1.04
No. of reflections4005
No. of parameters474
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.28

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O6i0.862.543.311 (3)150
O1—H01···N20.822.413.221 (4)169
O5—H05···O10.821.972.778 (3)170
Symmetry code: (i) x+2, y1/2, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBruker, (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastaneda-Acosta, J., Pentes, H. G., Fronczek, F. R. & Fischer, N. H. (1997). J. Chem. Crystallogr. 27, 635–639.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDer-Ren, H., Yu-Shan, W., Chun-Wei, C., Tzu-Wen, L., Wei-Cheng, C., Uan-Kang, T., John, T. A. H. & Hsing-Pang, H. (2006). Bioorg. Med. Chem. Lett. 14, 83–91.  Google Scholar
First citationEl Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573–576.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNeelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346–4349.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNeukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503–1510.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatson, W. H. & Zabel, V. (1982). Acta Cryst. B38, 834–838.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages o1388-o1389
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds