metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[dinitrato[μ3-2,4,6-tris­­(4-pyrid­yl)-1,3,5-triazine]cobalt(II)]

aDepartment of Chemistry, College of Science, Shanghai University, Shanghai 200444, People's Republic of China, and bLaboratory for Microstructures, Shanghai University, Shanghai 200444, People's Republic of China
*Correspondence e-mail: mx_li@mail.shu.edu.cn

(Received 19 April 2011; accepted 10 May 2011; online 14 May 2011)

The solvothermal reaction of Co(NO3)2 and 2,4,6-tris(4-pyridyl)-1,3,5-triazine in dimethyl­formamide/ethanol mixed solvent afforded the title coordination polymer, [Co(NO3)2(C18H12N6)]n, in which the CoII atom is seven-coordinated by pyridyl groups of three different ligands and two chelating nitrate anions. The complex displays a nano-sized porous metal–organic framework that belongs to a (10,3) topological network.

Related literature

For metal–organic frameworks, see: Yaghi et al. (2003[Yaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705-714.]). For 2,4,6-tris(4-pyridyl)-1,3,5-triazine (tpt) coordination polymers, see: Fujita et al. (2005[Fujita, M., Tominaga, M., Hori, A. & Therrien, B. (2005). Acc. Chem. Res. 38, 371-380.]); Li et al. (2008[Li, M. X., Miao, Z. X., Shao, M., Liang, S. W. & Zhu, S. R. (2008). Inorg. Chem. 47, 4481-4489.]). For a related nickel–tpt–nitrato coordination polymer, see: Abrahams et al. (1999[Abrahams, B. F., Batten, S. R., Grannas, M. J., Hamit, H., Hoskins, B. F. & Robson, R. (1999). Angew. Chem. Int. Ed. 38, 1475-1477.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(NO3)2(C18H12N6)]

  • Mr = 495.29

  • Orthorhombic, P b c n

  • a = 26.193 (3) Å

  • b = 9.8005 (11) Å

  • c = 16.2950 (18) Å

  • V = 4183.0 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.844, Tmax = 0.918

  • 20432 measured reflections

  • 3710 independent reflections

  • 2756 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.108

  • S = 1.03

  • 3710 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O1 2.231 (2)
Co1—O2 2.214 (2)
Co1—O4 2.357 (4)
Co1—O5 2.194 (3)
Co1—N3 2.128 (3)
Co1—N4i 2.191 (2)
Co1—N5ii 2.178 (2)
Symmetry codes: (i) [-x+1, y-1, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The construction of metal-organic frameworks (MOF's) has become a very active research field in recent years, due to their intriguing structural motifs and potential applications in functional materials (Yaghi et al., 2003). 2,4,6-Tris(4-pyridyl)-1,3,5-triazine (tpt) is an excellent multipyridyl ligand due to its regular trigonal structure, good rigidity and varied coordination modes. This essentially planar ligand has afforded a number of unusual and highly symmetrical coordination polymers (Fujita, et al., 2005), which often display porous metal-organic frameworks enclosing nano-sized cages, cavities, chambers, and channels (Li, et al., 2008). By solvothermal reaction of Co(NO3)2 with tpt, we have prepared a porous metal-organic framework [Co(tpt)(NO3)2]n (I). Herein, we report its synthesis and crystal structure.

As shown in Fig. 1, the cobalt center in (I) is seven-coordinated by three pyridyl groups from different tpt ligands and two chelating nitrates, resulting in a pentagonal-bipyramidal geometry, Table 1. Pyridyl N4i and N5ii occupy the axial positions defining a N4i-Co1-N5ii bond angle of 170.62 (10) °; see Table 1 for symmetry operations. Pyridyl N3 and four nitrate oxygen donors essentially lie in an equatorial plane. One nitrate anion chelates to Co1 with similar bond lengths while the other nitrate coordinates with disparate Co—O bond distances, Table 1. Seven-coordinate Co(II) complexes are rarely observed but the long Co1-O4 distance is emphasized. Previously, a coordination polymer [Ni(tpt)(NO3)2]n was reported (Abrahams, et al., 1999), where NiII is six-coordinated by three oxygen atoms from monodentate and bidentate nitrates as well as three pyridyl nitrogens.

Tpt acts as an exo-tridentate ligand to connect three CoII atoms through three pyridyl N-donors. This results in a 3D metal-organic framework as shown in Fig. 2. The coordination polymer shows two types of rings. One is a four-metal macrocycle containing four tpt ligands. The other one is a two-metal cycle containing two tpt ligands. From the viewpoint of network topology, the tpt ligand can be represented by a 3-connector, while CoII atom is a 3-connecting node. So the polymeric network can be simplified to a (10,3) topological network. Interestingly, the packing diagram shows a nano-sized porous metal-organic framework. The approximate dimensions of the pores are 1.3 nm × 1.3 nm.

Related literature top

For metal–organic frameworks, see: Yaghi et al. (2003). For 2,4,6-tris(4-pyridyl)-1,3,5-triazine (tpt) coordination polymers, see: Fujita et al. (2005); Li et al. (2008). For a related nickel–tpt–nitrato coordination polymer, see: Abrahams et al. (1999).

Experimental top

A mixture of Co(NO3)2.6H2O (29.1 mg, 0.1 mmol), tpt (31.2 mg, 0.1 mmol) and 7 ml DMF/ethanol (1:6) was sealed in a 10 ml Teflon-lined stainless steel reactor, which was heated at 433 K for 72 h. The reaction mixture was cooled to room temperature at a rate of 10 K h-1. Pink blocks were collected by filtration, washed with ethanol and dried in air. Yield: 33.4%. Anal. calcd for C18H12CoN8O6 (%): C, 43.65; H, 2.44; N, 22.62. Found: C, 43.24; H, 2.37; N, 22.51. IR (KBr pellet, cm-1): 3064w, 1618m, 1578m, 1524 s, 1471 s, 1383 s, 1301 s, 1058m, 1027m, 806 s, 654m, 514m.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The crystallographic asymmetric unit in (I) showing atom labelling and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. View of porous metal-organic framework in (I).
Poly[dinitrato[µ3-2,4,6-tris(4-pyridyl)-1,3,5-triazine]cobalt(II)] top
Crystal data top
[Co(NO3)2(C18H12N6)]F(000) = 2008
Mr = 495.29Dx = 1.573 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 4158 reflections
a = 26.193 (3) Åθ = 2.5–24.6°
b = 9.8005 (11) ŵ = 0.88 mm1
c = 16.2950 (18) ÅT = 298 K
V = 4183.0 (8) Å3Block, pink
Z = 80.20 × 0.20 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3710 independent reflections
Radiation source: fine-focus sealed tube2756 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ϕ and ω scansθmax = 25.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 3126
Tmin = 0.844, Tmax = 0.918k = 1110
20432 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0467P)2 + 3.8374P]
where P = (Fo2 + 2Fc2)/3
3710 reflections(Δ/σ)max = 0.001
298 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Co(NO3)2(C18H12N6)]V = 4183.0 (8) Å3
Mr = 495.29Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 26.193 (3) ŵ = 0.88 mm1
b = 9.8005 (11) ÅT = 298 K
c = 16.2950 (18) Å0.20 × 0.20 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3710 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2756 reflections with I > 2σ(I)
Tmin = 0.844, Tmax = 0.918Rint = 0.049
20432 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.03Δρmax = 0.45 e Å3
3710 reflectionsΔρmin = 0.33 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.380905 (14)0.17895 (4)0.06119 (2)0.03151 (15)
C10.41284 (12)0.0886 (4)0.1400 (2)0.0534 (10)
H10.44290.06920.11210.064*
C20.41134 (12)0.2035 (4)0.1879 (2)0.0543 (10)
H20.44020.25810.19320.065*
C30.36691 (11)0.2379 (3)0.22819 (18)0.0329 (7)
C40.32551 (12)0.1533 (4)0.2173 (2)0.0453 (9)
H40.29440.17350.24210.054*
C50.33059 (12)0.0391 (4)0.1696 (2)0.0493 (9)
H50.30230.01720.16340.059*
C60.36517 (10)0.3595 (3)0.28256 (18)0.0306 (7)
C70.40612 (10)0.5367 (3)0.34072 (18)0.0315 (7)
C80.45454 (11)0.6099 (3)0.35741 (19)0.0358 (7)
C90.49982 (12)0.5414 (4)0.3548 (3)0.0610 (11)
H90.50050.44930.34090.073*
C100.54451 (12)0.6091 (4)0.3727 (3)0.0626 (12)
H100.57480.55980.37120.075*
C110.50274 (14)0.8051 (4)0.3941 (3)0.0669 (12)
H110.50310.89740.40720.080*
C120.45627 (12)0.7447 (4)0.3782 (3)0.0645 (12)
H120.42630.79540.38160.077*
C130.32363 (10)0.4965 (3)0.36998 (18)0.0316 (7)
C140.27651 (11)0.5375 (3)0.41360 (19)0.0327 (7)
C150.27784 (12)0.6350 (4)0.4739 (2)0.0511 (10)
H150.30860.67580.48810.061*
C160.23372 (12)0.6722 (4)0.5132 (2)0.0536 (10)
H160.23560.73910.55350.064*
C170.18746 (12)0.5219 (4)0.4389 (2)0.0499 (9)
H170.15630.48130.42650.060*
C180.22980 (11)0.4795 (4)0.3962 (2)0.0480 (9)
H180.22700.41250.35610.058*
N10.43623 (10)0.1599 (3)0.07207 (18)0.0479 (8)
N20.32636 (13)0.3756 (5)0.1387 (3)0.0779 (12)
N30.37372 (9)0.0033 (3)0.13120 (16)0.0383 (6)
N40.54694 (9)0.7393 (3)0.39189 (17)0.0392 (6)
N50.18823 (9)0.6176 (3)0.49676 (16)0.0360 (6)
N60.36465 (9)0.5756 (3)0.38169 (16)0.0375 (6)
N70.40796 (9)0.4331 (3)0.28751 (15)0.0329 (6)
N80.32213 (9)0.3851 (3)0.32351 (15)0.0322 (6)
O10.42965 (8)0.0587 (2)0.02471 (14)0.0457 (6)
O20.41055 (9)0.2649 (3)0.05510 (15)0.0544 (6)
O30.46583 (11)0.1558 (3)0.12993 (18)0.0806 (10)
O40.33747 (13)0.2722 (4)0.1748 (3)0.0995 (12)
O50.34510 (11)0.3810 (4)0.0677 (3)0.0866 (10)
O60.29912 (12)0.4647 (4)0.1665 (2)0.1130 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0236 (2)0.0317 (2)0.0393 (3)0.00198 (17)0.00248 (17)0.00143 (19)
C10.0303 (18)0.055 (2)0.075 (3)0.0103 (16)0.0153 (17)0.027 (2)
C20.0327 (18)0.053 (2)0.077 (3)0.0157 (16)0.0185 (17)0.032 (2)
C30.0247 (15)0.0353 (17)0.0385 (17)0.0025 (13)0.0011 (13)0.0060 (14)
C40.0280 (17)0.049 (2)0.059 (2)0.0034 (15)0.0099 (15)0.0156 (17)
C50.0275 (17)0.051 (2)0.070 (2)0.0092 (15)0.0074 (16)0.0219 (19)
C60.0236 (15)0.0348 (17)0.0335 (16)0.0012 (13)0.0003 (12)0.0003 (13)
C70.0242 (15)0.0329 (17)0.0375 (17)0.0003 (13)0.0002 (13)0.0039 (14)
C80.0261 (16)0.0394 (19)0.0418 (18)0.0040 (13)0.0052 (13)0.0082 (15)
C90.0279 (18)0.047 (2)0.108 (3)0.0008 (16)0.003 (2)0.032 (2)
C100.0259 (18)0.054 (2)0.108 (3)0.0025 (16)0.0035 (19)0.037 (2)
C110.037 (2)0.035 (2)0.128 (4)0.0017 (16)0.020 (2)0.013 (2)
C120.0267 (18)0.045 (2)0.122 (4)0.0059 (16)0.014 (2)0.020 (2)
C130.0213 (14)0.0378 (18)0.0357 (16)0.0022 (13)0.0011 (12)0.0008 (14)
C140.0262 (16)0.0313 (17)0.0405 (17)0.0001 (13)0.0032 (13)0.0001 (14)
C150.0251 (17)0.054 (2)0.074 (3)0.0056 (15)0.0085 (17)0.024 (2)
C160.0354 (19)0.055 (2)0.070 (3)0.0054 (17)0.0116 (17)0.028 (2)
C170.0266 (17)0.058 (2)0.065 (2)0.0078 (16)0.0038 (16)0.020 (2)
C180.0298 (17)0.056 (2)0.058 (2)0.0054 (16)0.0062 (15)0.0229 (19)
N10.0316 (15)0.067 (2)0.0448 (17)0.0062 (14)0.0026 (13)0.0058 (16)
N20.038 (2)0.074 (3)0.121 (4)0.004 (2)0.014 (2)0.045 (3)
N30.0272 (13)0.0413 (16)0.0464 (16)0.0018 (11)0.0000 (12)0.0108 (13)
N40.0268 (14)0.0416 (17)0.0493 (16)0.0040 (12)0.0020 (12)0.0044 (13)
N50.0254 (13)0.0362 (15)0.0464 (16)0.0004 (11)0.0068 (11)0.0010 (13)
N60.0239 (13)0.0404 (16)0.0482 (16)0.0015 (11)0.0043 (12)0.0095 (13)
N70.0247 (13)0.0352 (15)0.0390 (14)0.0035 (11)0.0019 (11)0.0045 (12)
N80.0251 (13)0.0356 (15)0.0358 (14)0.0025 (11)0.0037 (11)0.0046 (12)
O10.0426 (13)0.0465 (15)0.0481 (14)0.0017 (11)0.0020 (11)0.0023 (12)
O20.0508 (15)0.0579 (16)0.0546 (15)0.0161 (13)0.0068 (12)0.0125 (13)
O30.0626 (18)0.113 (3)0.0658 (18)0.0285 (17)0.0321 (15)0.0233 (18)
O40.076 (2)0.065 (2)0.157 (4)0.0020 (19)0.011 (2)0.005 (2)
O50.0478 (18)0.097 (3)0.115 (3)0.0097 (17)0.0112 (18)0.039 (2)
O60.072 (2)0.114 (3)0.153 (3)0.039 (2)0.014 (2)0.087 (3)
Geometric parameters (Å, º) top
Co1—O12.231 (2)C10—N41.315 (4)
Co1—O22.214 (2)C10—H100.9300
Co1—O42.357 (4)C11—N41.326 (4)
Co1—O52.194 (3)C11—C121.378 (5)
Co1—N32.128 (3)C11—H110.9300
Co1—N4i2.191 (2)C12—H120.9300
Co1—N5ii2.178 (2)C13—N81.329 (4)
C1—N31.330 (4)C13—N61.339 (4)
C1—C21.370 (5)C13—C141.480 (4)
C1—H10.9300C14—C151.371 (4)
C2—C31.378 (4)C14—C181.378 (4)
C2—H20.9300C15—C161.371 (4)
C3—C41.377 (4)C15—H150.9300
C3—C61.485 (4)C16—N51.333 (4)
C4—C51.370 (5)C16—H160.9300
C4—H40.9300C17—N51.330 (4)
C5—N31.338 (4)C17—C181.373 (4)
C5—H50.9300C17—H170.9300
C6—N81.334 (4)C18—H180.9300
C6—N71.335 (4)N1—O31.221 (4)
C7—N61.331 (4)N1—O21.260 (4)
C7—N71.336 (4)N1—O11.268 (4)
C7—C81.482 (4)N2—O41.207 (5)
C8—C91.364 (4)N2—O61.215 (5)
C8—C121.365 (5)N2—O51.258 (5)
C9—C101.377 (5)N4—Co1iii2.191 (2)
C9—H90.9300N5—Co1iv2.178 (2)
N3—Co1—N5ii87.31 (10)N4—C10—H10118.0
N3—Co1—N4i101.33 (10)C9—C10—H10118.0
N5ii—Co1—N4i170.62 (10)N4—C11—C12123.9 (3)
N3—Co1—O5133.94 (13)N4—C11—H11118.1
N5ii—Co1—O585.25 (10)C12—C11—H11118.1
N4i—Co1—O591.23 (10)C8—C12—C11119.4 (3)
N3—Co1—O2144.01 (10)C8—C12—H12120.3
N5ii—Co1—O289.09 (10)C11—C12—H12120.3
N4i—Co1—O281.77 (10)N8—C13—N6125.5 (3)
O5—Co1—O281.26 (13)N8—C13—C14118.2 (2)
N3—Co1—O186.76 (9)N6—C13—C14116.3 (3)
N5ii—Co1—O191.58 (9)C15—C14—C18117.2 (3)
N4i—Co1—O185.33 (9)C15—C14—C13120.8 (3)
O5—Co1—O1138.75 (13)C18—C14—C13122.0 (3)
O2—Co1—O157.55 (9)C14—C15—C16119.9 (3)
N3—Co1—O482.06 (12)C14—C15—H15120.0
N5ii—Co1—O494.84 (11)C16—C15—H15120.0
N4i—Co1—O490.02 (11)N5—C16—C15123.6 (3)
O5—Co1—O453.52 (14)N5—C16—H16118.2
O2—Co1—O4133.93 (12)C15—C16—H16118.2
O1—Co1—O4166.82 (12)N5—C17—C18124.0 (3)
N3—C1—C2123.8 (3)N5—C17—H17118.0
N3—C1—H1118.1C18—C17—H17118.0
C2—C1—H1118.1C17—C18—C14119.2 (3)
C1—C2—C3119.8 (3)C17—C18—H18120.4
C1—C2—H2120.1C14—C18—H18120.4
C3—C2—H2120.1O3—N1—O2122.3 (3)
C4—C3—C2117.1 (3)O3—N1—O1122.0 (3)
C4—C3—C6122.4 (3)O2—N1—O1115.6 (3)
C2—C3—C6120.4 (3)O4—N2—O6124.3 (6)
C5—C4—C3119.3 (3)O4—N2—O5112.9 (4)
C5—C4—H4120.4O6—N2—O5122.8 (5)
C3—C4—H4120.4C1—N3—C5115.8 (3)
N3—C5—C4124.1 (3)C1—N3—Co1121.2 (2)
N3—C5—H5117.9C5—N3—Co1123.0 (2)
C4—C5—H5117.9C10—N4—C11115.9 (3)
N8—C6—N7125.3 (3)C10—N4—Co1iii118.7 (2)
N8—C6—C3118.4 (3)C11—N4—Co1iii124.5 (2)
N7—C6—C3116.3 (2)C17—N5—C16116.0 (3)
N6—C7—N7124.9 (3)C17—N5—Co1iv121.6 (2)
N6—C7—C8117.9 (3)C16—N5—Co1iv122.4 (2)
N7—C7—C8117.1 (2)C7—N6—C13114.7 (3)
C9—C8—C12117.1 (3)C6—N7—C7114.8 (2)
C9—C8—C7120.0 (3)C13—N8—C6114.5 (2)
C12—C8—C7122.8 (3)N1—O1—Co192.67 (18)
C8—C9—C10119.7 (3)N1—O2—Co193.69 (19)
C8—C9—H9120.2N2—O4—Co193.4 (3)
C10—C9—H9120.2N2—O5—Co1100.0 (3)
N4—C10—C9124.0 (3)
Symmetry codes: (i) x+1, y1, z+1/2; (ii) x+1/2, y+1/2, z1/2; (iii) x+1, y+1, z+1/2; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(NO3)2(C18H12N6)]
Mr495.29
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)298
a, b, c (Å)26.193 (3), 9.8005 (11), 16.2950 (18)
V3)4183.0 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.844, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
20432, 3710, 2756
Rint0.049
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.108, 1.03
No. of reflections3710
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.33

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O12.231 (2)Co1—N32.128 (3)
Co1—O22.214 (2)Co1—N4i2.191 (2)
Co1—O42.357 (4)Co1—N5ii2.178 (2)
Co1—O52.194 (3)
Symmetry codes: (i) x+1, y1, z+1/2; (ii) x+1/2, y+1/2, z1/2.
 

Acknowledgements

The project was supported by the Leading Academic Discipline Project of Shanghai Municipal Education Commission (J50102), and the Natural Science Foundation of Shanghai (10ZR1411100).

References

First citationAbrahams, B. F., Batten, S. R., Grannas, M. J., Hamit, H., Hoskins, B. F. & Robson, R. (1999). Angew. Chem. Int. Ed. 38, 1475–1477.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFujita, M., Tominaga, M., Hori, A. & Therrien, B. (2005). Acc. Chem. Res. 38, 371–380.  Web of Science CrossRef Google Scholar
First citationLi, M. X., Miao, Z. X., Shao, M., Liang, S. W. & Zhu, S. R. (2008). Inorg. Chem. 47, 4481–4489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M., O'Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds