organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Methyl­phen­yl)-N′-phenyl­butane­di­amide monohydrate

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 13 May 2011; accepted 18 May 2011; online 25 May 2011)

In the title hydrate, C17H18N2O2·H2O, the dihedral angles formed by the aromatic rings of the benzene and methyl­benzene groups with the mean planes of the attached NH—C(O)—CH2 fragments are 12.6 (4) and 23.3 (3)°, respectively, while that between the two aromatic rings is 73.7 (2)°. In the crystal, the water mol­ecule accepts two and makes two hydrogen bonds. The mol­ecules are packed into layers parallel to (101) by O—H⋯O and N—H⋯O hydrogen-bonding inter­actions.

Related literature

For our study of the effect of substituents on the structures of N-(ar­yl)-amides, see: Gowda et al. (2000[Gowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779-790.]); Saraswathi et al. (2011a[Saraswathi, B. S., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o607.],b[Saraswathi, B. S., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o966.]) and on the structures of N-(ar­yl)-methane­sulfonamides, see: Gowda et al. (2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2570.]). For restrained geometry, see: Nardelli (1999[Nardelli, M. (1999). J. Appl. Cryst. 32, 563-571.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N2O2·H2O

  • Mr = 300.35

  • Monoclinic, P 21 /n

  • a = 15.242 (4) Å

  • b = 4.905 (1) Å

  • c = 21.540 (5) Å

  • β = 102.90 (2)°

  • V = 1569.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.44 × 0.12 × 0.08 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.962, Tmax = 0.993

  • 5068 measured reflections

  • 2805 independent reflections

  • 1356 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.117

  • wR(F2) = 0.239

  • S = 1.16

  • 2805 reflections

  • 211 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.85 (2) 2.06 (2) 2.895 (6) 168 (6)
N2—H2N⋯O3ii 0.86 (2) 2.15 (2) 2.992 (6) 169 (5)
O3—H31⋯O1 0.85 (2) 1.93 (2) 2.762 (6) 165 (5)
O3—H32⋯O3iii 0.85 (2) 2.03 (2) 2.858 (5) 166 (5)
Symmetry codes: (i) -x+2, -y, -z+1; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The amide and sulfonamide moieties are important constituents of many biologically significant compounds. As a part of a study of the substituent effects on their structures and other aspects of this class of compounds (Gowda et al., 2000, 2007; Saraswathi et al., 2011a,b), in the present work, the structure of the title compound, isolated as a monohydrate has been determined (Fig. 1). The conformation of N—H and C O bonds in each C—NH—C(O)—C segment is anti, similar to that observed in N,N-bis(2-methylphenyl)- succinamide (II) (Saraswathi et al., 2011a) and in N,N-bis(3-chlorophenyl)-succinamide (III) (Saraswathi et al., 2011b).

The dihedral angle between the phenyl ring and the adjacent NH—C(O)—CH2 segment is 12.6 (4) ° and that between the 4-methylphenyl ring and the adjacent NH—C(O)—CH2 segment is 23.3 (3) °, compared to the values of 62.1 (2) ° formed between the benzene ring and the NH—C(O)—CH2 segment in the two halves of (II), and 32.8 (1) ° in (III). In the title compound, the dihedral angle between the two aromatic rings is 73.7 (2) °. The crystal packing is stabilized through N1—H1N···O2, N2—H2N···O3, O3—H31···O1 and O3—H32···O3 hydrogen bonding (Table 1) and results in layers as shown in Fig.2.

Related literature top

For our study of the effect of substituents on the structures of N-(aryl)-amides, see: Gowda et al. (2000); Saraswathi et al. (2011a,b) and on the structures of N-(aryl)-methanesulfonamides, see: Gowda et al. (2007). For restrained geometry, see: Nardelli (1999).

Experimental top

Succinic anhydride (0.01 mol) in toluene (25 ml) was treated drop wise with aniline (0.01 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was stirred for one hour and set aside for an additional hour at room temperature for completion of the reaction. The mixture was then treated with dilute hydrochloric acid to remove unreacted aniline. The resultant N-(phenyl)succinamic acid was filtered under suction and washed thoroughly with water to remove the unreacted succinic anhydride and succinic acid. The compound was recrystallized to constant melting point from ethanol.

The N-(phenyl)succinamic acid obtained was then treated with phosphorous oxychloride and excess of p-toluidine at room temperature with constant stirring. The resultant mixture was stirred for 4 h, kept aside for additional 6 h for completion of the reaction and poured slowly into crushed ice with constant stirring. It was kept aside for a day. The resultant solid, N-(phenyl),N-(4-methylphenyl)- succinamide monohydrate, was filtered under suction, washed thoroughly with water, dilute sodium hydroxide solution and finally with water. It was recrystallized to constant melting point from a mixture of acetone and chloroform.

Colorless needles were grown in a mixture of acetone and chloroform at room temperature.

Refinement top

The H atoms of the NH groups were located in a difference map and later restrained to the distance N—H = 0.86 (2) Å. The H atoms of the water molecule were located in difference map and were refined with the O—H and H—H distances restrained to 0.85 (2) Å and 1.365 Å, respectively, thus leading to the angle of 107 ° (Nardelli, 1999). The other H atoms were positioned in their idealized geometries using a riding model with aromatic C—H = 0.93 Å, methyl C—H = 0.96 Å and methylene C—H = 0.97 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound showing atom labelling and with displacement ellipsoids drawn at the 50% probability level. The hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. A partial packing diagram of the title compound viewed in projection down the b direction, showing the hydrogen bonding scheme with dashed lines.
N-(4-Methylphenyl)-N'-phenylbutanediamide monohydrate top
Crystal data top
C17H18N2O2·H2OF(000) = 640
Mr = 300.35Dx = 1.271 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 897 reflections
a = 15.242 (4) Åθ = 2.6–27.8°
b = 4.905 (1) ŵ = 0.09 mm1
c = 21.540 (5) ÅT = 293 K
β = 102.90 (2)°Needle, colourless
V = 1569.7 (6) Å30.44 × 0.12 × 0.08 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2805 independent reflections
Radiation source: fine-focus sealed tube1356 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
Rotation method data acquisition using ω scansθmax = 25.4°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1815
Tmin = 0.962, Tmax = 0.993k = 54
5068 measured reflectionsl = 2521
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.117Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.239H atoms treated by a mixture of independent and constrained refinement
S = 1.16 w = 1/[σ2(Fo2) + (0.0521P)2 + 3.417P]
where P = (Fo2 + 2Fc2)/3
2805 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.35 e Å3
5 restraintsΔρmin = 0.31 e Å3
Crystal data top
C17H18N2O2·H2OV = 1569.7 (6) Å3
Mr = 300.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.242 (4) ŵ = 0.09 mm1
b = 4.905 (1) ÅT = 293 K
c = 21.540 (5) Å0.44 × 0.12 × 0.08 mm
β = 102.90 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
2805 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
1356 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.993Rint = 0.058
5068 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.1175 restraints
wR(F2) = 0.239H atoms treated by a mixture of independent and constrained refinement
S = 1.16Δρmax = 0.35 e Å3
2805 reflectionsΔρmin = 0.31 e Å3
211 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1172 (4)0.2471 (13)0.3698 (3)0.0477 (16)
C21.0806 (5)0.4142 (15)0.3191 (3)0.063 (2)
H21.01870.41830.30310.076*
C31.1363 (6)0.5749 (17)0.2923 (4)0.080 (2)
H31.11130.68430.25760.096*
C41.2289 (6)0.5780 (17)0.3157 (4)0.090 (3)
H41.26560.68790.29710.108*
C51.2648 (5)0.4153 (18)0.3667 (4)0.089 (3)
H51.32670.41500.38310.107*
C61.2101 (4)0.2525 (16)0.3940 (3)0.071 (2)
H61.23540.14480.42890.085*
C70.9812 (4)0.0135 (12)0.3804 (3)0.0426 (16)
C80.9514 (3)0.2274 (13)0.4215 (3)0.0440 (16)
H8A0.97360.17890.46590.053*
H8B0.97810.40080.41440.053*
C90.8499 (4)0.2600 (12)0.4085 (3)0.0487 (17)
H9A0.83560.41710.43170.058*
H9B0.82720.29440.36340.058*
C100.8029 (4)0.0102 (12)0.4276 (3)0.0418 (16)
C110.6627 (4)0.2679 (12)0.3937 (3)0.0399 (15)
C120.6588 (4)0.3788 (13)0.4515 (3)0.0477 (17)
H70.69880.32210.48840.057*
C130.5948 (4)0.5757 (14)0.4546 (3)0.0555 (18)
H130.59270.64990.49400.067*
C140.5343 (4)0.6647 (12)0.4013 (4)0.0497 (17)
C150.5394 (4)0.5532 (14)0.3437 (3)0.0569 (19)
H150.49950.61090.30680.068*
C160.6028 (4)0.3567 (13)0.3398 (3)0.0513 (17)
H160.60510.28350.30040.062*
C170.4654 (5)0.8807 (15)0.4067 (4)0.086 (3)
H17A0.40600.81000.39040.103*
H17B0.47461.03820.38240.103*
H17C0.47190.93090.45050.103*
N11.0664 (3)0.0735 (11)0.4004 (2)0.0475 (14)
H1N1.095 (3)0.005 (11)0.4340 (17)0.057*
N20.7246 (3)0.0584 (10)0.3870 (2)0.0421 (13)
H2N0.716 (4)0.031 (10)0.3519 (16)0.051*
O10.9311 (3)0.0725 (11)0.3319 (2)0.0762 (16)
O20.8342 (3)0.1165 (8)0.47672 (18)0.0509 (12)
O30.7946 (3)0.3120 (9)0.2425 (2)0.0596 (13)
H310.839 (3)0.268 (11)0.273 (2)0.071*
H320.773 (4)0.460 (8)0.253 (3)0.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.054 (4)0.044 (4)0.040 (4)0.001 (4)0.001 (3)0.004 (3)
C20.069 (5)0.070 (5)0.049 (4)0.004 (4)0.011 (4)0.007 (4)
C30.102 (7)0.073 (6)0.063 (5)0.011 (6)0.011 (5)0.020 (5)
C40.100 (7)0.078 (6)0.084 (6)0.026 (6)0.003 (5)0.008 (5)
C50.071 (5)0.099 (7)0.088 (6)0.024 (5)0.004 (5)0.025 (6)
C60.057 (5)0.076 (6)0.068 (5)0.015 (4)0.009 (4)0.015 (4)
C70.039 (3)0.043 (4)0.043 (4)0.008 (3)0.002 (3)0.005 (3)
C80.036 (3)0.039 (4)0.053 (4)0.003 (3)0.003 (3)0.008 (3)
C90.042 (4)0.032 (4)0.065 (4)0.002 (3)0.004 (3)0.011 (3)
C100.036 (3)0.040 (4)0.044 (4)0.009 (3)0.003 (3)0.005 (3)
C110.037 (3)0.034 (4)0.045 (4)0.004 (3)0.001 (3)0.003 (3)
C120.037 (3)0.052 (4)0.049 (4)0.002 (3)0.001 (3)0.001 (4)
C130.047 (4)0.060 (5)0.058 (4)0.001 (4)0.009 (3)0.007 (4)
C140.036 (4)0.031 (4)0.083 (5)0.002 (3)0.015 (4)0.003 (4)
C150.041 (4)0.054 (5)0.067 (5)0.009 (4)0.004 (3)0.013 (4)
C160.046 (4)0.054 (4)0.047 (4)0.003 (4)0.004 (3)0.005 (3)
C170.072 (5)0.071 (6)0.113 (7)0.001 (5)0.016 (5)0.004 (5)
N10.043 (3)0.052 (4)0.040 (3)0.002 (3)0.005 (2)0.012 (3)
N20.036 (3)0.043 (3)0.041 (3)0.002 (3)0.004 (2)0.009 (3)
O10.051 (3)0.100 (4)0.062 (3)0.001 (3)0.020 (2)0.032 (3)
O20.050 (3)0.047 (3)0.046 (2)0.006 (2)0.010 (2)0.005 (2)
O30.060 (3)0.053 (3)0.056 (3)0.009 (2)0.008 (2)0.005 (2)
Geometric parameters (Å, º) top
C1—C21.380 (8)C10—O21.227 (6)
C1—C61.396 (8)C10—N21.356 (6)
C1—N11.410 (8)C11—C121.372 (8)
C2—C31.377 (10)C11—C161.378 (7)
C2—H20.9300C11—N21.424 (7)
C3—C41.388 (10)C12—C131.385 (8)
C3—H30.9300C12—H70.9300
C4—C51.370 (10)C13—C141.373 (8)
C4—H40.9300C13—H130.9300
C5—C61.376 (9)C14—C151.374 (9)
C5—H50.9300C14—C171.515 (9)
C6—H60.9300C15—C161.381 (8)
C7—O11.222 (6)C15—H150.9300
C7—N11.343 (7)C16—H160.9300
C7—C81.507 (8)C17—H17A0.9600
C8—C91.517 (7)C17—H17B0.9600
C8—H8A0.9700C17—H17C0.9600
C8—H8B0.9700N1—H1N0.85 (2)
C9—C101.522 (8)N2—H2N0.859 (19)
C9—H9A0.9700O3—H310.854 (19)
C9—H9B0.9700O3—H320.847 (19)
C2—C1—C6118.8 (7)O2—C10—C9121.7 (5)
C2—C1—N1124.2 (6)N2—C10—C9115.1 (5)
C6—C1—N1117.0 (6)C12—C11—C16119.0 (6)
C3—C2—C1119.6 (7)C12—C11—N2122.9 (5)
C3—C2—H2120.2C16—C11—N2118.1 (5)
C1—C2—H2120.2C11—C12—C13119.6 (6)
C2—C3—C4121.7 (7)C11—C12—H7120.2
C2—C3—H3119.1C13—C12—H7120.2
C4—C3—H3119.1C14—C13—C12122.0 (6)
C5—C4—C3118.5 (8)C14—C13—H13119.0
C5—C4—H4120.8C12—C13—H13119.0
C3—C4—H4120.8C13—C14—C15117.8 (6)
C4—C5—C6120.6 (8)C13—C14—C17120.4 (7)
C4—C5—H5119.7C15—C14—C17121.8 (6)
C6—C5—H5119.7C14—C15—C16120.9 (6)
C5—C6—C1120.8 (7)C14—C15—H15119.5
C5—C6—H6119.6C16—C15—H15119.5
C1—C6—H6119.6C11—C16—C15120.7 (6)
O1—C7—N1122.6 (6)C11—C16—H16119.7
O1—C7—C8122.0 (5)C15—C16—H16119.7
N1—C7—C8115.4 (5)C14—C17—H17A109.5
C7—C8—C9113.1 (5)C14—C17—H17B109.5
C7—C8—H8A109.0H17A—C17—H17B109.5
C9—C8—H8A109.0C14—C17—H17C109.5
C7—C8—H8B109.0H17A—C17—H17C109.5
C9—C8—H8B109.0H17B—C17—H17C109.5
H8A—C8—H8B107.8C7—N1—C1129.4 (5)
C8—C9—C10112.8 (5)C7—N1—H1N114 (4)
C8—C9—H9A109.0C1—N1—H1N116 (4)
C10—C9—H9A109.0C10—N2—C11128.4 (5)
C8—C9—H9B109.0C10—N2—H2N113 (4)
C10—C9—H9B109.0C11—N2—H2N119 (4)
H9A—C9—H9B107.8H31—O3—H32107 (3)
O2—C10—N2123.2 (6)
C6—C1—C2—C32.1 (10)C12—C13—C14—C150.5 (10)
N1—C1—C2—C3179.6 (6)C12—C13—C14—C17179.9 (6)
C1—C2—C3—C41.3 (12)C13—C14—C15—C160.5 (10)
C2—C3—C4—C50.1 (13)C17—C14—C15—C16179.9 (6)
C3—C4—C5—C60.1 (13)C12—C11—C16—C150.3 (9)
C4—C5—C6—C10.7 (13)N2—C11—C16—C15177.9 (5)
C2—C1—C6—C51.9 (11)C14—C15—C16—C110.1 (10)
N1—C1—C6—C5179.7 (7)O1—C7—N1—C17.0 (10)
O1—C7—C8—C916.9 (8)C8—C7—N1—C1172.5 (6)
N1—C7—C8—C9163.6 (5)C2—C1—N1—C716.7 (10)
C7—C8—C9—C1067.0 (7)C6—C1—N1—C7165.0 (6)
C8—C9—C10—O240.1 (8)O2—C10—N2—C114.1 (9)
C8—C9—C10—N2140.3 (5)C9—C10—N2—C11175.4 (5)
C16—C11—C12—C130.3 (9)C12—C11—N2—C1021.1 (9)
N2—C11—C12—C13177.9 (5)C16—C11—N2—C10160.7 (6)
C11—C12—C13—C140.1 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.85 (2)2.06 (2)2.895 (6)168 (6)
N2—H2N···O3ii0.86 (2)2.15 (2)2.992 (6)169 (5)
O3—H31···O10.85 (2)1.93 (2)2.762 (6)165 (5)
O3—H32···O3iii0.85 (2)2.03 (2)2.858 (5)166 (5)
Symmetry codes: (i) x+2, y, z+1; (ii) x+3/2, y1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H18N2O2·H2O
Mr300.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)15.242 (4), 4.905 (1), 21.540 (5)
β (°) 102.90 (2)
V3)1569.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.44 × 0.12 × 0.08
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.962, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
5068, 2805, 1356
Rint0.058
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.117, 0.239, 1.16
No. of reflections2805
No. of parameters211
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.31

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.85 (2)2.06 (2)2.895 (6)168 (6)
N2—H2N···O3ii0.859 (19)2.15 (2)2.992 (6)169 (5)
O3—H31···O10.854 (19)1.93 (2)2.762 (6)165 (5)
O3—H32···O3iii0.847 (19)2.03 (2)2.858 (5)166 (5)
Symmetry codes: (i) x+2, y, z+1; (ii) x+3/2, y1/2, z+1/2; (iii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

BSS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2570.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779–790.  CAS Google Scholar
First citationNardelli, M. (1999). J. Appl. Cryst. 32, 563–571.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSaraswathi, B. S., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o607.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSaraswathi, B. S., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o966.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds