metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m793-m794

Bis(3-methyl­pyridinium) tetra­(chlorido/bromido)cuprate(II)

aDepartment of Chemistry Education and Interdisciplinary Program of Advanced Information and Display Materials, Pusan National University, Pusan 609-735, Republic of Korea, and bDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 17 May 2011; accepted 19 May 2011; online 25 May 2011)

The structure of the title salt, (C6H8N)2[CuCl3.4Br0.6], consists of two 3-methyl­pyridinium cations and a distorted tetra­hedral [CuCl3.4Br0.6]2− dianion. Substitutional disorder with Br is exhibited for three of the Cl atoms of the anion, giving a mixed chloride/bromide cuprate(II) anion. In the crystal, inter­molecular N—H⋯Cl hydrogen bonds link two cations to one anion, forming a three-ion aggregate. These are connected into a supra­molecular chain along the b axis via ππ inter­actions between the pyridinium rings [centroid–centroid distance = 3.743 (3) Å].

Related literature

For general background to the geometry of the tetra­halidocuprate(II) species, see: Solomon et al. (1992[Solomon, E. I., Baldwin, M. J. & Lowery, M. D. (1992). Chem. Rev. 92, 521-542.]); Kim et al. (2001[Kim, Y. J., Kim, S. O., Kim, Y. I. & Choi, S. N. (2001). Inorg. Chem. 40, 4481-4484.]); Panja et al. (2005[Panja, A., Goswami, S., Shaikh, N., Roy, P., Manassero, M., Butcher, R. J. & Banerjee, P. (2005). Polyhedron, 24, 2921-2932.]); Sengottvelan et al. (2009[Sengottvelan, N., Lee, Y.-S., Lim, H.-S., Kim, Y.-I. & Kang, S. K. (2009). Acta Cryst. E65, m384.]). For its magnetic properties, see: Lee et al. (2004[Lee, Y. K., Park, S. M., Kang, S. K., Kim, Y. I. & Choi, S. N. (2004). Bull. Korean Chem. Soc. 25, 823-828.]); Turnbull et al. (2005[Turnbull, M. M., Landee, C. P. & Wells, B. M. (2005). Coord. Chem. Rev. 249, 2567-2576.]); Shapiro et al. (2007[Shapiro, A., Landee, C. P., Turnbull, M. M., Jornet, J., Deumal, M., Novoa, J. J., Robb, M. A. & Lewis, W. (2007). J. Am. Chem. Soc. 129, 952-959.]). CuBr42− ions usually show less distortion from the ideal tetra­hedral geometry compared with CuCl42− ions, see: Edwards et al. (2011[Edwards, K., Herringer, S. N., Parent, A. R., Provost, M., Shortsleeves, K. C., Turnbull, M. M. & Dawe, L. N. (2011). Inorg. Chim. Acta, 368, 141-151.]); AlDaman & Haddad (2011[AlDaman, M. A. & Haddad, S. F. (2011). J. Mol. Struct. 985, 27-33.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H8N)2[CuBr0.60Cl3.40]

  • Mr = 420.28

  • Monoclinic, P 21 /n

  • a = 9.0617 (18) Å

  • b = 13.259 (3) Å

  • c = 14.060 (3) Å

  • β = 102.47 (3)°

  • V = 1649.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.32 mm−1

  • T = 295 K

  • 0.19 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.560, Tmax = 0.610

  • 17556 measured reflections

  • 4094 independent reflections

  • 2621 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.089

  • S = 1.03

  • 4094 reflections

  • 209 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—Cl2 2.232 (8)
Cu1—Cl4 2.248 (10)
Cu1—Cl5 2.2604 (8)
Cu1—Cl3 2.273 (3)
Cl2—Cu1—Cl4 97.5 (3)
Cl2—Cu1—Cl5 135.34 (14)
Cl4—Cu1—Cl5 99.0 (3)
Cl2—Cu1—Cl3 100.2 (2)
Cl4—Cu1—Cl3 135.8 (2)
Cl5—Cu1—Cl3 96.18 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl5 0.76 (3) 2.50 (3) 3.158 (3) 145 (3)
N8—H8⋯Cl3 0.82 (3) 2.53 (3) 3.245 (4) 147 (3)
N8—H8⋯Cl5 0.82 (3) 2.72 (3) 3.332 (3) 133 (3)

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The structural properties of tetrahalocuprate(II) compounds have attracted continued interest as model compounds for biological process (Solomon et al., 1992; Kim et al., 2001; Panja et al., 2005) as well as magnetic functional materials (Lee et al., 2004; Turnbull et al., 2005; Shapiro et al., 2007). In a previous paper, we (Sengottvelan et al., 2009) reported the structure of bis(3-methylpyridinium)tetrachlorocuprate(II) and investigated packing interactions such as hydrogen bonding and ππ interactions. Because CuBr42- ions usually show less distortion from the ideal tetrahedral geometry compared with CuCl42- (Edwards et al., 2011; AlDaman & Haddad, 2011), the analogous chemistry with CuBr42- was investigated. Herein, we disclose the the crystal structure of the bis(3-methylpyridinium) salt of a mixed-tetrachlorido/bromido cuprate(II) ion, [CuCl3.4Br0.6]2-.

The structure of the title salt, [C6H8N]2[CuCl3.4Br0.6], consists of two 3-methylpyridinium cations and one distorted tetrahedral [CuCl3.4Br0.6] anion. There are substitutional disorder for three of the Cl atoms anion to make a mixed-halo cuprate (II) anion. The [CuCl3.4Br0.6]2- anion is has approximately D2d symmetry, with the distortion from the ideal tetrahedral partly arising as a result of three different hydrogen bonding interactions with two 3-methylpyridinium cations (Fig. 1). The range of Cl—Cu—Cl angles is 96.18 (8) – 135.8 (2) ° (Table 1). There are weak aromatic π-π interactions between pyridinium rings of the discrete tri-ion aggregates [centroid-centroid distance = 3.743 (3) Å], and these lead to a supramolecular chain along the b axis.

Related literature top

For general background to the geometry of the tetrahalocuprate(II) species, see: Solomon et al. (1992); Kim et al. (2001); Panja et al. (2005); Sengottvelan et al. (2009). For its magnetic properties, see: Lee et al. (2004); Turnbull et al. (2005); Shapiro et al. (2007). CuBr42- ions usually show less distortion from the ideal tetrahedral geometry compared with CuCl42- ions, see: Edwards et al. (2011); AlDaman & Haddad (2011).

Experimental top

Copper(II) chloride (1.36 g, 8 mmol) dissolved in ethanol, was added drop wise to a stirred ethanolic solution containing 3-methylpyridine (0.744 g, 8 mmol) and concentrated HBr (0.5 ml, 4.4 mmol). The mixture was refluxed for approximately 4 h at 333 K. The resulting solution was filtered and allowed to stand at room temperature. The crystals were obtained after 2–3 days.

Refinement top

The H1 and H8 atoms were located in a difference map and refined freely. Other H atoms are positioned geometrically and refined using a riding model, with C—H = 0.93 – 096 Å, and with Uiso(H) = 1.2Ueq(C) for aromatic and 1.5Ueq(C) for methyl H atoms. Atoms Cl2, Cl3, and Cl4 are substitutionally disordered with Br atoms. The final occupancy factors for the Cl and Br atoms were fixed at 0.80 and 0.20, respectively.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. The N—H···Cl hydrogen bonds are indicated with dashed lines.
[Figure 2] Fig. 2. Crystal structure of viewed normal to (1 0 0), showing the N—H···Cl hydrogen bonds as dashed lines.
Bis(3-methylpyridinium) tetra(chlorido/bromido)cuprate(II) top
Crystal data top
(C6H8N)2[CuBr0.60Cl3.40]F(000) = 839.2
Mr = 420.28Dx = 1.693 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3355 reflections
a = 9.0617 (18) Åθ = 2.8–23.7°
b = 13.259 (3) ŵ = 3.32 mm1
c = 14.060 (3) ÅT = 295 K
β = 102.47 (3)°Block, brown
V = 1649.4 (6) Å30.19 × 0.15 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2621 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1012
Tmin = 0.560, Tmax = 0.610k = 1717
17556 measured reflectionsl = 1818
4094 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.0822P]
where P = (Fo2 + 2Fc2)/3
4094 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
(C6H8N)2[CuBr0.60Cl3.40]V = 1649.4 (6) Å3
Mr = 420.28Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.0617 (18) ŵ = 3.32 mm1
b = 13.259 (3) ÅT = 295 K
c = 14.060 (3) Å0.19 × 0.15 × 0.15 mm
β = 102.47 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4094 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2621 reflections with I > 2σ(I)
Tmin = 0.560, Tmax = 0.610Rint = 0.039
17556 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.34 e Å3
4094 reflectionsΔρmin = 0.41 e Å3
209 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.55622 (4)0.54229 (2)0.70365 (2)0.04278 (13)
Cl20.3635 (8)0.6509 (5)0.6823 (4)0.0600 (16)0.8
Br20.3543 (11)0.6580 (8)0.6803 (5)0.0397 (14)0.2
Cl30.7542 (4)0.6516 (3)0.7331 (2)0.0967 (10)0.8
Br30.7538 (3)0.6533 (2)0.73299 (19)0.0289 (6)0.2
Cl40.4607 (10)0.4267 (9)0.7907 (6)0.0538 (15)0.8
Br40.4680 (16)0.4110 (15)0.7913 (9)0.0511 (18)0.2
Cl50.65337 (8)0.43724 (5)0.60629 (6)0.0550 (2)
N10.4441 (3)0.2452 (2)0.59512 (19)0.0492 (6)
H10.485 (3)0.291 (2)0.621 (2)0.044 (9)*
C20.4632 (3)0.2199 (2)0.5066 (2)0.0457 (7)
H20.52210.260.47520.055*
C30.3953 (3)0.1343 (2)0.4620 (2)0.0451 (7)
C40.3078 (3)0.0789 (2)0.5126 (2)0.0526 (8)
H40.25930.02110.48420.063*
C50.2909 (3)0.1070 (2)0.6036 (2)0.0565 (8)
H50.23230.06860.63670.068*
C60.3615 (3)0.1921 (2)0.6445 (2)0.0516 (7)
H60.35190.21280.70610.062*
C70.4157 (4)0.1058 (2)0.3622 (2)0.0674 (9)
H7A0.51160.13010.35340.101*
H7B0.33620.13540.31390.101*
H7C0.41220.03380.35560.101*
N80.8582 (3)0.61568 (19)0.52884 (19)0.0494 (6)
H80.820 (4)0.599 (3)0.574 (2)0.082 (12)*
C90.9467 (3)0.6976 (2)0.54021 (19)0.0461 (7)
H90.95990.7350.59740.055*
C101.0178 (3)0.7265 (2)0.46804 (19)0.0446 (7)
C110.9936 (3)0.6688 (2)0.3849 (2)0.0522 (7)
H111.04070.68640.33470.063*
C120.9011 (4)0.5857 (2)0.3745 (2)0.0587 (8)
H120.8850.54780.31760.07*
C130.8329 (3)0.5591 (2)0.4483 (2)0.0559 (8)
H130.77030.50280.44270.067*
C141.1163 (4)0.8186 (2)0.4800 (2)0.0691 (9)
H14A1.05530.8770.45890.104*
H14B1.19110.81150.44140.104*
H14C1.16540.82620.54720.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0438 (2)0.0394 (2)0.0472 (2)0.00244 (15)0.01439 (16)0.00025 (15)
Cl20.060 (2)0.051 (2)0.073 (3)0.0085 (14)0.0232 (16)0.0012 (14)
Br20.046 (2)0.040 (2)0.036 (3)0.0049 (18)0.0167 (17)0.0047 (16)
Cl30.097 (2)0.091 (2)0.104 (2)0.0196 (18)0.0272 (18)0.0123 (19)
Br30.0263 (13)0.0305 (15)0.0315 (14)0.0156 (11)0.0099 (11)0.0118 (12)
Cl40.0612 (13)0.041 (3)0.0660 (18)0.0059 (13)0.0280 (14)0.0153 (12)
Br40.066 (3)0.036 (4)0.052 (2)0.000 (2)0.014 (2)0.0125 (17)
Cl50.0605 (5)0.0437 (4)0.0693 (5)0.0081 (3)0.0328 (4)0.0127 (4)
N10.0478 (15)0.0433 (15)0.0527 (16)0.0041 (13)0.0029 (12)0.0027 (13)
C20.0449 (16)0.0437 (16)0.0494 (17)0.0037 (13)0.0120 (13)0.0060 (14)
C30.0444 (16)0.0417 (16)0.0473 (16)0.0046 (13)0.0054 (13)0.0060 (13)
C40.0505 (18)0.0368 (15)0.066 (2)0.0078 (13)0.0032 (15)0.0033 (14)
C50.0518 (19)0.0563 (19)0.064 (2)0.0032 (15)0.0180 (16)0.0121 (16)
C60.0502 (18)0.062 (2)0.0449 (17)0.0057 (15)0.0141 (14)0.0085 (15)
C70.087 (3)0.060 (2)0.054 (2)0.0054 (18)0.0111 (18)0.0029 (16)
N80.0457 (15)0.0545 (16)0.0509 (16)0.0018 (12)0.0167 (12)0.0088 (13)
C90.0473 (17)0.0496 (17)0.0421 (16)0.0010 (14)0.0110 (13)0.0021 (13)
C100.0412 (15)0.0520 (17)0.0415 (16)0.0037 (13)0.0110 (12)0.0065 (13)
C110.0509 (18)0.064 (2)0.0436 (17)0.0096 (16)0.0136 (14)0.0052 (15)
C120.067 (2)0.060 (2)0.0457 (17)0.0075 (17)0.0055 (16)0.0093 (15)
C130.0502 (18)0.0478 (18)0.065 (2)0.0019 (14)0.0025 (16)0.0008 (16)
C140.069 (2)0.070 (2)0.072 (2)0.0139 (18)0.0230 (18)0.0057 (18)
Geometric parameters (Å, º) top
Cu1—Cl22.232 (8)C7—H7A0.96
Cu1—Cl42.248 (10)C7—H7B0.96
Cu1—Cl52.2604 (8)C7—H7C0.96
Cu1—Cl32.273 (3)N8—C131.336 (4)
Cu1—Br32.286 (2)N8—C91.339 (4)
Cu1—Br22.356 (12)N8—H80.82 (3)
Cu1—Br42.369 (17)C9—C101.369 (3)
N1—C61.328 (4)C9—H90.93
N1—C21.336 (4)C10—C111.374 (4)
N1—H10.76 (3)C10—C141.500 (4)
C2—C31.376 (4)C11—C121.373 (4)
C2—H20.93C11—H110.93
C3—C41.385 (4)C12—C131.363 (4)
C3—C71.502 (4)C12—H120.93
C4—C51.373 (4)C13—H130.93
C4—H40.93C14—H14A0.96
C5—C61.362 (4)C14—H14B0.96
C5—H50.93C14—H14C0.96
C6—H60.93
Cl2—Cu1—Cl497.5 (3)C4—C5—H5120.6
Cl2—Cu1—Cl5135.34 (14)N1—C6—C5119.0 (3)
Cl4—Cu1—Cl599.0 (3)N1—C6—H6120.5
Cl2—Cu1—Cl3100.2 (2)C5—C6—H6120.5
Cl4—Cu1—Cl3135.8 (2)C3—C7—H7A109.5
Cl5—Cu1—Cl396.18 (8)C3—C7—H7B109.5
Cl2—Cu1—Br399.70 (18)H7A—C7—H7B109.5
Cl4—Cu1—Br3136.0 (2)C3—C7—H7C109.5
Cl5—Cu1—Br396.53 (7)H7A—C7—H7C109.5
Cl3—Cu1—Br30.49 (16)H7B—C7—H7C109.5
Cl2—Cu1—Br20.6 (3)C13—N8—C9123.1 (3)
Cl4—Cu1—Br298.1 (3)C13—N8—H8119 (2)
Cl5—Cu1—Br2135.17 (16)C9—N8—H8117 (2)
Cl3—Cu1—Br299.7 (2)N8—C9—C10120.3 (3)
Br3—Cu1—Br299.2 (2)N8—C9—H9119.9
Cl2—Cu1—Br4101.6 (5)C10—C9—H9119.9
Cl4—Cu1—Br44.5 (7)C9—C10—C11117.4 (3)
Cl5—Cu1—Br494.7 (4)C9—C10—C14120.6 (3)
Cl3—Cu1—Br4135.7 (3)C11—C10—C14122.0 (3)
Br3—Cu1—Br4135.9 (3)C12—C11—C10121.2 (3)
Br2—Cu1—Br4102.2 (5)C12—C11—H11119.4
C6—N1—C2123.7 (3)C10—C11—H11119.4
C6—N1—H1116 (2)C13—C12—C11119.6 (3)
C2—N1—H1120 (2)C13—C12—H12120.2
N1—C2—C3119.8 (3)C11—C12—H12120.2
N1—C2—H2120.1N8—C13—C12118.4 (3)
C3—C2—H2120.1N8—C13—H13120.8
C2—C3—C4116.9 (3)C12—C13—H13120.8
C2—C3—C7120.0 (3)C10—C14—H14A109.5
C4—C3—C7123.1 (3)C10—C14—H14B109.5
C5—C4—C3121.7 (3)H14A—C14—H14B109.5
C5—C4—H4119.1C10—C14—H14C109.5
C3—C4—H4119.1H14A—C14—H14C109.5
C6—C5—C4118.8 (3)H14B—C14—H14C109.5
C6—C5—H5120.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl50.76 (3)2.50 (3)3.158 (3)145 (3)
N8—H8···Cl30.82 (3)2.53 (3)3.245 (4)147 (3)
N8—H8···Cl50.82 (3)2.72 (3)3.332 (3)133 (3)

Experimental details

Crystal data
Chemical formula(C6H8N)2[CuBr0.60Cl3.40]
Mr420.28
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)9.0617 (18), 13.259 (3), 14.060 (3)
β (°) 102.47 (3)
V3)1649.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)3.32
Crystal size (mm)0.19 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.560, 0.610
No. of measured, independent and
observed [I > 2σ(I)] reflections
17556, 4094, 2621
Rint0.039
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.089, 1.03
No. of reflections4094
No. of parameters209
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.41

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cu1—Cl22.232 (8)Cu1—Cl52.2604 (8)
Cu1—Cl42.248 (10)Cu1—Cl32.273 (3)
Cl2—Cu1—Cl497.5 (3)Cl2—Cu1—Cl3100.2 (2)
Cl2—Cu1—Cl5135.34 (14)Cl4—Cu1—Cl3135.8 (2)
Cl4—Cu1—Cl599.0 (3)Cl5—Cu1—Cl396.18 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl50.76 (3)2.50 (3)3.158 (3)145 (3)
N8—H8···Cl30.82 (3)2.53 (3)3.245 (4)147 (3)
N8—H8···Cl50.82 (3)2.72 (3)3.332 (3)133 (3)
 

Acknowledgements

This work was supported by a 2-Year Research Grant of Pusan National University.

References

First citationAlDaman, M. A. & Haddad, S. F. (2011). J. Mol. Struct. 985, 27–33.  Google Scholar
First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEdwards, K., Herringer, S. N., Parent, A. R., Provost, M., Shortsleeves, K. C., Turnbull, M. M. & Dawe, L. N. (2011). Inorg. Chim. Acta, 368, 141–151.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKim, Y. J., Kim, S. O., Kim, Y. I. & Choi, S. N. (2001). Inorg. Chem. 40, 4481–4484.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLee, Y. K., Park, S. M., Kang, S. K., Kim, Y. I. & Choi, S. N. (2004). Bull. Korean Chem. Soc. 25, 823–828.  CAS Google Scholar
First citationPanja, A., Goswami, S., Shaikh, N., Roy, P., Manassero, M., Butcher, R. J. & Banerjee, P. (2005). Polyhedron, 24, 2921–2932.  Web of Science CSD CrossRef CAS Google Scholar
First citationSengottvelan, N., Lee, Y.-S., Lim, H.-S., Kim, Y.-I. & Kang, S. K. (2009). Acta Cryst. E65, m384.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShapiro, A., Landee, C. P., Turnbull, M. M., Jornet, J., Deumal, M., Novoa, J. J., Robb, M. A. & Lewis, W. (2007). J. Am. Chem. Soc. 129, 952–959.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolomon, E. I., Baldwin, M. J. & Lowery, M. D. (1992). Chem. Rev. 92, 521–542.  CrossRef CAS Web of Science Google Scholar
First citationTurnbull, M. M., Landee, C. P. & Wells, B. M. (2005). Coord. Chem. Rev. 249, 2567–2576.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 6| June 2011| Pages m793-m794
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds