organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-(2,5-di­methyl­phen­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 23 May 2011; accepted 24 May 2011; online 28 May 2011)

The title compound, C14H14ClNO2S, contains two molecules in the asymmetric unit with different conformations. The C—SO2—NH—C torsion angles are 65.3 (2) and 54.6 (2)° and the aromatic rings are tilted relative to each other by 59.3 (1) and 45.8 (1)° in the two mol­ecules. In the crystal, inversion symmetry results in dimers linked by pairs of N—H⋯O hydrogen bonds for both molecules.

Related literature

For hydrogen-bonding modes of sulfonamides, see: Adsmond & Grant (2001[Adsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058-2077.]). For our studies of the effect of substituents upon the structures of N-(ar­yl)-amides, aryl­sulfonamides and methane­sulfonamides, see: Gowda et al. (2000[Gowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791-800.], 2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2597.], 2009[Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009). Acta Cryst. E65, o2763.]); Shakuntala et al. (2011a[Shakuntala, K., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o1252.],b[Shakuntala, K., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o1328.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14ClNO2S

  • Mr = 295.77

  • Triclinic, [P \overline 1]

  • a = 10.624 (1) Å

  • b = 11.165 (1) Å

  • c = 13.845 (2) Å

  • α = 74.643 (8)°

  • β = 67.654 (7)°

  • γ = 82.195 (8)°

  • V = 1463.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 293 K

  • 0.44 × 0.40 × 0.36 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.844, Tmax = 0.869

  • 10424 measured reflections

  • 5971 independent reflections

  • 4355 reflections with I > 2σ(I)

  • Rint = 0.012

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.118

  • S = 1.03

  • 5971 reflections

  • 353 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.85 (2) 2.12 (2) 2.950 (2) 166 (2)
N2—H2N⋯O4ii 0.83 (2) 2.13 (2) 2.931 (2) 162 (2)
Symmetry codes: (i) -x, -y, -z+2; (ii) -x+1, -y+1, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Sulfonamide moieties are constituents of many biologically important compounds. The hydrogen bonding preferences of sulfonamides have been investigated (Adsmond & Grant, 2001). As a part of our work on the substituent effects on the structures and other aspects of this class of compounds (Gowda et al., 2000, 2007, 2009; Shakuntala et al., 2011a,b), in the present work, the crystal structure of 4-chloro-N-(2,5-dimethylphenyl)benzenesulfonamide (I) has been determined (Fig. 1). The asymmetric unit contains two independent molecules. In one of the molecules, the N—C bond in the C—SO2—NH—C segment has gauche torsions with respect to the SO bonds. The molecules are twisted at the S atoms with the C—SO2—NH—C torsion angles of 65.3 (2) ° and 54.6 (2) ° in the two molecules, compared to the values of 34.7 (1) ° in 4-chloro-N-(2,3-dimethylphenyl)benzenesulfonamide (II) (Shakuntala et al., 2011b), 69.1 (1) and 82.6 (1)° in the two independent molecules of 4-chloro-N-(phenyl)-benzenesulfonamide (III) (Shakuntala et al., 2011a), and 62.7 (2) ° in N-(2,5-dimethylphenyl)benzenesulfonamide (IV) (Gowda et al., 2009). Finally, the sulfonyl and the anilino benzene rings in the two independent molecules of (I) are tilted relative to each other by 59.3 (1) ° (molecule 1) and 45.8 (1) ° (molecule 2), compared to the values of -70.3 (3) ° in (II), -53.8 (3) ° and -63.4 (3) ° in the two independent molecules of (III), and 40.4 (1) ° in (IV).

In the crystal structure, inversion related molecules are linked by N—H···O hydrogen bonding into dimeric aggregates (Table 1 and Fig. 2).

Related literature top

For hydrogen-bonding modes of sulfonamides, see: Adsmond & Grant (2001). For our studies of the effect of substituents upon the structures of N-(aryl)- amides, arylsulfonamides and -methanesulfonamides, see: Gowda et al. (2000, 2007, 2009); Shakuntala et al. (2011a,b).

Experimental top

A solution of chlorobenzene (10 ml) in chloroform (40 ml) was treated drop wise with chlorosulfonic acid (25 ml) at 273 K. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 4-chlorobenzenesulfonylchloride was treated with a stoichiometric amount of 2,5-dimethylaniline and boiled for 10 minutes. The reaction mixture was then cooled to room temperature and added to ice-cold water (100 ml). The resultant 4-chloro-N-(2,5-dimethylphenyl)benzenesulfonamide (I) was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from aqueous ethanol. Light-brown prisms of (I) were grown from its ethanolic solution by slow evaporation at room temperature.

Refinement top

The NH H-atoms were located in a difference map and were refined with the N—H distance restrained to 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model with the aromatic C—H = 0.93 Å and the methyl C—H = 0.96 Å. All H atoms were refined with isotropic displacement parameters set to 1.2Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing of (I) with hydrogen bonding shown as dashed lines.
4-Chloro-N-(2,5-dimethylphenyl)benzenesulfonamide top
Crystal data top
C14H14ClNO2SZ = 4
Mr = 295.77F(000) = 616
Triclinic, P1Dx = 1.342 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.624 (1) ÅCell parameters from 4045 reflections
b = 11.165 (1) Åθ = 2.9–27.8°
c = 13.845 (2) ŵ = 0.40 mm1
α = 74.643 (8)°T = 293 K
β = 67.654 (7)°Prism, light-brown
γ = 82.195 (8)°0.44 × 0.40 × 0.36 mm
V = 1463.6 (3) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
5971 independent reflections
Radiation source: fine-focus sealed tube4355 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
Rotation method data acquisition using ω scansθmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
h = 1313
Tmin = 0.844, Tmax = 0.869k = 1312
10424 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.217P]
where P = (Fo2 + 2Fc2)/3
5971 reflections(Δ/σ)max = 0.022
353 parametersΔρmax = 0.24 e Å3
2 restraintsΔρmin = 0.31 e Å3
Crystal data top
C14H14ClNO2Sγ = 82.195 (8)°
Mr = 295.77V = 1463.6 (3) Å3
Triclinic, P1Z = 4
a = 10.624 (1) ÅMo Kα radiation
b = 11.165 (1) ŵ = 0.40 mm1
c = 13.845 (2) ÅT = 293 K
α = 74.643 (8)°0.44 × 0.40 × 0.36 mm
β = 67.654 (7)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
5971 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
4355 reflections with I > 2σ(I)
Tmin = 0.844, Tmax = 0.869Rint = 0.012
10424 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0402 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.24 e Å3
5971 reflectionsΔρmin = 0.31 e Å3
353 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.36006 (9)0.53177 (6)0.87418 (6)0.1008 (3)
S10.20650 (4)0.02218 (5)1.01469 (4)0.04847 (14)
O10.31155 (13)0.09429 (13)1.04686 (11)0.0597 (4)
O20.06835 (12)0.03204 (15)1.08715 (11)0.0634 (4)
N10.20717 (15)0.05945 (15)0.90863 (14)0.0505 (4)
H1N0.1347 (18)0.0308 (19)0.8978 (17)0.061*
C10.24889 (17)0.13475 (18)0.97593 (14)0.0455 (4)
C20.1538 (2)0.2278 (2)0.96025 (17)0.0558 (5)
H20.06620.20770.97200.067*
C30.1887 (2)0.3495 (2)0.92738 (18)0.0635 (6)
H30.12540.41260.91620.076*
C40.3191 (2)0.3775 (2)0.91104 (17)0.0617 (5)
C50.4142 (2)0.2861 (2)0.92548 (19)0.0697 (6)
H50.50170.30660.91360.084*
C60.3798 (2)0.1642 (2)0.95757 (18)0.0619 (5)
H60.44410.10140.96700.074*
C70.32965 (17)0.06143 (17)0.81716 (16)0.0470 (4)
C80.3468 (2)0.02420 (19)0.72070 (17)0.0541 (5)
C90.4666 (2)0.0123 (2)0.63506 (19)0.0702 (6)
H90.48150.06830.56910.084*
C100.5638 (2)0.0801 (3)0.6452 (2)0.0747 (7)
H100.64250.08510.58600.090*
C110.5473 (2)0.1649 (2)0.7408 (2)0.0668 (6)
C120.42823 (19)0.15453 (18)0.82663 (18)0.0556 (5)
H120.41390.21120.89220.067*
C130.2426 (3)0.1260 (2)0.7063 (2)0.0774 (7)
H13A0.22500.17540.75760.093*
H13B0.15980.09000.71720.093*
H13C0.27660.17760.63500.093*
C140.6526 (3)0.2670 (3)0.7534 (3)0.0968 (9)
H14A0.68970.25470.80320.116*
H14B0.72420.26520.68500.116*
H14C0.61080.34600.78000.116*
Cl20.09005 (14)1.02785 (8)0.31731 (10)0.1497 (5)
S20.29930 (4)0.49101 (6)0.46867 (4)0.05870 (17)
O30.20405 (14)0.40575 (15)0.48001 (13)0.0677 (4)
O40.43982 (14)0.47354 (19)0.40614 (14)0.0838 (5)
N20.29581 (15)0.49000 (17)0.58726 (14)0.0545 (4)
H2N0.3663 (18)0.517 (2)0.5847 (18)0.065*
C150.2409 (2)0.6403 (2)0.41858 (16)0.0589 (5)
C160.3320 (3)0.7294 (3)0.34757 (19)0.0790 (7)
H160.42470.70860.32220.095*
C170.2868 (4)0.8466 (3)0.3148 (2)0.0987 (10)
H170.34770.90640.26620.118*
C180.1494 (4)0.8763 (3)0.3542 (2)0.0922 (9)
C190.0557 (3)0.7888 (3)0.4245 (2)0.0815 (7)
H190.03680.81030.44990.098*
C200.1023 (2)0.6699 (2)0.45579 (18)0.0627 (6)
H200.04120.60910.50190.075*
C210.17227 (17)0.52401 (17)0.66661 (15)0.0450 (4)
C220.16013 (19)0.63472 (18)0.69746 (16)0.0516 (5)
C230.0385 (2)0.6576 (2)0.77699 (18)0.0636 (6)
H230.02800.72940.80180.076*
C240.0666 (2)0.5780 (2)0.82014 (18)0.0641 (6)
H240.14680.59720.87290.077*
C250.05576 (19)0.4699 (2)0.78675 (16)0.0578 (5)
C260.06623 (18)0.44264 (18)0.71042 (15)0.0502 (4)
H260.07740.36900.68820.060*
C270.2709 (2)0.7278 (2)0.6475 (2)0.0720 (6)
H27A0.35440.68760.65330.086*
H27B0.24550.79410.68420.086*
H27C0.28340.76080.57310.086*
C280.1723 (2)0.3822 (3)0.8332 (2)0.0877 (8)
H28A0.20810.36850.91000.105*
H28B0.13980.30440.81340.105*
H28C0.24270.41800.80550.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1377 (7)0.0670 (4)0.1017 (5)0.0271 (4)0.0484 (5)0.0069 (4)
S10.0310 (2)0.0595 (3)0.0527 (3)0.00033 (18)0.0184 (2)0.0050 (2)
O10.0427 (7)0.0663 (9)0.0697 (9)0.0027 (6)0.0308 (7)0.0015 (7)
O20.0353 (7)0.0890 (11)0.0576 (8)0.0060 (6)0.0148 (6)0.0044 (7)
N10.0350 (8)0.0568 (10)0.0635 (10)0.0006 (7)0.0234 (7)0.0131 (8)
C10.0349 (9)0.0585 (11)0.0458 (10)0.0029 (7)0.0177 (8)0.0144 (8)
C20.0466 (11)0.0637 (13)0.0664 (13)0.0083 (9)0.0284 (10)0.0237 (10)
C30.0696 (14)0.0636 (14)0.0691 (14)0.0143 (11)0.0379 (12)0.0241 (11)
C40.0773 (15)0.0615 (13)0.0491 (11)0.0110 (11)0.0230 (11)0.0128 (10)
C50.0529 (12)0.0781 (16)0.0766 (15)0.0165 (11)0.0232 (11)0.0090 (12)
C60.0396 (10)0.0680 (14)0.0762 (14)0.0011 (9)0.0247 (10)0.0096 (11)
C70.0394 (9)0.0480 (10)0.0613 (12)0.0007 (7)0.0222 (9)0.0199 (9)
C80.0525 (11)0.0582 (12)0.0592 (12)0.0001 (9)0.0247 (10)0.0204 (10)
C90.0687 (15)0.0865 (17)0.0580 (13)0.0067 (12)0.0207 (11)0.0226 (12)
C100.0515 (13)0.1006 (19)0.0762 (16)0.0014 (12)0.0118 (11)0.0465 (15)
C110.0479 (12)0.0732 (15)0.0932 (18)0.0087 (10)0.0277 (12)0.0443 (14)
C120.0502 (11)0.0478 (11)0.0767 (14)0.0029 (8)0.0288 (10)0.0208 (10)
C130.0839 (17)0.0796 (17)0.0654 (14)0.0161 (13)0.0341 (13)0.0106 (12)
C140.0618 (15)0.093 (2)0.144 (3)0.0291 (14)0.0373 (16)0.0580 (19)
Cl20.2453 (13)0.0760 (5)0.1754 (10)0.0184 (6)0.1439 (10)0.0009 (6)
S20.0326 (2)0.0867 (4)0.0650 (3)0.0024 (2)0.0138 (2)0.0367 (3)
O30.0480 (8)0.0808 (10)0.0881 (11)0.0032 (7)0.0245 (7)0.0420 (9)
O40.0359 (8)0.1438 (16)0.0843 (11)0.0026 (8)0.0118 (7)0.0648 (11)
N20.0333 (8)0.0728 (11)0.0646 (11)0.0008 (7)0.0191 (8)0.0271 (9)
C150.0503 (11)0.0830 (15)0.0516 (11)0.0199 (10)0.0201 (9)0.0176 (10)
C160.0724 (15)0.108 (2)0.0584 (14)0.0385 (15)0.0176 (12)0.0143 (14)
C170.124 (3)0.111 (3)0.0714 (17)0.059 (2)0.0420 (18)0.0003 (17)
C180.146 (3)0.0692 (17)0.0907 (19)0.0251 (17)0.079 (2)0.0017 (14)
C190.0865 (18)0.0819 (18)0.0928 (19)0.0031 (14)0.0538 (16)0.0153 (15)
C200.0518 (12)0.0731 (15)0.0692 (14)0.0102 (10)0.0297 (10)0.0105 (11)
C210.0376 (9)0.0522 (11)0.0472 (10)0.0033 (7)0.0189 (8)0.0118 (8)
C220.0525 (11)0.0521 (11)0.0546 (11)0.0000 (8)0.0248 (9)0.0122 (9)
C230.0683 (14)0.0615 (13)0.0644 (13)0.0138 (11)0.0253 (11)0.0264 (11)
C240.0456 (11)0.0851 (16)0.0550 (12)0.0095 (11)0.0122 (9)0.0203 (11)
C250.0438 (10)0.0742 (14)0.0512 (11)0.0052 (9)0.0175 (9)0.0059 (10)
C260.0462 (10)0.0489 (11)0.0570 (11)0.0004 (8)0.0222 (9)0.0102 (9)
C270.0792 (16)0.0642 (14)0.0781 (16)0.0187 (11)0.0282 (13)0.0175 (12)
C280.0626 (15)0.111 (2)0.0774 (17)0.0310 (14)0.0087 (13)0.0132 (15)
Geometric parameters (Å, º) top
Cl1—C41.728 (2)Cl2—C181.737 (3)
S1—O11.4270 (13)S2—O31.4200 (15)
S1—O21.4277 (13)S2—O41.4296 (14)
S1—N11.6261 (17)S2—N21.6252 (18)
S1—C11.759 (2)S2—C151.755 (2)
N1—C71.432 (2)N2—C211.436 (2)
N1—H1N0.845 (15)N2—H2N0.830 (15)
C1—C21.382 (3)C15—C161.383 (3)
C1—C61.385 (3)C15—C201.387 (3)
C2—C31.368 (3)C16—C171.353 (4)
C2—H20.9300C16—H160.9300
C3—C41.382 (3)C17—C181.377 (4)
C3—H30.9300C17—H170.9300
C4—C51.367 (3)C18—C191.385 (4)
C5—C61.369 (3)C19—C201.370 (3)
C5—H50.9300C19—H190.9300
C6—H60.9300C20—H200.9300
C7—C81.384 (3)C21—C221.386 (3)
C7—C121.390 (3)C21—C261.389 (3)
C8—C91.390 (3)C22—C231.388 (3)
C8—C131.504 (3)C22—C271.509 (3)
C9—C101.376 (3)C23—C241.369 (3)
C9—H90.9300C23—H230.9300
C10—C111.373 (4)C24—C251.379 (3)
C10—H100.9300C24—H240.9300
C11—C121.384 (3)C25—C261.382 (3)
C11—C141.509 (3)C25—C281.516 (3)
C12—H120.9300C26—H260.9300
C13—H13A0.9600C27—H27A0.9600
C13—H13B0.9600C27—H27B0.9600
C13—H13C0.9600C27—H27C0.9600
C14—H14A0.9600C28—H28A0.9600
C14—H14B0.9600C28—H28B0.9600
C14—H14C0.9600C28—H28C0.9600
O1—S1—O2119.67 (9)O3—S2—O4119.34 (10)
O1—S1—N1108.40 (9)O3—S2—N2108.59 (10)
O2—S1—N1104.99 (8)O4—S2—N2105.32 (9)
O1—S1—C1107.65 (8)O3—S2—C15107.35 (9)
O2—S1—C1108.48 (9)O4—S2—C15109.38 (11)
N1—S1—C1107.02 (9)N2—S2—C15106.13 (9)
C7—N1—S1121.67 (12)C21—N2—S2120.23 (12)
C7—N1—H1N118.1 (15)C21—N2—H2N115.1 (16)
S1—N1—H1N109.0 (14)S2—N2—H2N112.1 (16)
C2—C1—C6120.22 (19)C16—C15—C20120.4 (2)
C2—C1—S1120.27 (14)C16—C15—S2120.56 (19)
C6—C1—S1119.47 (15)C20—C15—S2118.96 (16)
C3—C2—C1119.89 (19)C17—C16—C15120.2 (3)
C3—C2—H2120.1C17—C16—H16119.9
C1—C2—H2120.1C15—C16—H16119.9
C2—C3—C4119.20 (19)C16—C17—C18119.2 (3)
C2—C3—H3120.4C16—C17—H17120.4
C4—C3—H3120.4C18—C17—H17120.4
C5—C4—C3121.3 (2)C17—C18—C19121.9 (3)
C5—C4—Cl1119.91 (18)C17—C18—Cl2119.9 (3)
C3—C4—Cl1118.74 (18)C19—C18—Cl2118.3 (3)
C4—C5—C6119.5 (2)C20—C19—C18118.5 (3)
C4—C5—H5120.2C20—C19—H19120.8
C6—C5—H5120.2C18—C19—H19120.8
C5—C6—C1119.80 (19)C19—C20—C15119.8 (2)
C5—C6—H6120.1C19—C20—H20120.1
C1—C6—H6120.1C15—C20—H20120.1
C8—C7—C12120.94 (19)C22—C21—C26121.60 (18)
C8—C7—N1120.78 (17)C22—C21—N2120.70 (17)
C12—C7—N1118.22 (18)C26—C21—N2117.70 (17)
C7—C8—C9116.84 (19)C21—C22—C23116.47 (18)
C7—C8—C13122.87 (19)C21—C22—C27122.79 (19)
C9—C8—C13120.3 (2)C23—C22—C27120.73 (19)
C10—C9—C8121.8 (2)C24—C23—C22122.1 (2)
C10—C9—H9119.1C24—C23—H23118.9
C8—C9—H9119.1C22—C23—H23118.9
C11—C10—C9121.5 (2)C23—C24—C25121.2 (2)
C11—C10—H10119.2C23—C24—H24119.4
C9—C10—H10119.2C25—C24—H24119.4
C10—C11—C12117.3 (2)C24—C25—C26117.83 (19)
C10—C11—C14122.3 (2)C24—C25—C28121.5 (2)
C12—C11—C14120.5 (3)C26—C25—C28120.7 (2)
C11—C12—C7121.6 (2)C25—C26—C21120.71 (19)
C11—C12—H12119.2C25—C26—H26119.6
C7—C12—H12119.2C21—C26—H26119.6
C8—C13—H13A109.5C22—C27—H27A109.5
C8—C13—H13B109.5C22—C27—H27B109.5
H13A—C13—H13B109.5H27A—C27—H27B109.5
C8—C13—H13C109.5C22—C27—H27C109.5
H13A—C13—H13C109.5H27A—C27—H27C109.5
H13B—C13—H13C109.5H27B—C27—H27C109.5
C11—C14—H14A109.5C25—C28—H28A109.5
C11—C14—H14B109.5C25—C28—H28B109.5
H14A—C14—H14B109.5H28A—C28—H28B109.5
C11—C14—H14C109.5C25—C28—H28C109.5
H14A—C14—H14C109.5H28A—C28—H28C109.5
H14B—C14—H14C109.5H28B—C28—H28C109.5
O1—S1—N1—C750.51 (17)O3—S2—N2—C2160.53 (18)
O2—S1—N1—C7179.50 (15)O4—S2—N2—C21170.55 (16)
C1—S1—N1—C765.34 (16)C15—S2—N2—C2154.62 (17)
O1—S1—C1—C2167.76 (15)O3—S2—C15—C16144.82 (18)
O2—S1—C1—C236.91 (18)O4—S2—C15—C1614.0 (2)
N1—S1—C1—C275.89 (17)N2—S2—C15—C1699.20 (19)
O1—S1—C1—C614.51 (19)O3—S2—C15—C2038.66 (19)
O2—S1—C1—C6145.36 (16)O4—S2—C15—C20169.51 (16)
N1—S1—C1—C6101.84 (17)N2—S2—C15—C2077.32 (18)
C6—C1—C2—C30.6 (3)C20—C15—C16—C170.8 (3)
S1—C1—C2—C3178.30 (16)S2—C15—C16—C17175.64 (19)
C1—C2—C3—C40.4 (3)C15—C16—C17—C180.9 (4)
C2—C3—C4—C51.0 (3)C16—C17—C18—C191.7 (4)
C2—C3—C4—Cl1177.72 (16)C16—C17—C18—Cl2177.4 (2)
C3—C4—C5—C60.5 (4)C17—C18—C19—C200.6 (4)
Cl1—C4—C5—C6178.20 (18)Cl2—C18—C19—C20178.53 (18)
C4—C5—C6—C10.6 (4)C18—C19—C20—C151.2 (4)
C2—C1—C6—C51.1 (3)C16—C15—C20—C191.9 (3)
S1—C1—C6—C5178.82 (17)S2—C15—C20—C19174.61 (18)
S1—N1—C7—C8112.12 (18)S2—N2—C21—C22109.42 (18)
S1—N1—C7—C1270.4 (2)S2—N2—C21—C2670.3 (2)
C12—C7—C8—C90.1 (3)C26—C21—C22—C232.2 (3)
N1—C7—C8—C9177.55 (17)N2—C21—C22—C23178.08 (17)
C12—C7—C8—C13179.6 (2)C26—C21—C22—C27176.96 (19)
N1—C7—C8—C132.2 (3)N2—C21—C22—C272.7 (3)
C7—C8—C9—C100.0 (3)C21—C22—C23—C242.5 (3)
C13—C8—C9—C10179.7 (2)C27—C22—C23—C24176.7 (2)
C8—C9—C10—C110.2 (4)C22—C23—C24—C250.5 (3)
C9—C10—C11—C120.5 (3)C23—C24—C25—C261.8 (3)
C9—C10—C11—C14179.9 (2)C23—C24—C25—C28179.2 (2)
C10—C11—C12—C70.6 (3)C24—C25—C26—C212.1 (3)
C14—C11—C12—C7180.0 (2)C28—C25—C26—C21179.0 (2)
C8—C7—C12—C110.4 (3)C22—C21—C26—C250.1 (3)
N1—C7—C12—C11177.91 (17)N2—C21—C26—C25179.65 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.85 (2)2.12 (2)2.950 (2)166 (2)
N2—H2N···O4ii0.83 (2)2.13 (2)2.931 (2)162 (2)
Symmetry codes: (i) x, y, z+2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H14ClNO2S
Mr295.77
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.624 (1), 11.165 (1), 13.845 (2)
α, β, γ (°)74.643 (8), 67.654 (7), 82.195 (8)
V3)1463.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.44 × 0.40 × 0.36
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2009)
Tmin, Tmax0.844, 0.869
No. of measured, independent and
observed [I > 2σ(I)] reflections
10424, 5971, 4355
Rint0.012
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.118, 1.03
No. of reflections5971
No. of parameters353
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.31

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.845 (15)2.124 (16)2.950 (2)166 (2)
N2—H2N···O4ii0.830 (15)2.129 (17)2.931 (2)162 (2)
Symmetry codes: (i) x, y, z+2; (ii) x+1, y+1, z+1.
 

Acknowledgements

KS thanks the University Grants Commission, Government of India, New Delhi, for the award of a research fellowship under its faculty improvement program.

References

First citationAdsmond, D. A. & Grant, D. J. W. (2001). J. Pharm. Sci. 90, 2058–2077.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009). Acta Cryst. E65, o2763.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Paulus, H. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 791–800.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011a). Acta Cryst. E67, o1252.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShakuntala, K., Foro, S. & Gowda, B. T. (2011b). Acta Cryst. E67, o1328.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds