organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,5-Bis(1-phenyl­ethyl­­idene)thio­carbono­hydrazide

aAtherosclerosis Institute, Taishan Medical University, 271000 Taian, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Taishan Medical University, 271016 Taian, People's Republic of China
*Correspondence e-mail: jzpap@yahoo.com.cn

(Received 23 April 2011; accepted 14 May 2011; online 25 May 2011)

The title mol­ecule, C17H18N4S, is not planar, as indicated by the dihedral angle of 27.24 (9)° between the two benzene rings. In the crystal, inter­molecular N—H⋯S hydrogen bonds link pairs of mol­ecules into inversion dimers.

Related literature

For the biological activity and catalytic abilities of Schiff base derivatives and complexes, see: Loncle et al. (2004[Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067-1071.]); Camp et al. (2010[Camp, C., Mougel, V., Horeglad, P., Pcaut, J. & Mazzanti, M. (2010). J. Am. Chem. Soc. 132, 17374-17377.]). For a related structure, see: Meyers et al. (1995[Meyers, C. Y., Kolb, V. M. & Robinson, P. D. (1995). Acta Cryst. C51, 775-777.]).

[Scheme 1]

Experimental

Crystal data
  • C17H18N4S

  • Mr = 310.41

  • Triclinic, [P \overline 1]

  • a = 7.5947 (15) Å

  • b = 8.8202 (18) Å

  • c = 13.084 (3) Å

  • α = 76.62 (3)°

  • β = 76.39 (3)°

  • γ = 82.35 (3)°

  • V = 825.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 293 K

  • 0.20 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.962, Tmax = 0.977

  • 4272 measured reflections

  • 2876 independent reflections

  • 2033 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.146

  • S = 1.02

  • 2876 reflections

  • 202 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯S1i 0.86 2.67 3.515 (2) 169
Symmetry code: (i) -x+2, -y+1, -z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Much interest has recently been paid to the design of schiff base derivatives and complexes, owing to their wide range of biological activities and catalytical abilities (Loncle et al., 2004; Camp et al., 2010). We have synthesized title compound, (I), and report here its crystal structure (Fig. 1). The bond lengths and angles are normal and correspond to those observed in bis(3-fluorophenylmethine)carbonohydrazide (Meyers et al., 1995). The planes of atoms N2/N1/C1 and benzene ring C4-C9 form a dihedral angle of 2.62 (23)°, indicating that this part of the molecule is nearly planar. However, benzene rings C4-C9 and C12-C17 form a dihedral angle of 27.24 (9)°. Intermolecular N—H···S hydrogen bonds link two molecules into one dimer (Table 1, Fig. 2).

Related literature top

For the biological activity and catalytical abilities of Schiff base derivatives and complexes, see: Loncle et al. (2004); Camp et al. (2010). For a related structure, see: Meyers et al. (1995).

Experimental top

Acetophenone (10.0 mmol) and thiocarbohydrazide (5.0 mmol) were mixed in 50 ml flash under sovlent-free condtions After stirring 3 h at 373 K, the resulting mixture was cooled to room temperature, and recrystalized from ethanol, and afforded the title compound as a crystalline solid.

Refinement top

All H atoms were placed in geometrically idealized positions (N—H 0.86 and C—H 0.93–0.96 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2–1.5Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of (I) showing the atomic numbering and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. View along a-axis of the packing of (I). N—H···S interactions are represented by dashed lines.
1,5-Bis(1-phenylethylidene)thiocarbonohydrazide top
Crystal data top
C17H18N4SZ = 2
Mr = 310.41F(000) = 328
Triclinic, P1Dx = 1.248 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5947 (15) ÅCell parameters from 1351 reflections
b = 8.8202 (18) Åθ = 2.6–25.1°
c = 13.084 (3) ŵ = 0.20 mm1
α = 76.62 (3)°T = 293 K
β = 76.39 (3)°Block, colourless
γ = 82.35 (3)°0.20 × 0.16 × 0.12 mm
V = 825.8 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2876 independent reflections
Radiation source: fine-focus sealed tube2033 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.962, Tmax = 0.977k = 109
4272 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.146 w = 1/[σ2(Fo2) + (0.0718P)2 + 0.2086P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2876 reflectionsΔρmax = 0.24 e Å3
202 parametersΔρmin = 0.19 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (4)
Crystal data top
C17H18N4Sγ = 82.35 (3)°
Mr = 310.41V = 825.8 (3) Å3
Triclinic, P1Z = 2
a = 7.5947 (15) ÅMo Kα radiation
b = 8.8202 (18) ŵ = 0.20 mm1
c = 13.084 (3) ÅT = 293 K
α = 76.62 (3)°0.20 × 0.16 × 0.12 mm
β = 76.39 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2876 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2033 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.977Rint = 0.022
4272 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.146H-atom parameters constrained
S = 1.02Δρmax = 0.24 e Å3
2876 reflectionsΔρmin = 0.19 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.91194 (11)0.69768 (7)0.10817 (5)0.0688 (3)
N10.7946 (3)0.9200 (2)0.00704 (14)0.0560 (6)
H10.77790.95000.06690.067*
N20.7386 (3)1.0205 (2)0.07909 (14)0.0521 (5)
N30.9241 (3)0.6971 (2)0.09311 (14)0.0566 (6)
H30.97870.60460.09820.068*
N40.8830 (3)0.7712 (2)0.17832 (15)0.0520 (5)
C10.8745 (3)0.7765 (3)0.00005 (18)0.0524 (6)
C20.6582 (3)1.1530 (3)0.06107 (18)0.0498 (6)
C30.6205 (4)1.2028 (3)0.0448 (2)0.0677 (8)
H3A0.60981.11200.10220.102*
H3B0.50911.26890.05250.102*
H3C0.71851.25920.04740.102*
C40.6017 (3)1.2612 (2)0.15566 (18)0.0514 (6)
C50.6339 (4)1.2169 (3)0.25393 (19)0.0617 (7)
H50.68931.11800.26040.074*
C60.5846 (4)1.3179 (3)0.3422 (2)0.0701 (8)
H60.60781.28670.40760.084*
C70.5015 (4)1.4645 (3)0.3343 (2)0.0704 (8)
H70.46941.53240.39420.085*
C80.4666 (4)1.5095 (3)0.2381 (2)0.0748 (8)
H80.40921.60800.23210.090*
C90.5164 (4)1.4089 (3)0.1491 (2)0.0661 (8)
H90.49211.44110.08390.079*
C100.9131 (3)0.6990 (3)0.27089 (18)0.0516 (6)
C110.9913 (4)0.5327 (3)0.2956 (2)0.0708 (8)
H11A0.91600.46570.27970.106*
H11B0.99610.50320.37030.106*
H11C1.11180.52280.25250.106*
C120.8641 (3)0.7926 (3)0.35463 (18)0.0528 (6)
C130.8581 (5)0.9550 (3)0.3268 (2)0.0790 (9)
H130.88941.00490.25500.095*
C140.8063 (7)1.0415 (4)0.4049 (3)0.1186 (16)
H140.80121.15010.38550.142*
C150.7621 (7)0.9703 (4)0.5109 (3)0.1202 (16)
H150.72701.03040.56310.144*
C160.7691 (5)0.8118 (4)0.5402 (2)0.0960 (12)
H160.73840.76330.61240.115*
C170.8217 (4)0.7239 (3)0.4628 (2)0.0696 (8)
H170.82910.61540.48340.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.1111 (7)0.0488 (4)0.0460 (4)0.0237 (4)0.0270 (4)0.0155 (3)
N10.0858 (16)0.0416 (10)0.0403 (10)0.0161 (10)0.0229 (10)0.0105 (8)
N20.0758 (14)0.0391 (10)0.0407 (10)0.0090 (9)0.0189 (9)0.0079 (8)
N30.0823 (15)0.0436 (11)0.0424 (11)0.0156 (10)0.0214 (10)0.0092 (9)
N40.0683 (14)0.0459 (11)0.0418 (10)0.0067 (9)0.0171 (9)0.0102 (8)
C10.0691 (17)0.0430 (12)0.0427 (13)0.0073 (11)0.0156 (11)0.0071 (10)
C20.0654 (16)0.0407 (12)0.0446 (13)0.0064 (11)0.0165 (11)0.0128 (10)
C30.097 (2)0.0580 (15)0.0537 (15)0.0202 (14)0.0303 (15)0.0234 (12)
C40.0660 (16)0.0410 (12)0.0474 (13)0.0063 (11)0.0176 (12)0.0103 (10)
C50.086 (2)0.0492 (14)0.0503 (14)0.0137 (13)0.0234 (13)0.0130 (11)
C60.096 (2)0.0658 (17)0.0490 (14)0.0156 (15)0.0264 (14)0.0144 (13)
C70.086 (2)0.0609 (16)0.0582 (17)0.0102 (14)0.0271 (15)0.0019 (13)
C80.103 (2)0.0476 (14)0.0700 (18)0.0218 (15)0.0289 (16)0.0092 (13)
C90.094 (2)0.0482 (14)0.0533 (15)0.0171 (13)0.0203 (14)0.0140 (12)
C100.0650 (16)0.0453 (13)0.0444 (13)0.0039 (11)0.0194 (11)0.0058 (10)
C110.101 (2)0.0559 (15)0.0552 (15)0.0207 (15)0.0320 (15)0.0116 (12)
C120.0649 (16)0.0496 (13)0.0446 (13)0.0031 (11)0.0183 (11)0.0088 (11)
C130.132 (3)0.0535 (16)0.0543 (16)0.0003 (16)0.0293 (17)0.0106 (13)
C140.230 (5)0.0540 (18)0.078 (2)0.015 (2)0.049 (3)0.0248 (17)
C150.219 (5)0.078 (2)0.065 (2)0.028 (3)0.036 (3)0.0342 (18)
C160.156 (3)0.080 (2)0.0468 (16)0.014 (2)0.0207 (19)0.0171 (15)
C170.104 (2)0.0558 (15)0.0473 (15)0.0050 (15)0.0223 (14)0.0075 (12)
Geometric parameters (Å, º) top
S1—C11.667 (2)C7—H70.9300
N1—C11.343 (3)C8—C91.388 (3)
N1—N21.378 (2)C8—H80.9300
N1—H10.8600C9—H90.9300
N2—C21.290 (3)C10—C121.471 (3)
N3—C11.367 (3)C10—C111.499 (3)
N3—N41.374 (3)C11—H11A0.9600
N3—H30.8600C11—H11B0.9600
N4—C101.288 (3)C11—H11C0.9600
C2—C41.490 (3)C12—C171.383 (3)
C2—C31.502 (3)C12—C131.392 (3)
C3—H3A0.9600C13—C141.368 (4)
C3—H3B0.9600C13—H130.9300
C3—H3C0.9600C14—C151.366 (5)
C4—C51.387 (3)C14—H140.9300
C4—C91.388 (3)C15—C161.358 (5)
C5—C61.380 (3)C15—H150.9300
C5—H50.9300C16—C171.370 (4)
C6—C71.376 (4)C16—H160.9300
C6—H60.9300C17—H170.9300
C7—C81.363 (4)
C1—N1—N2121.73 (18)C7—C8—H8119.9
C1—N1—H1119.1C9—C8—H8119.9
N2—N1—H1119.1C8—C9—C4121.1 (2)
C2—N2—N1115.81 (18)C8—C9—H9119.5
C1—N3—N4117.21 (18)C4—C9—H9119.5
C1—N3—H3121.4N4—C10—C12114.8 (2)
N4—N3—H3121.4N4—C10—C11124.5 (2)
C10—N4—N3120.56 (19)C12—C10—C11120.7 (2)
N1—C1—N3112.62 (19)C10—C11—H11A109.5
N1—C1—S1125.52 (17)C10—C11—H11B109.5
N3—C1—S1121.86 (17)H11A—C11—H11B109.5
N2—C2—C4114.99 (19)C10—C11—H11C109.5
N2—C2—C3125.2 (2)H11A—C11—H11C109.5
C4—C2—C3119.78 (19)H11B—C11—H11C109.5
C2—C3—H3A109.5C17—C12—C13117.6 (2)
C2—C3—H3B109.5C17—C12—C10121.9 (2)
H3A—C3—H3B109.5C13—C12—C10120.5 (2)
C2—C3—H3C109.5C14—C13—C12120.2 (3)
H3A—C3—H3C109.5C14—C13—H13119.9
H3B—C3—H3C109.5C12—C13—H13119.9
C5—C4—C9117.8 (2)C15—C14—C13120.7 (3)
C5—C4—C2120.7 (2)C15—C14—H14119.6
C9—C4—C2121.6 (2)C13—C14—H14119.6
C6—C5—C4120.8 (2)C16—C15—C14120.2 (3)
C6—C5—H5119.6C16—C15—H15119.9
C4—C5—H5119.6C14—C15—H15119.9
C7—C6—C5120.6 (2)C15—C16—C17119.6 (3)
C7—C6—H6119.7C15—C16—H16120.2
C5—C6—H6119.7C17—C16—H16120.2
C8—C7—C6119.5 (2)C16—C17—C12121.6 (3)
C8—C7—H7120.2C16—C17—H17119.2
C6—C7—H7120.2C12—C17—H17119.2
C7—C8—C9120.2 (2)
C1—N1—N2—C2177.7 (2)C7—C8—C9—C40.2 (5)
C1—N3—N4—C10174.7 (2)C5—C4—C9—C80.6 (4)
N2—N1—C1—N3178.3 (2)C2—C4—C9—C8179.1 (3)
N2—N1—C1—S11.9 (4)N3—N4—C10—C12179.5 (2)
N4—N3—C1—N11.4 (3)N3—N4—C10—C110.6 (4)
N4—N3—C1—S1178.43 (18)N4—C10—C12—C17155.1 (3)
N1—N2—C2—C4179.0 (2)C11—C10—C12—C1724.8 (4)
N1—N2—C2—C30.8 (4)N4—C10—C12—C1324.6 (4)
N2—C2—C4—C50.8 (4)C11—C10—C12—C13155.6 (3)
C3—C2—C4—C5179.5 (2)C17—C12—C13—C141.9 (5)
N2—C2—C4—C9178.9 (3)C10—C12—C13—C14177.7 (3)
C3—C2—C4—C90.8 (4)C12—C13—C14—C150.8 (6)
C9—C4—C5—C60.9 (4)C13—C14—C15—C160.0 (7)
C2—C4—C5—C6178.8 (3)C14—C15—C16—C170.3 (7)
C4—C5—C6—C70.4 (5)C15—C16—C17—C121.5 (6)
C5—C6—C7—C80.5 (5)C13—C12—C17—C162.3 (5)
C6—C7—C8—C90.7 (5)C10—C12—C17—C16177.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···S1i0.862.673.515 (2)169
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H18N4S
Mr310.41
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5947 (15), 8.8202 (18), 13.084 (3)
α, β, γ (°)76.62 (3), 76.39 (3), 82.35 (3)
V3)825.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.20 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.962, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
4272, 2876, 2033
Rint0.022
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.146, 1.02
No. of reflections2876
No. of parameters202
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.19

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···S1i0.862.673.515 (2)169
Symmetry code: (i) x+2, y+1, z.
 

Acknowledgements

The authors acknowledge financial support by Taishan Medical University.

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCamp, C., Mougel, V., Horeglad, P., Pcaut, J. & Mazzanti, M. (2010). J. Am. Chem. Soc. 132, 17374–17377.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLoncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). Eur. J. Med. Chem. 39, 1067–1071.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMeyers, C. Y., Kolb, V. M. & Robinson, P. D. (1995). Acta Cryst. C51, 775–777.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds