metal-organic compounds
Bis(diethylenetriamine)cobalt(III) hexachloridoindate(III)
aDepartment of Materials and Chemical Engineering, Ministry of Education Key Laboratory of Application Technology of Hainan, Superior Resources Chemical Materials, Hainan University, Haikou 570228, Hainan Province, People's Republic of China
*Correspondence e-mail: czl69995@163.com
The title compound, [Co(C4H13N3)2][InCl6], was synthesized under hydrothermal conditions. In the cation, the Co—N bond lengths lie in the range 1.967 (2)–1.9684 (15) Å. In the anion, the InIII atom is coordinated by six Cl atoms resulting in a slightly distorted octahedral geometry. Both metal atoms are located on special positions of 2/m. Furthermore, one Cl atom and one N atom are located on a mirror plane. N—H⋯Cl hydrogen bonds between cations and anions consolidate the crystal packing.
Related literature
For the use of chiral metal complexes as templates in the synthesis of open-framework metal phosphates and germanates, see: Stalder & Wilkinson (1997); Wang et al. (2003a,b); Pan et al. (2005, 2008). For the introduction of chiral metal complexes into coordination polymers, see: Pan et al. (2010a,b, 2011); Tong & Pan (2011). For In—Cl bond lengths in other hexachloridoindium compounds, see: Rothammel et al. (1998).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811016758/vm2092sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811016758/vm2092Isup2.hkl
In a typical synthesis, a mixture of InCl3.4H2O (1 mmol), H3PO4 (4 mmol) Co(dien)2Cl3 (0.25 mmol) and H2O (10 ml) was added to a 20 ml Teflon-lined reactor under autogenous pressure at 100 °C for 3 days. Yellow block crystals were obtained.
All H atoms were positioned geometrically (C—H = 0.97 Å and N—H = 0.90-0.91 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent atom).
Data collection: APEX2 (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. A view of the structure of complex. Ellipsoids are drawn at the 50% probability level.[Symmetry codes: (i) x,y,-z; (ii) -1/2 - x,-1/2 - y,z; (iii) -1/2 - x,-1/2 - y,-z.] |
[Co(C4H13N3)2][InCl6] | F(000) = 1176 |
Mr = 592.80 | Dx = 2.008 Mg m−3 |
Orthorhombic, Cccm | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2 2c | θ = 2.3–28.3° |
a = 10.8925 (5) Å | µ = 2.84 mm−1 |
b = 14.7291 (7) Å | T = 296 K |
c = 12.2205 (6) Å | Block, yellow |
V = 1960.62 (16) Å3 | 0.2 × 0.18 × 0.15 mm |
Z = 4 |
Bruker SMART APEX CCD area-detector diffractometer | 1282 independent reflections |
Radiation source: fine-focus sealed tube | 1139 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
Detector resolution: 5.00cm pixels mm-1 | θmax = 28.3°, θmin = 2.3° |
ϕ and ω scans | h = −14→11 |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | k = −19→18 |
Tmin = 0.572, Tmax = 0.653 | l = −12→16 |
6910 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.018 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.046 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0179P)2 + 3.2797P] where P = (Fo2 + 2Fc2)/3 |
1282 reflections | (Δ/σ)max < 0.001 |
57 parameters | Δρmax = 0.34 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
[Co(C4H13N3)2][InCl6] | V = 1960.62 (16) Å3 |
Mr = 592.80 | Z = 4 |
Orthorhombic, Cccm | Mo Kα radiation |
a = 10.8925 (5) Å | µ = 2.84 mm−1 |
b = 14.7291 (7) Å | T = 296 K |
c = 12.2205 (6) Å | 0.2 × 0.18 × 0.15 mm |
Bruker SMART APEX CCD area-detector diffractometer | 1282 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2002) | 1139 reflections with I > 2σ(I) |
Tmin = 0.572, Tmax = 0.653 | Rint = 0.021 |
6910 measured reflections |
R[F2 > 2σ(F2)] = 0.018 | 0 restraints |
wR(F2) = 0.046 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.34 e Å−3 |
1282 reflections | Δρmin = −0.37 e Å−3 |
57 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
In1 | −0.2500 | −0.2500 | 0.0000 | 0.02018 (8) | |
Co1 | −0.2500 | 0.2500 | 0.0000 | 0.01769 (10) | |
Cl1 | −0.38483 (5) | −0.31981 (4) | 0.14285 (4) | 0.03547 (12) | |
Cl2 | −0.38713 (6) | −0.11293 (4) | 0.0000 | 0.03569 (17) | |
N1 | −0.35382 (15) | 0.19629 (10) | 0.11486 (13) | 0.0265 (3) | |
H1A | −0.3447 | 0.2282 | 0.1772 | 0.080* | |
H1B | −0.4331 | 0.1999 | 0.0945 | 0.080* | |
N2 | −0.1606 (2) | 0.13392 (14) | 0.0000 | 0.0228 (4) | |
H2 | −0.0789 | 0.1466 | 0.0000 | 0.080* | |
C1 | −0.18921 (19) | 0.08352 (13) | 0.10310 (16) | 0.0289 (4) | |
H1C | −0.1353 | 0.1041 | 0.1612 | 0.080* | |
H1D | −0.1753 | 0.0191 | 0.0921 | 0.080* | |
C2 | −0.32142 (19) | 0.09943 (13) | 0.13544 (17) | 0.0295 (4) | |
H2A | −0.3748 | 0.0601 | 0.0931 | 0.080* | |
H2B | −0.3326 | 0.0853 | 0.2123 | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
In1 | 0.01848 (12) | 0.02348 (13) | 0.01860 (12) | 0.00027 (9) | 0.000 | 0.000 |
Co1 | 0.0176 (2) | 0.0165 (2) | 0.0190 (2) | −0.00096 (17) | 0.000 | 0.000 |
Cl1 | 0.0303 (2) | 0.0454 (3) | 0.0307 (2) | −0.0003 (2) | 0.0080 (2) | 0.0119 (2) |
Cl2 | 0.0245 (3) | 0.0231 (3) | 0.0595 (5) | 0.0016 (2) | 0.000 | 0.000 |
N1 | 0.0266 (8) | 0.0242 (7) | 0.0286 (8) | −0.0011 (6) | 0.0058 (6) | 0.0023 (6) |
N2 | 0.0220 (10) | 0.0210 (10) | 0.0255 (11) | 0.0000 (8) | 0.000 | 0.000 |
C1 | 0.0342 (10) | 0.0247 (9) | 0.0277 (9) | 0.0031 (8) | −0.0027 (8) | 0.0049 (7) |
C2 | 0.0352 (11) | 0.0234 (9) | 0.0298 (10) | −0.0029 (8) | 0.0031 (8) | 0.0056 (7) |
In1—Cl1i | 2.5024 (5) | N1—C2 | 1.491 (2) |
In1—Cl1ii | 2.5024 (5) | N1—H1A | 0.9000 |
In1—Cl1 | 2.5024 (5) | N1—H1B | 0.9000 |
In1—Cl1iii | 2.5024 (5) | N2—C1i | 1.495 (2) |
In1—Cl2iii | 2.5114 (7) | N2—C1 | 1.495 (2) |
In1—Cl2 | 2.5114 (7) | N2—H2 | 0.9100 |
Co1—N2 | 1.967 (2) | C1—C2 | 1.512 (3) |
Co1—N2iv | 1.967 (2) | C1—H1C | 0.9700 |
Co1—N1i | 1.9684 (15) | C1—H1D | 0.9700 |
Co1—N1v | 1.9684 (15) | C2—H2A | 0.9700 |
Co1—N1iv | 1.9684 (15) | C2—H2B | 0.9700 |
Co1—N1 | 1.9684 (15) | ||
Cl1i—In1—Cl1ii | 180.0 | N1i—Co1—N1 | 90.97 (10) |
Cl1i—In1—Cl1 | 88.48 (3) | N1v—Co1—N1 | 89.03 (10) |
Cl1ii—In1—Cl1 | 91.52 (3) | N1iv—Co1—N1 | 180.00 (8) |
Cl1i—In1—Cl1iii | 91.52 (3) | C2—N1—Co1 | 111.65 (12) |
Cl1ii—In1—Cl1iii | 88.48 (3) | C2—N1—H1A | 109.3 |
Cl1—In1—Cl1iii | 180.0 | Co1—N1—H1A | 109.3 |
Cl1i—In1—Cl2iii | 91.076 (16) | C2—N1—H1B | 109.3 |
Cl1ii—In1—Cl2iii | 88.924 (17) | Co1—N1—H1B | 109.3 |
Cl1—In1—Cl2iii | 91.076 (16) | H1A—N1—H1B | 108.0 |
Cl1iii—In1—Cl2iii | 88.924 (17) | C1i—N2—C1 | 114.8 (2) |
Cl1i—In1—Cl2 | 88.924 (17) | C1i—N2—Co1 | 109.18 (12) |
Cl1ii—In1—Cl2 | 91.076 (16) | C1—N2—Co1 | 109.18 (12) |
Cl1—In1—Cl2 | 88.924 (17) | C1i—N2—H2 | 107.8 |
Cl1iii—In1—Cl2 | 91.076 (16) | C1—N2—H2 | 107.8 |
Cl2iii—In1—Cl2 | 180.0 | Co1—N2—H2 | 107.8 |
N2—Co1—N2iv | 180.0 | N2—C1—C2 | 109.98 (16) |
N2—Co1—N1i | 86.27 (6) | N2—C1—H1C | 109.7 |
N2iv—Co1—N1i | 93.73 (6) | C2—C1—H1C | 109.7 |
N2—Co1—N1v | 93.73 (6) | N2—C1—H1D | 109.7 |
N2iv—Co1—N1v | 86.27 (6) | C2—C1—H1D | 109.7 |
N1i—Co1—N1v | 180.00 (10) | H1C—C1—H1D | 108.2 |
N2—Co1—N1iv | 93.73 (6) | N1—C2—C1 | 109.24 (15) |
N2iv—Co1—N1iv | 86.27 (6) | N1—C2—H2A | 109.8 |
N1i—Co1—N1iv | 89.03 (10) | C1—C2—H2A | 109.8 |
N1v—Co1—N1iv | 90.97 (10) | N1—C2—H2B | 109.8 |
N2—Co1—N1 | 86.27 (6) | C1—C2—H2B | 109.8 |
N2iv—Co1—N1 | 93.73 (6) | H2A—C2—H2B | 108.3 |
Symmetry codes: (i) x, y, −z; (ii) −x−1/2, −y−1/2, z; (iii) −x−1/2, −y−1/2, −z; (iv) −x−1/2, −y+1/2, −z; (v) −x−1/2, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1vi | 0.90 | 2.62 | 3.4915 (17) | 164 |
N1—H1B···Cl2vii | 0.90 | 2.61 | 3.3823 (18) | 144 |
N1—H1B···Cl1viii | 0.90 | 2.72 | 3.3957 (17) | 133 |
N2—H2···Cl1ix | 0.91 | 2.79 | 3.5407 (19) | 141 |
N2—H2···Cl1x | 0.91 | 2.79 | 3.5407 (19) | 141 |
Symmetry codes: (vi) x, −y, −z+1/2; (vii) −x−1, −y, −z; (viii) −x−1, −y, z; (ix) x+1/2, y+1/2, z; (x) x+1/2, y+1/2, −z. |
Experimental details
Crystal data | |
Chemical formula | [Co(C4H13N3)2][InCl6] |
Mr | 592.80 |
Crystal system, space group | Orthorhombic, Cccm |
Temperature (K) | 296 |
a, b, c (Å) | 10.8925 (5), 14.7291 (7), 12.2205 (6) |
V (Å3) | 1960.62 (16) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.84 |
Crystal size (mm) | 0.2 × 0.18 × 0.15 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2002) |
Tmin, Tmax | 0.572, 0.653 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6910, 1282, 1139 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.018, 0.046, 1.06 |
No. of reflections | 1282 |
No. of parameters | 57 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.34, −0.37 |
Computer programs: APEX2 (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···Cl1i | 0.90 | 2.62 | 3.4915 (17) | 164 |
N1—H1B···Cl2ii | 0.90 | 2.61 | 3.3823 (18) | 144 |
N1—H1B···Cl1iii | 0.90 | 2.72 | 3.3957 (17) | 133 |
N2—H2···Cl1iv | 0.91 | 2.79 | 3.5407 (19) | 141 |
N2—H2···Cl1v | 0.91 | 2.79 | 3.5407 (19) | 141 |
Symmetry codes: (i) x, −y, −z+1/2; (ii) −x−1, −y, −z; (iii) −x−1, −y, z; (iv) x+1/2, y+1/2, z; (v) x+1/2, y+1/2, −z. |
References
Bruker (2002). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Pan, Q. H., Cheng, Q. & Bu, X.-H. (2010b). CrystEngComm, 12, 4198–4204. Web of Science CSD CrossRef CAS Google Scholar
Pan, Q. H., Cheng, Q. & Bu, X.-H. (2011). Chem. J. Chin. Univ. 32, 527–531. CAS Google Scholar
Pan, Q. H., Li, J. Y. & Bu, X.-H. (2010a). Micropor. Mesopor. Mater. 132, 453–457. Web of Science CSD CrossRef CAS Google Scholar
Pan, Q. H., Yu, J. H. & Xu, R. R. (2005). Chem. J. Chin. Univ. 26, 2199–2202. CAS Google Scholar
Pan, Q. H., Yu, J. H. & Xu, R. R. (2008). Chem. Mater. 20, 370–372. Web of Science CSD CrossRef CAS Google Scholar
Rothammel, W., Spengler, R., Burzlaff, H., Jarraya, S. & Ben Salah, A. (1998). Acta Cryst. C54, IUC9800059. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stalder, S. M. & Wilkinson, A. P. (1997). Chem. Mater. 9, 2168–2173. CSD CrossRef CAS Web of Science Google Scholar
Tong, J. & Pan, Q. (2011). Acta Cryst. E67, m579–m580. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Wang, Y., Yu, J. H. & Xu, R. R. (2003a). Angew. Chem. Int. Ed. 42, 4089–4092. Web of Science CSD CrossRef CAS Google Scholar
Wang, Y., Yu, J. H. & Xu, R. R. (2003b). Chem. Eur. J. 9, 5048–5055. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Chiral metal complexes are interesting templates for the synthesis of novel materials, because they are versatile and can be made with a wide of shapes, charges and particularly chirality. As templates, they have been used in the synthesis of open-framework metal phosphates and germanates, (for example: Stalder & Wilkinson, 1997; Wang et al., 2003a; Pan et al., 2005, 2008) and a new concept of chirality transfer of the chiral metal complex into the inorganic framework has been demonstrated (Wang et al., 2003b). Recently, Pan et al. introduced the chiral metal complexes into coordination polymers (Pan et al., 2010a, 2010b, 2011; Tong & Pan, 2011).
In this paper, we present a new hexachloro-indium templated by the metal complex [Co(dien)2]3+. As shown in Fig. 1, the crystal structure consists of discrete [InCl6]3- anions and [Co(dien)2]3+ cations. In [InCl6]3-, the indium center is coorinated by six Cl atoms, resulting in a slightly distorted octahedral geometry. The In—Cl bond distances are in the range of 2.5024 (5)–2.5114 (7) Å, which is consistent with other hexachloro-indium compounds (Rothammel et al., 1998). In [Co(dien)2]3+, the cobalt center also displays a slightly distorted octahedral geometry and is bonded to six N atoms of two diethylenetriamines with the Co—N distances of 1.967 (2)–1.9684 (15) Å.