metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(di­ethyl­enetri­amine)­cobalt(III) hexa­chloridoindate(III)

aDepartment of Materials and Chemical Engineering, Ministry of Education Key Laboratory of Application Technology of Hainan, Superior Resources Chemical Materials, Hainan University, Haikou 570228, Hainan Province, People's Republic of China
*Correspondence e-mail: czl69995@163.com

(Received 26 April 2011; accepted 3 May 2011; online 7 May 2011)

The title compound, [Co(C4H13N3)2][InCl6], was synthesized under hydro­thermal conditions. In the cation, the Co—N bond lengths lie in the range 1.967 (2)–1.9684 (15) Å. In the anion, the InIII atom is coordinated by six Cl atoms resulting in a slightly distorted octa­hedral geometry. Both metal atoms are located on special positions of site symmetry 2/m. Furthermore, one Cl atom and one N atom are located on a mirror plane. N—H⋯Cl hydrogen bonds between cations and anions consolidate the crystal packing.

Related literature

For the use of chiral metal complexes as templates in the synthesis of open-framework metal phosphates and germanates, see: Stalder & Wilkinson (1997[Stalder, S. M. & Wilkinson, A. P. (1997). Chem. Mater. 9, 2168-2173.]); Wang et al. (2003a[Wang, Y., Yu, J. H. & Xu, R. R. (2003a). Angew. Chem. Int. Ed. 42, 4089-4092.],b[Wang, Y., Yu, J. H. & Xu, R. R. (2003b). Chem. Eur. J. 9, 5048-5055.]); Pan et al. (2005[Pan, Q. H., Yu, J. H. & Xu, R. R. (2005). Chem. J. Chin. Univ. 26, 2199-2202.], 2008[Pan, Q. H., Yu, J. H. & Xu, R. R. (2008). Chem. Mater. 20, 370-372.]). For the introduction of chiral metal complexes into coordination polymers, see: Pan et al. (2010a[Pan, Q. H., Li, J. Y. & Bu, X.-H. (2010a). Micropor. Mesopor. Mater. 132, 453-457.],b[Pan, Q. H., Cheng, Q. & Bu, X.-H. (2010b). CrystEngComm, 12, 4198-4204.], 2011[Pan, Q. H., Cheng, Q. & Bu, X.-H. (2011). Chem. J. Chin. Univ. 32, 527-531.]); Tong & Pan (2011[Tong, J. & Pan, Q. (2011). Acta Cryst. E67, m579-m580.]). For In—Cl bond lengths in other hexa­chloridoindium compounds, see: Rothammel et al. (1998[Rothammel, W., Spengler, R., Burzlaff, H., Jarraya, S. & Ben Salah, A. (1998). Acta Cryst. C54, IUC9800059.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C4H13N3)2][InCl6]

  • Mr = 592.80

  • Orthorhombic, C c c m

  • a = 10.8925 (5) Å

  • b = 14.7291 (7) Å

  • c = 12.2205 (6) Å

  • V = 1960.62 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.84 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.572, Tmax = 0.653

  • 6910 measured reflections

  • 1282 independent reflections

  • 1139 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.046

  • S = 1.06

  • 1282 reflections

  • 57 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.90 2.62 3.4915 (17) 164
N1—H1B⋯Cl2ii 0.90 2.61 3.3823 (18) 144
N1—H1B⋯Cl1iii 0.90 2.72 3.3957 (17) 133
N2—H2⋯Cl1iv 0.91 2.79 3.5407 (19) 141
N2—H2⋯Cl1v 0.91 2.79 3.5407 (19) 141
Symmetry codes: (i) [x, -y, -z+{\script{1\over 2}}]; (ii) -x-1, -y, -z; (iii) -x-1, -y, z; (iv) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (v) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2002[Bruker (2002). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Chiral metal complexes are interesting templates for the synthesis of novel materials, because they are versatile and can be made with a wide of shapes, charges and particularly chirality. As templates, they have been used in the synthesis of open-framework metal phosphates and germanates, (for example: Stalder & Wilkinson, 1997; Wang et al., 2003a; Pan et al., 2005, 2008) and a new concept of chirality transfer of the chiral metal complex into the inorganic framework has been demonstrated (Wang et al., 2003b). Recently, Pan et al. introduced the chiral metal complexes into coordination polymers (Pan et al., 2010a, 2010b, 2011; Tong & Pan, 2011).

In this paper, we present a new hexachloro-indium templated by the metal complex [Co(dien)2]3+. As shown in Fig. 1, the crystal structure consists of discrete [InCl6]3- anions and [Co(dien)2]3+ cations. In [InCl6]3-, the indium center is coorinated by six Cl atoms, resulting in a slightly distorted octahedral geometry. The In—Cl bond distances are in the range of 2.5024 (5)–2.5114 (7) Å, which is consistent with other hexachloro-indium compounds (Rothammel et al., 1998). In [Co(dien)2]3+, the cobalt center also displays a slightly distorted octahedral geometry and is bonded to six N atoms of two diethylenetriamines with the Co—N distances of 1.967 (2)–1.9684 (15) Å.

Related literature top

For the use of chiral metal complexes as templates in the synthesis of open-framework metal phosphates and germanates, see: Stalder & Wilkinson (1997); Wang et al. (2003a,b); Pan et al. (2005, 2008). For the introduction of chiral metal complexes into coordination polymers, see: Pan et al. (2010a,b, 2011); Tong & Pan (2011). For In—Cl bond distances in other hexachloridoindium compounds, see: Rothammel et al. (1998).

Experimental top

In a typical synthesis, a mixture of InCl3.4H2O (1 mmol), H3PO4 (4 mmol) Co(dien)2Cl3 (0.25 mmol) and H2O (10 ml) was added to a 20 ml Teflon-lined reactor under autogenous pressure at 100 °C for 3 days. Yellow block crystals were obtained.

Refinement top

All H atoms were positioned geometrically (C—H = 0.97 Å and N—H = 0.90-0.91 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.2Ueq(parent atom).

Computing details top

Data collection: APEX2 (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the structure of complex. Ellipsoids are drawn at the 50% probability level.[Symmetry codes: (i) x,y,-z; (ii) -1/2 - x,-1/2 - y,z; (iii) -1/2 - x,-1/2 - y,-z.]
Bis(diethylenetriamine)cobalt(III) hexachloridoindate(III) top
Crystal data top
[Co(C4H13N3)2][InCl6]F(000) = 1176
Mr = 592.80Dx = 2.008 Mg m3
Orthorhombic, CccmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2 2cθ = 2.3–28.3°
a = 10.8925 (5) ŵ = 2.84 mm1
b = 14.7291 (7) ÅT = 296 K
c = 12.2205 (6) ÅBlock, yellow
V = 1960.62 (16) Å30.2 × 0.18 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1282 independent reflections
Radiation source: fine-focus sealed tube1139 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 5.00cm pixels mm-1θmax = 28.3°, θmin = 2.3°
ϕ and ω scansh = 1411
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
k = 1918
Tmin = 0.572, Tmax = 0.653l = 1216
6910 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.046H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0179P)2 + 3.2797P]
where P = (Fo2 + 2Fc2)/3
1282 reflections(Δ/σ)max < 0.001
57 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Co(C4H13N3)2][InCl6]V = 1960.62 (16) Å3
Mr = 592.80Z = 4
Orthorhombic, CccmMo Kα radiation
a = 10.8925 (5) ŵ = 2.84 mm1
b = 14.7291 (7) ÅT = 296 K
c = 12.2205 (6) Å0.2 × 0.18 × 0.15 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1282 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1139 reflections with I > 2σ(I)
Tmin = 0.572, Tmax = 0.653Rint = 0.021
6910 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.046H-atom parameters constrained
S = 1.06Δρmax = 0.34 e Å3
1282 reflectionsΔρmin = 0.37 e Å3
57 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
In10.25000.25000.00000.02018 (8)
Co10.25000.25000.00000.01769 (10)
Cl10.38483 (5)0.31981 (4)0.14285 (4)0.03547 (12)
Cl20.38713 (6)0.11293 (4)0.00000.03569 (17)
N10.35382 (15)0.19629 (10)0.11486 (13)0.0265 (3)
H1A0.34470.22820.17720.080*
H1B0.43310.19990.09450.080*
N20.1606 (2)0.13392 (14)0.00000.0228 (4)
H20.07890.14660.00000.080*
C10.18921 (19)0.08352 (13)0.10310 (16)0.0289 (4)
H1C0.13530.10410.16120.080*
H1D0.17530.01910.09210.080*
C20.32142 (19)0.09943 (13)0.13544 (17)0.0295 (4)
H2A0.37480.06010.09310.080*
H2B0.33260.08530.21230.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
In10.01848 (12)0.02348 (13)0.01860 (12)0.00027 (9)0.0000.000
Co10.0176 (2)0.0165 (2)0.0190 (2)0.00096 (17)0.0000.000
Cl10.0303 (2)0.0454 (3)0.0307 (2)0.0003 (2)0.0080 (2)0.0119 (2)
Cl20.0245 (3)0.0231 (3)0.0595 (5)0.0016 (2)0.0000.000
N10.0266 (8)0.0242 (7)0.0286 (8)0.0011 (6)0.0058 (6)0.0023 (6)
N20.0220 (10)0.0210 (10)0.0255 (11)0.0000 (8)0.0000.000
C10.0342 (10)0.0247 (9)0.0277 (9)0.0031 (8)0.0027 (8)0.0049 (7)
C20.0352 (11)0.0234 (9)0.0298 (10)0.0029 (8)0.0031 (8)0.0056 (7)
Geometric parameters (Å, º) top
In1—Cl1i2.5024 (5)N1—C21.491 (2)
In1—Cl1ii2.5024 (5)N1—H1A0.9000
In1—Cl12.5024 (5)N1—H1B0.9000
In1—Cl1iii2.5024 (5)N2—C1i1.495 (2)
In1—Cl2iii2.5114 (7)N2—C11.495 (2)
In1—Cl22.5114 (7)N2—H20.9100
Co1—N21.967 (2)C1—C21.512 (3)
Co1—N2iv1.967 (2)C1—H1C0.9700
Co1—N1i1.9684 (15)C1—H1D0.9700
Co1—N1v1.9684 (15)C2—H2A0.9700
Co1—N1iv1.9684 (15)C2—H2B0.9700
Co1—N11.9684 (15)
Cl1i—In1—Cl1ii180.0N1i—Co1—N190.97 (10)
Cl1i—In1—Cl188.48 (3)N1v—Co1—N189.03 (10)
Cl1ii—In1—Cl191.52 (3)N1iv—Co1—N1180.00 (8)
Cl1i—In1—Cl1iii91.52 (3)C2—N1—Co1111.65 (12)
Cl1ii—In1—Cl1iii88.48 (3)C2—N1—H1A109.3
Cl1—In1—Cl1iii180.0Co1—N1—H1A109.3
Cl1i—In1—Cl2iii91.076 (16)C2—N1—H1B109.3
Cl1ii—In1—Cl2iii88.924 (17)Co1—N1—H1B109.3
Cl1—In1—Cl2iii91.076 (16)H1A—N1—H1B108.0
Cl1iii—In1—Cl2iii88.924 (17)C1i—N2—C1114.8 (2)
Cl1i—In1—Cl288.924 (17)C1i—N2—Co1109.18 (12)
Cl1ii—In1—Cl291.076 (16)C1—N2—Co1109.18 (12)
Cl1—In1—Cl288.924 (17)C1i—N2—H2107.8
Cl1iii—In1—Cl291.076 (16)C1—N2—H2107.8
Cl2iii—In1—Cl2180.0Co1—N2—H2107.8
N2—Co1—N2iv180.0N2—C1—C2109.98 (16)
N2—Co1—N1i86.27 (6)N2—C1—H1C109.7
N2iv—Co1—N1i93.73 (6)C2—C1—H1C109.7
N2—Co1—N1v93.73 (6)N2—C1—H1D109.7
N2iv—Co1—N1v86.27 (6)C2—C1—H1D109.7
N1i—Co1—N1v180.00 (10)H1C—C1—H1D108.2
N2—Co1—N1iv93.73 (6)N1—C2—C1109.24 (15)
N2iv—Co1—N1iv86.27 (6)N1—C2—H2A109.8
N1i—Co1—N1iv89.03 (10)C1—C2—H2A109.8
N1v—Co1—N1iv90.97 (10)N1—C2—H2B109.8
N2—Co1—N186.27 (6)C1—C2—H2B109.8
N2iv—Co1—N193.73 (6)H2A—C2—H2B108.3
Symmetry codes: (i) x, y, z; (ii) x1/2, y1/2, z; (iii) x1/2, y1/2, z; (iv) x1/2, y+1/2, z; (v) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1vi0.902.623.4915 (17)164
N1—H1B···Cl2vii0.902.613.3823 (18)144
N1—H1B···Cl1viii0.902.723.3957 (17)133
N2—H2···Cl1ix0.912.793.5407 (19)141
N2—H2···Cl1x0.912.793.5407 (19)141
Symmetry codes: (vi) x, y, z+1/2; (vii) x1, y, z; (viii) x1, y, z; (ix) x+1/2, y+1/2, z; (x) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Co(C4H13N3)2][InCl6]
Mr592.80
Crystal system, space groupOrthorhombic, Cccm
Temperature (K)296
a, b, c (Å)10.8925 (5), 14.7291 (7), 12.2205 (6)
V3)1960.62 (16)
Z4
Radiation typeMo Kα
µ (mm1)2.84
Crystal size (mm)0.2 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.572, 0.653
No. of measured, independent and
observed [I > 2σ(I)] reflections
6910, 1282, 1139
Rint0.021
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.046, 1.06
No. of reflections1282
No. of parameters57
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.37

Computer programs: APEX2 (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.902.623.4915 (17)164
N1—H1B···Cl2ii0.902.613.3823 (18)144
N1—H1B···Cl1iii0.902.723.3957 (17)133
N2—H2···Cl1iv0.912.793.5407 (19)141
N2—H2···Cl1v0.912.793.5407 (19)141
Symmetry codes: (i) x, y, z+1/2; (ii) x1, y, z; (iii) x1, y, z; (iv) x+1/2, y+1/2, z; (v) x+1/2, y+1/2, z.
 

References

First citationBruker (2002). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationPan, Q. H., Cheng, Q. & Bu, X.-H. (2010b). CrystEngComm, 12, 4198–4204.  Web of Science CSD CrossRef CAS Google Scholar
First citationPan, Q. H., Cheng, Q. & Bu, X.-H. (2011). Chem. J. Chin. Univ. 32, 527–531.  CAS Google Scholar
First citationPan, Q. H., Li, J. Y. & Bu, X.-H. (2010a). Micropor. Mesopor. Mater. 132, 453–457.  Web of Science CSD CrossRef CAS Google Scholar
First citationPan, Q. H., Yu, J. H. & Xu, R. R. (2005). Chem. J. Chin. Univ. 26, 2199–2202.  CAS Google Scholar
First citationPan, Q. H., Yu, J. H. & Xu, R. R. (2008). Chem. Mater. 20, 370–372.  Web of Science CSD CrossRef CAS Google Scholar
First citationRothammel, W., Spengler, R., Burzlaff, H., Jarraya, S. & Ben Salah, A. (1998). Acta Cryst. C54, IUC9800059.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStalder, S. M. & Wilkinson, A. P. (1997). Chem. Mater. 9, 2168–2173.  CSD CrossRef CAS Web of Science Google Scholar
First citationTong, J. & Pan, Q. (2011). Acta Cryst. E67, m579–m580.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Yu, J. H. & Xu, R. R. (2003a). Angew. Chem. Int. Ed. 42, 4089–4092.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, Y., Yu, J. H. & Xu, R. R. (2003b). Chem. Eur. J. 9, 5048–5055.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds