organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(o-Tol­yl­oxy)benzoic acid

aCollege of Chemical and Biological Engineering, Yancheng Institute of Technology, Yinbing Road No.9 Yancheng, Yancheng 224051, People's Republic of China, and bDepartment of Chemical Engineering, Yancheng College of Textile Technology, Yancheng 224005, People's Republic of China
*Correspondence e-mail: xujiaying-1984@163.com

(Received 28 April 2011; accepted 6 May 2011; online 14 May 2011)

In the crystal structure of the title compound, C14H12O3, mol­ecules are linked via inter­molecular O—H⋯O hydrogen bonds, resulting in dimer formation. The dihedral angle between the two phenyl rings is 76.2 (2)°.

Related literature

For the synthesis, see: Glorius et al. (2009[Glorius, F., Piel, I. & Wang, C. Y. (2009). J. Am. Chem. Soc. 131, 4194-4195.]); For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12O3

  • Mr = 228.24

  • Triclinic, [P \overline 1]

  • a = 7.0900 (14) Å

  • b = 7.4820 (15) Å

  • c = 12.680 (3) Å

  • α = 95.34 (3)°

  • β = 96.36 (3)°

  • γ = 115.76 (3)°

  • V = 594.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.974, Tmax = 0.991

  • 2382 measured reflections

  • 2190 independent reflections

  • 1437 reflections with I > 2σ(I)

  • Rint = 0.020

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.178

  • S = 1.00

  • 2190 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3i 0.82 1.81 2.624 (3) 172
Symmetry code: (i) -x, -y, -z+2.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, 2-(o-tolyloxy)benzoic acid, is an important intermediate in the synthesis of the biaryl moiety, an ubiquitous motif of polymeric materials, ligands, and biologically active compounds (Glorius et al., 2009).

The molecular structure of (I) is shown in Fig. 1, and the hydrogen-bond geometry is given in Table 1. The bond lengths and angles are within normal ranges (Allen et al., 1987). The dihedral angle between the two phenyl rings C8—C13 and C2—C7 is 76.2 (2) °.

The crystal packing shows dimer formation via O—H···O intermolecular hydrogen bonds, which seems to be very effective in the stabilization of the crystal structure. The molecules are stacked parallel to the b axis direction.

Related literature top

For the synthetis, see: Glorius et al. (2009); For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I) was prepared by a method reported in literature (Glorius et al., 2009). The crystals were obtained by dissolving (I) (0.2 g, 0.87 mmol) in ethanol (25 ml) and evaporating the solvent slowly at room temperature for about 6 d.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å for aromatic H and

0.96 Å for methyl H atoms , and 0.82 Å for O—H. The Uiso(H) = xUeq(C), where x = 1.2 for aromatic H, and x = 1.5 for other H.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius,1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram for (I). O—H···O hydrogen bonds are shown by dashed lines.
2-(o-Tolyloxy)benzoic acid top
Crystal data top
C14H12O3Z = 2
Mr = 228.24F(000) = 240
Triclinic, P1Dx = 1.275 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0900 (14) ÅCell parameters from 25 reflections
b = 7.4820 (15) Åθ = 9–14°
c = 12.680 (3) ŵ = 0.09 mm1
α = 95.34 (3)°T = 293 K
β = 96.36 (3)°Block, colorless
γ = 115.76 (3)°0.30 × 0.20 × 0.10 mm
V = 594.5 (2) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
1437 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 25.4°, θmin = 1.6°
ω/2θ scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 98
Tmin = 0.974, Tmax = 0.991l = 1515
2382 measured reflections3 standard reflections every 200 reflections
2190 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 0.094P]
where P = (Fo2 + 2Fc2)/3
2190 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C14H12O3γ = 115.76 (3)°
Mr = 228.24V = 594.5 (2) Å3
Triclinic, P1Z = 2
a = 7.0900 (14) ÅMo Kα radiation
b = 7.4820 (15) ŵ = 0.09 mm1
c = 12.680 (3) ÅT = 293 K
α = 95.34 (3)°0.30 × 0.20 × 0.10 mm
β = 96.36 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1437 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.020
Tmin = 0.974, Tmax = 0.9913 standard reflections every 200 reflections
2382 measured reflections intensity decay: 1%
2190 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 1.00Δρmax = 0.23 e Å3
2190 reflectionsΔρmin = 0.17 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4820 (3)0.1177 (2)0.80889 (14)0.0712 (5)
C10.2152 (6)0.0560 (7)0.6153 (4)0.1589 (19)
H1A0.17960.00540.67820.238*
H1B0.17180.04670.55390.238*
H1C0.14340.13760.60430.238*
O20.0651 (3)0.2020 (3)0.99961 (15)0.0772 (6)
H2A0.00420.14831.02300.116*
C20.4515 (5)0.1851 (4)0.6302 (2)0.0833 (8)
O30.1733 (3)0.0598 (3)0.91609 (17)0.0833 (6)
C30.5551 (8)0.2950 (7)0.5531 (3)0.1137 (13)
H3A0.47630.28620.48740.136*
C40.7687 (8)0.4147 (6)0.5719 (3)0.1119 (13)
H4A0.83340.48730.51960.134*
C50.8863 (5)0.4283 (5)0.6654 (3)0.0904 (9)
H5A1.03230.50950.67760.108*
C60.7915 (4)0.3231 (4)0.7426 (2)0.0666 (7)
H6A0.87270.33210.80750.080*
C70.5773 (4)0.2046 (3)0.72433 (19)0.0570 (6)
C80.4571 (3)0.0695 (3)0.82224 (18)0.0533 (6)
C90.5732 (4)0.1542 (3)0.7750 (2)0.0654 (7)
H9A0.66390.08680.72890.078*
C100.5543 (5)0.3372 (4)0.7963 (2)0.0735 (7)
H10A0.63180.39350.76420.088*
C110.4216 (4)0.4382 (4)0.8646 (2)0.0722 (7)
H11A0.40960.56190.87910.087*
C120.3066 (4)0.3541 (3)0.91134 (19)0.0605 (6)
H12A0.21850.42180.95830.073*
C130.3188 (3)0.1708 (3)0.89020 (17)0.0497 (5)
C140.1800 (3)0.0953 (3)0.93742 (18)0.0522 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0866 (12)0.0514 (9)0.0985 (13)0.0410 (9)0.0489 (10)0.0272 (9)
C10.102 (3)0.141 (4)0.193 (5)0.043 (3)0.048 (3)0.014 (3)
O20.0842 (12)0.0730 (11)0.1051 (14)0.0510 (10)0.0480 (11)0.0389 (10)
C20.092 (2)0.0775 (18)0.0812 (19)0.0452 (16)0.0036 (16)0.0006 (15)
O30.0924 (14)0.0684 (11)0.1259 (16)0.0542 (10)0.0591 (12)0.0458 (11)
C30.174 (4)0.131 (3)0.064 (2)0.099 (3)0.001 (2)0.015 (2)
C40.161 (4)0.127 (3)0.093 (3)0.089 (3)0.065 (3)0.053 (2)
C50.095 (2)0.083 (2)0.110 (2)0.0428 (17)0.0529 (19)0.0361 (18)
C60.0678 (16)0.0677 (15)0.0724 (16)0.0338 (13)0.0220 (13)0.0191 (12)
C70.0694 (15)0.0468 (11)0.0687 (15)0.0350 (11)0.0240 (12)0.0141 (10)
C80.0582 (13)0.0420 (11)0.0655 (14)0.0267 (10)0.0141 (11)0.0091 (10)
C90.0781 (16)0.0549 (13)0.0775 (16)0.0382 (12)0.0308 (13)0.0132 (12)
C100.0914 (19)0.0580 (14)0.0921 (19)0.0486 (14)0.0324 (15)0.0121 (13)
C110.0890 (18)0.0517 (13)0.0904 (19)0.0415 (13)0.0252 (15)0.0169 (13)
C120.0660 (14)0.0481 (12)0.0724 (15)0.0286 (11)0.0168 (12)0.0120 (11)
C130.0482 (11)0.0419 (11)0.0590 (13)0.0213 (9)0.0064 (10)0.0052 (9)
C140.0496 (12)0.0450 (11)0.0649 (14)0.0220 (9)0.0132 (10)0.0141 (10)
Geometric parameters (Å, º) top
O1—C81.363 (2)C5—C61.363 (4)
O1—C71.392 (3)C5—H5A0.9300
C1—C21.505 (5)C6—C71.364 (3)
C1—H1A0.9600C6—H6A0.9300
C1—H1B0.9600C8—C91.390 (3)
C1—H1C0.9600C8—C131.393 (3)
O2—C141.272 (2)C9—C101.372 (3)
O2—H2A0.8200C9—H9A0.9300
C2—C71.364 (4)C10—C111.375 (4)
C2—C31.398 (5)C10—H10A0.9300
O3—C141.235 (2)C11—C121.376 (3)
C3—C41.361 (5)C11—H11A0.9300
C3—H3A0.9300C12—C131.390 (3)
C4—C51.340 (5)C12—H12A0.9300
C4—H4A0.9300C13—C141.482 (3)
C8—O1—C7119.48 (17)C2—C7—O1118.9 (2)
C2—C1—H1A109.5C6—C7—O1118.4 (2)
C2—C1—H1B109.5O1—C8—C9121.8 (2)
H1A—C1—H1B109.5O1—C8—C13117.77 (18)
C2—C1—H1C109.5C9—C8—C13120.32 (19)
H1A—C1—H1C109.5C10—C9—C8120.0 (2)
H1B—C1—H1C109.5C10—C9—H9A120.0
C14—O2—H2A109.5C8—C9—H9A120.0
C7—C2—C3116.0 (3)C9—C10—C11120.6 (2)
C7—C2—C1120.1 (3)C9—C10—H10A119.7
C3—C2—C1123.9 (3)C11—C10—H10A119.7
C4—C3—C2121.5 (3)C10—C11—C12119.3 (2)
C4—C3—H3A119.2C10—C11—H11A120.4
C2—C3—H3A119.2C12—C11—H11A120.4
C5—C4—C3120.4 (3)C11—C12—C13121.7 (2)
C5—C4—H4A119.8C11—C12—H12A119.1
C3—C4—H4A119.8C13—C12—H12A119.1
C4—C5—C6119.9 (3)C12—C13—C8118.0 (2)
C4—C5—H5A120.1C12—C13—C14118.97 (19)
C6—C5—H5A120.1C8—C13—C14123.02 (18)
C5—C6—C7119.8 (3)O3—C14—O2122.0 (2)
C5—C6—H6A120.1O3—C14—C13122.05 (19)
C7—C6—H6A120.1O2—C14—C13115.94 (18)
C2—C7—C6122.3 (2)
C7—C2—C3—C40.3 (5)O1—C8—C9—C10175.6 (2)
C1—C2—C3—C4177.9 (4)C13—C8—C9—C100.9 (4)
C2—C3—C4—C50.7 (6)C8—C9—C10—C110.3 (4)
C3—C4—C5—C60.5 (5)C9—C10—C11—C120.3 (4)
C4—C5—C6—C70.1 (4)C10—C11—C12—C130.9 (4)
C3—C2—C7—C60.3 (4)C11—C12—C13—C82.0 (4)
C1—C2—C7—C6178.6 (3)C11—C12—C13—C14175.9 (2)
C3—C2—C7—O1172.8 (2)O1—C8—C13—C12174.58 (19)
C1—C2—C7—O15.5 (4)C9—C8—C13—C122.0 (3)
C5—C6—C7—C20.5 (4)O1—C8—C13—C147.6 (3)
C5—C6—C7—O1172.7 (2)C9—C8—C13—C14175.9 (2)
C8—O1—C7—C294.5 (3)C12—C13—C14—O3175.2 (2)
C8—O1—C7—C692.1 (3)C8—C13—C14—O32.6 (4)
C7—O1—C8—C918.4 (3)C12—C13—C14—O23.5 (3)
C7—O1—C8—C13165.1 (2)C8—C13—C14—O2178.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.821.812.624 (3)172
Symmetry code: (i) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC14H12O3
Mr228.24
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.0900 (14), 7.4820 (15), 12.680 (3)
α, β, γ (°)95.34 (3), 96.36 (3), 115.76 (3)
V3)594.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.974, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
2382, 2190, 1437
Rint0.020
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.178, 1.00
No. of reflections2190
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.17

Computer programs: CAD-4 Software (Enraf–Nonius,1985), CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.821.812.624 (3)172
Symmetry code: (i) x, y, z+2.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationGlorius, F., Piel, I. & Wang, C. Y. (2009). J. Am. Chem. Soc. 131, 4194–4195.  Web of Science PubMed Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds