organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[4-(Di­ethyl­amino)­benzyl­­idene]malono­nitrile

aSchool of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China, and bChengdu institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
*Correspondence e-mail: yuluot@scu.edu.cn

(Received 9 May 2011; accepted 21 May 2011; online 28 May 2011)

In the title compound, C14H15N3, the diethyl­amino N atom, benzene ring, olefinic bond and cyano groups form an extended conjugated system, making the mol­ecule nearly planar: the dihedral angle between the benzene ring and the best plane throught the cyano groups is 4.93 (10)°, while the dihedral angle between the benzene ring and the plane through the diethyl­amino N atom and the two attached ethyl C atoms is 9.51 (14)°. In the crystal, inter­molecular C—H⋯π inter­actions stabilize the packing.

Related literature

The title compound is an inter­mediate in our research into anti­cancer agents. For general background to its chemistry, biological activity and use, see: Gazit et al. (1989[Gazit, A., Yaish, P., Gilon, C. & Levitzki, A. (1989). J. Med. Chem. 32, 2344-2352.]).

[Scheme 1]

Experimental

Crystal data
  • C14H15N3

  • Mr = 225.29

  • Monoclinic, P 21 /n

  • a = 9.2187 (2) Å

  • b = 9.4914 (2) Å

  • c = 14.5384 (4) Å

  • β = 97.846 (2)°

  • V = 1260.17 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 150 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.997, Tmax = 1.000

  • 10075 measured reflections

  • 2577 independent reflections

  • 2151 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.095

  • S = 1.03

  • 2577 reflections

  • 156 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14ACg1i 0.99 2.74 3.5154 (13) 136
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Cancer is a serious threat to human health. Molecular targeted therapies have created an encouraging road in the treatment of cancer in recent years. The title compound is a key intermediate in our synthetic investigations of molecular targeted anticancer agents. We report here its crystal structure.

As shown in Fig. 1, the N13 atom, benzene ring, olefinic bond and cyano-groups form an extended conjugated system, making them almost planar. The dihedral angle between the benzene plane and the best plane throught the cyano-groups is 4.93 (10)°, while the dihedral angle between the benzene plane and the plane through atoms N13, C14 and C15 being 9.51 (14)°. In the crystal, molecules are linked into a three-dimensional network by intermolecular C-H···π interactions (Fig.2, Table 1) and Van der Waals forces. Otherwise, there are no hydrogen bonds observed in the packing diagram.

Related literature top

The title compound is an intermediate in our research into anticancer agents. For general background to its chemistry, biological activity and use, see: Gazit et al. (1989).

Experimental top

To a solution of 4-(diethylamino)benzaldehyde (1.5 g, 8.463 mmol) and malononitrile (0.587 g, 8.886 mmol) in ethanol (25 ml) was added 4-methylmorpholine (0.9 ml). The reaction mixture was refluxed for 2 h. After cooled down to room temperature, the mixture was filtered and a red solid was abtained as the target product. Crystals suitable for X-ray analysis were obtained by slow evaporation from a solution of ethyl acetate.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å (benzene C—H and C5—H5); 0.98 Å (methyl C—H) or 0.99 Å (methylene C—H) and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) (methyl group).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell refinement: CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing for the title compound, with C14—H14A···π interactions shown as dotted red lines (the centroid of ring C7-C12 is shown as a red dot).
2-{[4-(diethylamino)phenyl]methylidene}propanedinitrile top
Crystal data top
C14H15N3F(000) = 480
Mr = 225.29Dx = 1.187 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
a = 9.2187 (2) ÅCell parameters from 4336 reflections
b = 9.4914 (2) Åθ = 3.1–29.2°
c = 14.5384 (4) ŵ = 0.07 mm1
β = 97.846 (2)°T = 150 K
V = 1260.17 (6) Å3Block, red
Z = 40.30 × 0.25 × 0.20 mm
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2577 independent reflections
Radiation source: Enhance (Mo) X-ray Source2151 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 3.1°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
k = 1111
Tmin = 0.997, Tmax = 1.000l = 1518
10075 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0409P)2 + 0.2819P]
where P = (Fo2 + 2Fc2)/3
2577 reflections(Δ/σ)max < 0.001
156 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C14H15N3V = 1260.17 (6) Å3
Mr = 225.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2187 (2) ŵ = 0.07 mm1
b = 9.4914 (2) ÅT = 150 K
c = 14.5384 (4) Å0.30 × 0.25 × 0.20 mm
β = 97.846 (2)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
2577 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
2151 reflections with I > 2σ(I)
Tmin = 0.997, Tmax = 1.000Rint = 0.022
10075 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.03Δρmax = 0.18 e Å3
2577 reflectionsΔρmin = 0.18 e Å3
156 parameters
Special details top

Experimental. CrysAlisPro, Version 1.171.34.40. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (Oxford Diffraction, 2006).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.56613 (12)0.33522 (13)0.14324 (8)0.0415 (3)
N60.83063 (12)0.04260 (12)0.12289 (8)0.0361 (3)
N130.92323 (11)0.75238 (10)0.22772 (7)0.0252 (2)
C20.66785 (13)0.27997 (13)0.10553 (8)0.0270 (3)
C30.79456 (12)0.20766 (12)0.06038 (8)0.0235 (3)
C40.81521 (13)0.06912 (13)0.09534 (8)0.0265 (3)
C50.89198 (12)0.25873 (12)0.01132 (8)0.0230 (3)
H50.97180.19750.03080.028*
C70.89497 (12)0.38735 (12)0.06192 (8)0.0214 (3)
C80.78864 (12)0.49489 (12)0.04813 (8)0.0224 (3)
H80.70870.48490.00010.027*
C91.01290 (12)0.40925 (13)0.13344 (8)0.0243 (3)
H91.08660.33900.14450.029*
C100.79762 (12)0.61324 (12)0.10229 (8)0.0228 (3)
H100.72290.68250.09160.027*
C111.02484 (12)0.52810 (12)0.18741 (8)0.0242 (3)
H111.10670.53910.23410.029*
C120.91658 (12)0.63493 (12)0.17440 (8)0.0213 (3)
C140.79952 (13)0.85020 (13)0.22449 (8)0.0289 (3)
H14A0.79910.89200.28680.035*
H14B0.70710.79690.20880.035*
C151.05037 (13)0.78608 (14)0.29599 (8)0.0297 (3)
H15A1.06390.88960.29840.036*
H15B1.13900.74400.27560.036*
C160.80443 (16)0.96798 (14)0.15436 (10)0.0398 (3)
H16A0.80310.92760.09220.060*
H16B0.89421.02300.17050.060*
H16C0.71911.02940.15510.060*
C171.03529 (16)0.73264 (17)0.39255 (9)0.0412 (4)
H17A1.02520.62980.39110.062*
H17B0.94840.77480.41350.062*
H17C1.12250.75880.43540.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0354 (6)0.0428 (7)0.0425 (7)0.0053 (6)0.0081 (5)0.0064 (6)
N60.0351 (6)0.0291 (6)0.0418 (7)0.0014 (5)0.0031 (5)0.0078 (5)
N130.0280 (5)0.0248 (5)0.0219 (5)0.0033 (4)0.0001 (4)0.0032 (4)
C20.0278 (6)0.0263 (6)0.0262 (7)0.0020 (5)0.0011 (5)0.0047 (5)
C30.0252 (6)0.0226 (6)0.0226 (6)0.0006 (5)0.0034 (5)0.0002 (5)
C40.0244 (6)0.0276 (7)0.0263 (6)0.0016 (5)0.0012 (5)0.0006 (5)
C50.0229 (6)0.0214 (6)0.0246 (6)0.0016 (5)0.0030 (4)0.0032 (5)
C70.0226 (6)0.0220 (6)0.0198 (6)0.0008 (5)0.0033 (4)0.0014 (4)
C80.0227 (5)0.0245 (6)0.0192 (6)0.0001 (5)0.0002 (4)0.0017 (5)
C90.0232 (6)0.0235 (6)0.0256 (6)0.0041 (5)0.0016 (5)0.0024 (5)
C100.0235 (6)0.0229 (6)0.0216 (6)0.0050 (5)0.0014 (4)0.0025 (5)
C110.0231 (6)0.0270 (6)0.0211 (6)0.0016 (5)0.0017 (4)0.0004 (5)
C120.0256 (6)0.0216 (6)0.0172 (6)0.0004 (5)0.0045 (4)0.0016 (4)
C140.0312 (6)0.0294 (7)0.0265 (7)0.0052 (5)0.0056 (5)0.0055 (5)
C150.0307 (6)0.0275 (7)0.0295 (7)0.0017 (5)0.0008 (5)0.0071 (5)
C160.0435 (8)0.0332 (8)0.0433 (8)0.0120 (6)0.0081 (6)0.0055 (6)
C170.0428 (8)0.0538 (9)0.0246 (7)0.0058 (7)0.0034 (6)0.0062 (6)
Geometric parameters (Å, º) top
N1—C21.1465 (16)C10—H100.9500
N6—C41.1491 (16)C10—C121.4248 (16)
N13—C121.3543 (15)C11—H110.9500
N13—C141.4663 (15)C11—C121.4172 (16)
N13—C151.4642 (15)C14—H14A0.9900
C2—C31.4343 (16)C14—H14B0.9900
C3—C41.4318 (17)C14—C161.5178 (18)
C3—C51.3685 (16)C15—H15A0.9900
C5—H50.9500C15—H15B0.9900
C5—C71.4235 (16)C15—C171.5168 (19)
C7—C81.4104 (16)C16—H16A0.9800
C7—C91.4134 (16)C16—H16B0.9800
C8—H80.9500C16—H16C0.9800
C8—C101.3678 (16)C17—H17A0.9800
C9—H90.9500C17—H17B0.9800
C9—C111.3700 (16)C17—H17C0.9800
C12—N13—C14121.91 (10)N13—C12—C11122.45 (10)
C12—N13—C15122.50 (10)C11—C12—C10116.87 (10)
C15—N13—C14115.50 (9)N13—C14—H14A108.9
N1—C2—C3178.32 (13)N13—C14—H14B108.9
C4—C3—C2114.61 (10)N13—C14—C16113.17 (10)
C5—C3—C2126.01 (11)H14A—C14—H14B107.8
C5—C3—C4119.37 (10)C16—C14—H14A108.9
N6—C4—C3179.26 (14)C16—C14—H14B108.9
C3—C5—H5114.3N13—C15—H15A109.0
C3—C5—C7131.43 (11)N13—C15—H15B109.0
C7—C5—H5114.3N13—C15—C17112.85 (11)
C8—C7—C5125.67 (10)H15A—C15—H15B107.8
C8—C7—C9116.62 (10)C17—C15—H15A109.0
C9—C7—C5117.71 (10)C17—C15—H15B109.0
C7—C8—H8119.1C14—C16—H16A109.5
C10—C8—C7121.75 (10)C14—C16—H16B109.5
C10—C8—H8119.1C14—C16—H16C109.5
C7—C9—H9118.8H16A—C16—H16B109.5
C11—C9—C7122.42 (11)H16A—C16—H16C109.5
C11—C9—H9118.8H16B—C16—H16C109.5
C8—C10—H10119.3C15—C17—H17A109.5
C8—C10—C12121.49 (10)C15—C17—H17B109.5
C12—C10—H10119.3C15—C17—H17C109.5
C9—C11—H11119.6H17A—C17—H17B109.5
C9—C11—C12120.84 (10)H17A—C17—H17C109.5
C12—C11—H11119.6H17B—C17—H17C109.5
N13—C12—C10120.68 (10)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14A···Cg1i0.992.743.5154 (13)136
Symmetry code: (i) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H15N3
Mr225.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)9.2187 (2), 9.4914 (2), 14.5384 (4)
β (°) 97.846 (2)
V3)1260.17 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2006)
Tmin, Tmax0.997, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10075, 2577, 2151
Rint0.022
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.095, 1.03
No. of reflections2577
No. of parameters156
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C7–C12 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14A···Cg1i0.992.743.5154 (13)136
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGazit, A., Yaish, P., Gilon, C. & Levitzki, A. (1989). J. Med. Chem. 32, 2344–2352.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds