organic compounds
2-[4-(Diethylamino)benzylidene]malononitrile
aSchool of Chemical Engineering, Sichuan University, Chengdu 610065, People's Republic of China, and bChengdu institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
*Correspondence e-mail: yuluot@scu.edu.cn
In the title compound, C14H15N3, the diethylamino N atom, benzene ring, olefinic bond and cyano groups form an extended making the molecule nearly planar: the dihedral angle between the benzene ring and the best plane throught the cyano groups is 4.93 (10)°, while the dihedral angle between the benzene ring and the plane through the diethylamino N atom and the two attached ethyl C atoms is 9.51 (14)°. In the crystal, intermolecular C—H⋯π interactions stabilize the packing.
Related literature
The title compound is an intermediate in our research into anticancer agents. For general background to its chemistry, biological activity and use, see: Gazit et al. (1989).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2.
Supporting information
10.1107/S1600536811019295/vm2094sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811019295/vm2094Isup2.hkl
To a solution of 4-(diethylamino)benzaldehyde (1.5 g, 8.463 mmol) and malononitrile (0.587 g, 8.886 mmol) in ethanol (25 ml) was added 4-methylmorpholine (0.9 ml). The reaction mixture was refluxed for 2 h. After cooled down to room temperature, the mixture was filtered and a red solid was abtained as the target product. Crystals suitable for X-ray analysis were obtained by slow evaporation from a solution of ethyl acetate.
All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å (benzene C—H and C5—H5); 0.98 Å (methyl C—H) or 0.99 Å (methylene C—H) and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) (methyl group).
Data collection: CrysAlis PRO (Oxford Diffraction, 2006); cell
CrysAlis PRO (Oxford Diffraction, 2006); data reduction: CrysAlis PRO (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).C14H15N3 | F(000) = 480 |
Mr = 225.29 | Dx = 1.187 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.7107 Å |
a = 9.2187 (2) Å | Cell parameters from 4336 reflections |
b = 9.4914 (2) Å | θ = 3.1–29.2° |
c = 14.5384 (4) Å | µ = 0.07 mm−1 |
β = 97.846 (2)° | T = 150 K |
V = 1260.17 (6) Å3 | Block, red |
Z = 4 | 0.30 × 0.25 × 0.20 mm |
Oxford Diffraction Xcalibur Eos diffractometer | 2577 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 2151 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
Detector resolution: 16.0874 pixels mm-1 | θmax = 26.4°, θmin = 3.1° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006) | k = −11→11 |
Tmin = 0.997, Tmax = 1.000 | l = −15→18 |
10075 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0409P)2 + 0.2819P] where P = (Fo2 + 2Fc2)/3 |
2577 reflections | (Δ/σ)max < 0.001 |
156 parameters | Δρmax = 0.18 e Å−3 |
0 restraints | Δρmin = −0.18 e Å−3 |
C14H15N3 | V = 1260.17 (6) Å3 |
Mr = 225.29 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.2187 (2) Å | µ = 0.07 mm−1 |
b = 9.4914 (2) Å | T = 150 K |
c = 14.5384 (4) Å | 0.30 × 0.25 × 0.20 mm |
β = 97.846 (2)° |
Oxford Diffraction Xcalibur Eos diffractometer | 2577 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2006) | 2151 reflections with I > 2σ(I) |
Tmin = 0.997, Tmax = 1.000 | Rint = 0.022 |
10075 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.18 e Å−3 |
2577 reflections | Δρmin = −0.18 e Å−3 |
156 parameters |
Experimental. CrysAlisPro, Version 1.171.34.40. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (Oxford Diffraction, 2006). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.56613 (12) | 0.33522 (13) | −0.14324 (8) | 0.0415 (3) | |
N6 | 0.83063 (12) | −0.04260 (12) | −0.12289 (8) | 0.0361 (3) | |
N13 | 0.92323 (11) | 0.75238 (10) | 0.22772 (7) | 0.0252 (2) | |
C2 | 0.66785 (13) | 0.27997 (13) | −0.10553 (8) | 0.0270 (3) | |
C3 | 0.79456 (12) | 0.20766 (12) | −0.06038 (8) | 0.0235 (3) | |
C4 | 0.81521 (13) | 0.06912 (13) | −0.09534 (8) | 0.0265 (3) | |
C5 | 0.89198 (12) | 0.25873 (12) | 0.01132 (8) | 0.0230 (3) | |
H5 | 0.9718 | 0.1975 | 0.0308 | 0.028* | |
C7 | 0.89497 (12) | 0.38735 (12) | 0.06192 (8) | 0.0214 (3) | |
C8 | 0.78864 (12) | 0.49489 (12) | 0.04813 (8) | 0.0224 (3) | |
H8 | 0.7087 | 0.4849 | −0.0001 | 0.027* | |
C9 | 1.01290 (12) | 0.40925 (13) | 0.13344 (8) | 0.0243 (3) | |
H9 | 1.0866 | 0.3390 | 0.1445 | 0.029* | |
C10 | 0.79762 (12) | 0.61324 (12) | 0.10229 (8) | 0.0228 (3) | |
H10 | 0.7229 | 0.6825 | 0.0916 | 0.027* | |
C11 | 1.02484 (12) | 0.52810 (12) | 0.18741 (8) | 0.0242 (3) | |
H11 | 1.1067 | 0.5391 | 0.2341 | 0.029* | |
C12 | 0.91658 (12) | 0.63493 (12) | 0.17440 (8) | 0.0213 (3) | |
C14 | 0.79952 (13) | 0.85020 (13) | 0.22449 (8) | 0.0289 (3) | |
H14A | 0.7991 | 0.8920 | 0.2868 | 0.035* | |
H14B | 0.7071 | 0.7969 | 0.2088 | 0.035* | |
C15 | 1.05037 (13) | 0.78608 (14) | 0.29599 (8) | 0.0297 (3) | |
H15A | 1.0639 | 0.8896 | 0.2984 | 0.036* | |
H15B | 1.1390 | 0.7440 | 0.2756 | 0.036* | |
C16 | 0.80443 (16) | 0.96798 (14) | 0.15436 (10) | 0.0398 (3) | |
H16A | 0.8031 | 0.9276 | 0.0922 | 0.060* | |
H16B | 0.8942 | 1.0230 | 0.1705 | 0.060* | |
H16C | 0.7191 | 1.0294 | 0.1551 | 0.060* | |
C17 | 1.03529 (16) | 0.73264 (17) | 0.39255 (9) | 0.0412 (4) | |
H17A | 1.0252 | 0.6298 | 0.3911 | 0.062* | |
H17B | 0.9484 | 0.7748 | 0.4135 | 0.062* | |
H17C | 1.1225 | 0.7588 | 0.4354 | 0.062* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0354 (6) | 0.0428 (7) | 0.0425 (7) | 0.0053 (6) | −0.0081 (5) | −0.0064 (6) |
N6 | 0.0351 (6) | 0.0291 (6) | 0.0418 (7) | 0.0014 (5) | −0.0031 (5) | −0.0078 (5) |
N13 | 0.0280 (5) | 0.0248 (5) | 0.0219 (5) | 0.0033 (4) | 0.0001 (4) | −0.0032 (4) |
C2 | 0.0278 (6) | 0.0263 (6) | 0.0262 (7) | −0.0020 (5) | 0.0011 (5) | −0.0047 (5) |
C3 | 0.0252 (6) | 0.0226 (6) | 0.0226 (6) | −0.0006 (5) | 0.0034 (5) | −0.0002 (5) |
C4 | 0.0244 (6) | 0.0276 (7) | 0.0263 (6) | −0.0016 (5) | −0.0012 (5) | −0.0006 (5) |
C5 | 0.0229 (6) | 0.0214 (6) | 0.0246 (6) | 0.0016 (5) | 0.0030 (4) | 0.0032 (5) |
C7 | 0.0226 (6) | 0.0220 (6) | 0.0198 (6) | −0.0008 (5) | 0.0033 (4) | 0.0014 (4) |
C8 | 0.0227 (5) | 0.0245 (6) | 0.0192 (6) | −0.0001 (5) | −0.0002 (4) | 0.0017 (5) |
C9 | 0.0232 (6) | 0.0235 (6) | 0.0256 (6) | 0.0041 (5) | 0.0016 (5) | 0.0024 (5) |
C10 | 0.0235 (6) | 0.0229 (6) | 0.0216 (6) | 0.0050 (5) | 0.0014 (4) | 0.0025 (5) |
C11 | 0.0231 (6) | 0.0270 (6) | 0.0211 (6) | 0.0016 (5) | −0.0017 (4) | 0.0004 (5) |
C12 | 0.0256 (6) | 0.0216 (6) | 0.0172 (6) | −0.0004 (5) | 0.0045 (4) | 0.0016 (4) |
C14 | 0.0312 (6) | 0.0294 (7) | 0.0265 (7) | 0.0052 (5) | 0.0056 (5) | −0.0055 (5) |
C15 | 0.0307 (6) | 0.0275 (7) | 0.0295 (7) | −0.0017 (5) | −0.0008 (5) | −0.0071 (5) |
C16 | 0.0435 (8) | 0.0332 (8) | 0.0433 (8) | 0.0120 (6) | 0.0081 (6) | 0.0055 (6) |
C17 | 0.0428 (8) | 0.0538 (9) | 0.0246 (7) | 0.0058 (7) | −0.0034 (6) | −0.0062 (6) |
N1—C2 | 1.1465 (16) | C10—H10 | 0.9500 |
N6—C4 | 1.1491 (16) | C10—C12 | 1.4248 (16) |
N13—C12 | 1.3543 (15) | C11—H11 | 0.9500 |
N13—C14 | 1.4663 (15) | C11—C12 | 1.4172 (16) |
N13—C15 | 1.4642 (15) | C14—H14A | 0.9900 |
C2—C3 | 1.4343 (16) | C14—H14B | 0.9900 |
C3—C4 | 1.4318 (17) | C14—C16 | 1.5178 (18) |
C3—C5 | 1.3685 (16) | C15—H15A | 0.9900 |
C5—H5 | 0.9500 | C15—H15B | 0.9900 |
C5—C7 | 1.4235 (16) | C15—C17 | 1.5168 (19) |
C7—C8 | 1.4104 (16) | C16—H16A | 0.9800 |
C7—C9 | 1.4134 (16) | C16—H16B | 0.9800 |
C8—H8 | 0.9500 | C16—H16C | 0.9800 |
C8—C10 | 1.3678 (16) | C17—H17A | 0.9800 |
C9—H9 | 0.9500 | C17—H17B | 0.9800 |
C9—C11 | 1.3700 (16) | C17—H17C | 0.9800 |
C12—N13—C14 | 121.91 (10) | N13—C12—C11 | 122.45 (10) |
C12—N13—C15 | 122.50 (10) | C11—C12—C10 | 116.87 (10) |
C15—N13—C14 | 115.50 (9) | N13—C14—H14A | 108.9 |
N1—C2—C3 | 178.32 (13) | N13—C14—H14B | 108.9 |
C4—C3—C2 | 114.61 (10) | N13—C14—C16 | 113.17 (10) |
C5—C3—C2 | 126.01 (11) | H14A—C14—H14B | 107.8 |
C5—C3—C4 | 119.37 (10) | C16—C14—H14A | 108.9 |
N6—C4—C3 | 179.26 (14) | C16—C14—H14B | 108.9 |
C3—C5—H5 | 114.3 | N13—C15—H15A | 109.0 |
C3—C5—C7 | 131.43 (11) | N13—C15—H15B | 109.0 |
C7—C5—H5 | 114.3 | N13—C15—C17 | 112.85 (11) |
C8—C7—C5 | 125.67 (10) | H15A—C15—H15B | 107.8 |
C8—C7—C9 | 116.62 (10) | C17—C15—H15A | 109.0 |
C9—C7—C5 | 117.71 (10) | C17—C15—H15B | 109.0 |
C7—C8—H8 | 119.1 | C14—C16—H16A | 109.5 |
C10—C8—C7 | 121.75 (10) | C14—C16—H16B | 109.5 |
C10—C8—H8 | 119.1 | C14—C16—H16C | 109.5 |
C7—C9—H9 | 118.8 | H16A—C16—H16B | 109.5 |
C11—C9—C7 | 122.42 (11) | H16A—C16—H16C | 109.5 |
C11—C9—H9 | 118.8 | H16B—C16—H16C | 109.5 |
C8—C10—H10 | 119.3 | C15—C17—H17A | 109.5 |
C8—C10—C12 | 121.49 (10) | C15—C17—H17B | 109.5 |
C12—C10—H10 | 119.3 | C15—C17—H17C | 109.5 |
C9—C11—H11 | 119.6 | H17A—C17—H17B | 109.5 |
C9—C11—C12 | 120.84 (10) | H17A—C17—H17C | 109.5 |
C12—C11—H11 | 119.6 | H17B—C17—H17C | 109.5 |
N13—C12—C10 | 120.68 (10) |
Cg1 is the centroid of the C7–C12 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14A···Cg1i | 0.99 | 2.74 | 3.5154 (13) | 136 |
Symmetry code: (i) −x+3/2, y+1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C14H15N3 |
Mr | 225.29 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 150 |
a, b, c (Å) | 9.2187 (2), 9.4914 (2), 14.5384 (4) |
β (°) | 97.846 (2) |
V (Å3) | 1260.17 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.07 |
Crystal size (mm) | 0.30 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Eos diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2006) |
Tmin, Tmax | 0.997, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10075, 2577, 2151 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.095, 1.03 |
No. of reflections | 2577 |
No. of parameters | 156 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.18, −0.18 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009) and Mercury (Macrae et al., 2006), OLEX2 (Dolomanov et al., 2009).
Cg1 is the centroid of the C7–C12 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C14—H14A···Cg1i | 0.99 | 2.74 | 3.5154 (13) | 136 |
Symmetry code: (i) −x+3/2, y+1/2, −z+1/2. |
Acknowledgements
We thank the Analytical and Testing Center of Sichuan University for the X-ray measurements.
References
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gazit, A., Yaish, P., Gilon, C. & Levitzki, A. (1989). J. Med. Chem. 32, 2344–2352. CrossRef CAS PubMed Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2006). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Cancer is a serious threat to human health. Molecular targeted therapies have created an encouraging road in the treatment of cancer in recent years. The title compound is a key intermediate in our synthetic investigations of molecular targeted anticancer agents. We report here its crystal structure.
As shown in Fig. 1, the N13 atom, benzene ring, olefinic bond and cyano-groups form an extended conjugated system, making them almost planar. The dihedral angle between the benzene plane and the best plane throught the cyano-groups is 4.93 (10)°, while the dihedral angle between the benzene plane and the plane through atoms N13, C14 and C15 being 9.51 (14)°. In the crystal, molecules are linked into a three-dimensional network by intermolecular C-H···π interactions (Fig.2, Table 1) and Van der Waals forces. Otherwise, there are no hydrogen bonds observed in the packing diagram.