organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(5-Nitro­pyridin-2-yl)-5H-dibenzo[d,f][1,3]diazepine-6-carboxamide

aFaculty of Chemistry, Jagiellonian University, R. Ingardena 3, 30-060 Kraków, Poland
*Correspondence e-mail: seidler@chemia.uj.edu.pl

(Received 9 May 2011; accepted 16 May 2011; online 25 May 2011)

The title compound, C19H13N5O3, can be obtained from the corresponding α-amido-α-amino­nitrone in a reaction with biphenyl-2,2′-diamine. The amido–amidine core has distinctive geometrical parameters including: an outstandingly long Csp2—Csp2 single bond of 1.5276 (13) Å and an amidine N—C—N angle of 130.55 (9)°. Intra­molecular N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds occur. In the crystal, mol­ecules form layers parallel to (001) via weak inter­molecular C—H⋯N inter­actions. The layers are linked via N—H⋯O hydrogen bonds and ππ inter­actions along [001] [benzene–pyridine centroid–centroid distance = 3.672 (2) Å].

Related literature

For the synthesis of the title compound, see: Trzewik et al. (2008[Trzewik, B., Cież, D., Hodorowicz, M. & Stadnicka, K. (2008). Synthesis, pp. 2977-2985.]). For the reaction mechanism, see: Trzewik et al. (2010[Trzewik, B., Seidler, T., Brocławik, E. & Stadnicka, K. (2010). New J. Chem. 34, 2220-2228.]). For similar structures, see: Zaleska et al. (2007[Zaleska, B., Karelus, M., Trzewik, B. & Serda, P. (2007). J. Chem. Res. pp. 195-199.]); Hodorowicz et al. (2007[Hodorowicz, M., Stadnicka, K., Trzewik, B. & Zaleska, B. (2007). Acta Cryst. E63, o4115.]). For hydrogen bond graph-set analysis, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C19H13N5O3

  • Mr = 359.34

  • Monoclinic, P 21 /c

  • a = 12.9702 (2) Å

  • b = 9.2104 (1) Å

  • c = 13.4145 (2) Å

  • β = 100.692 (1)°

  • V = 1574.68 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 110 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Oxford Diffraction SuperNova Dual Cu at zero Atlas diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.969, Tmax = 0.984

  • 127481 measured reflections

  • 4577 independent reflections

  • 3784 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.110

  • S = 1.06

  • 4577 reflections

  • 250 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4 0.89 (1) 2.24 (1) 2.7041 (11) 112 (1)
N2—H2⋯O4i 0.89 (1) 2.26 (1) 3.0725 (11) 152 (1)
N5—H5⋯N3 0.88 (1) 2.11 (1) 2.6191 (11) 116 (1)
C55—H55⋯O4 0.95 2.33 2.9266 (12) 120
C32—H32⋯N51ii 0.95 2.47 3.3000 (13) 146
Symmetry codes: (i) -x, -y, -z+2; (ii) x, y-1, z.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The current report is a continuation of an earlier joint theoretical and X-ray study upon the versatile reactivity of α-amido-α-aminonitrones, having several reactivity centers of different types and yielding various products in reactions with electrophilic and nucleophilic reagents (Trzewik et al., 2008). Among them 5H-dibenzo[d,f][1,3]diazepines, the synthesis and structures of which were described elsewhere (Trzewik et al., 2008, 2010), are unique from the viewpoint of their geometrical features.

The overall shape of the title molecule is shown in Figure 1. The two benzene rings within the diazepine moiety are twisted by torsion angle C25—C26—C36—C35 = -28.63 (13)o. The r.m.s. deviation for the best plane through atoms C21-C26 is significantly greater than that for C31-C36 (0.0166 and 0.0040 Å, respectively) due to steric hindrance between H25 and H35 (H25···H35 distance 2.12 Å).

The puckering parameters of the seven-membered ring (atoms in C3, N2, C31, C36, C26, C21, N3 sequence): q2 = 0.5324 (9), q3 = 0.0832 (9), QT = 0.5389 (9), ϕ2 = 87.6 (1), ϕ3 = 12.4 (7), θ2 = 81.1 (1)°, indicate a twisted-boat conformation with a pseudo-twofold axis (C2) through the C3 atom and the centre of C36—C26 bond with the deviation of 0.0369 (4) Å, whereas a pseudo-mirror plane (Cs) through N2 atom and centre of C21— C26 is described by the deviation of 0.0491 (5) Å (PARST: Nardelli, 1995).

The rest of the molecule is almost perfectly planar (r.m.s. deviation of fitted atoms equals 0.0181 Å). The fragment of the molecule, relevant from both crystallographic and chemical perspectives, is the amido-amidine core [—N5(—H5)—C4(=O4)—C3(=N3—)—N2(—H2)—]. Within the core distinctive geometrical features of the molecule can be seen: a long C3(sp2)—C4(sp2) bond of 1.528 (1) Å and N2—C3—N3 angle of 130.55 (9)°. We expect that the planarity of the core moiety possibly results from intramolecular interactions: N5—H5···N3, N2—H2···O4 and C55—H55···O4 (Table 1). In order to verify the existence of such interactions the analysis of topological properties of electron density distribution is in progress and will be published elsewhere.

The packing of the molecules is organized into layers parallel to (001). Within the layer the molecules are joint by hydrogen bonds of C–H···N type and weak interactions (Figure 2, Table 1). The layers are joined together by ππ interactions with Cg1 (C31–C36)—Cg2 (N51-C56) [-x, y + 1/2, -z + 3/2] = 3.672 Å (Figure 3); and hydrogen bonds of N—H···O type. The N—H···O hydrogen bond together with its centrosymmetric counterpart form a ring motif with descriptor R22(10) according to graph-set theory (Bernstein et al., 1995). The ring motif is marked in Figure 4.

Related literature top

For the synthesis of the title compound, see: Trzewik et al. (2008). For the reaction mechanism, see: Trzewik et al. (2010). For similar structures, see: Zaleska et al. (2007); Hodorowicz et al. (2007). For hydrogen bond graph-set analysis, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized using the procedure already described in literature (Trzewik et al., 2008). Single crystals suitable for X-ray diffraction were grown by slow evaporation from the mixture of methanol and acetonitrile (1:2) solution at ambient conditions.

Refinement top

All hydrogen atoms of N—H groups were found in difference Fourier maps and refined in a riding model assuming N—H = 0.88 (2) Å and Uiso = 1.2Ueq of the parent atom. Aromatic hydrogen atoms were found in difference Fourier maps and refined from geometrical positions assuming C—H = 0.95 Å and using riding model with Uiso = 1.2Ueq.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PARST (Nardelli, 1995) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound showing the atom displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. The hydrogen bond scheme in the layer parallel to (001) cut for z in the range 0.75 to 1.00 (symmetry code: (ii) x, y-1, z).
[Figure 3] Fig. 3. A diagram of ππ interactions between Cg1 (C31–C36) and Cg2i (N51–C56) (symmetry code: (i) -x, y + 1/2, -z + 3/2).
[Figure 4] Fig. 4. View of the packing along [001] showing hydrogen bonds between the layers and the ring motif with descriptor R22(10).
N-(5-Nitropyridin-2-yl)-5H- dibenzo[d,f][1,3]diazepine-6-carboxamide top
Crystal data top
C19H13N5O3F(000) = 744
Mr = 359.34Dx = 1.516 Mg m3
Monoclinic, P21/cMelting point = 477–478 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 12.9702 (2) ÅCell parameters from 34515 reflections
b = 9.2104 (1) Åθ = 3.0–44.5°
c = 13.4145 (2) ŵ = 0.11 mm1
β = 100.692 (1)°T = 110 K
V = 1574.68 (3) Å3Block, orange
Z = 40.30 × 0.20 × 0.15 mm
Data collection top
Oxford Diffraction SuperNova Dual Cu at zero Atlas
diffractometer
4577 independent reflections
Radiation source: Oxford Diffraction SuperNova (Mo) X-ray Source3784 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.052
Detector resolution: 10.3756 pixels mm-1θmax = 30.0°, θmin = 3.0°
ω scansh = 1817
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 012
Tmin = 0.969, Tmax = 0.984l = 018
127481 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0729P)2 + 0.1623P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
4577 reflectionsΔρmax = 0.39 e Å3
250 parametersΔρmin = 0.21 e Å3
2 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
0 constraintsExtinction coefficient: 0
Primary atom site location: structure-invariant direct methods
Crystal data top
C19H13N5O3V = 1574.68 (3) Å3
Mr = 359.34Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.9702 (2) ŵ = 0.11 mm1
b = 9.2104 (1) ÅT = 110 K
c = 13.4145 (2) Å0.30 × 0.20 × 0.15 mm
β = 100.692 (1)°
Data collection top
Oxford Diffraction SuperNova Dual Cu at zero Atlas
diffractometer
4577 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3784 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.984Rint = 0.052
127481 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0362 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.39 e Å3
4577 reflectionsΔρmin = 0.21 e Å3
250 parameters
Special details top

Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.66. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (Oxford Diffraction, 2009).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.15616 (7)0.02467 (9)0.92909 (6)0.01621 (17)
H20.1014 (9)0.0115 (14)0.9524 (9)0.019*
C30.14265 (7)0.16642 (10)0.90162 (7)0.01300 (18)
N30.20711 (6)0.25840 (9)0.87513 (6)0.01359 (16)
C40.03385 (7)0.22423 (10)0.90872 (7)0.01420 (18)
O40.03207 (5)0.14658 (8)0.93589 (6)0.02028 (17)
N50.02224 (6)0.36682 (9)0.88352 (6)0.01523 (17)
H50.0796 (9)0.4033 (13)0.8674 (9)0.018*
C210.31624 (7)0.23319 (10)0.88312 (7)0.01323 (18)
C220.37511 (8)0.36134 (11)0.89410 (7)0.0173 (2)
H220.33970.45200.89130.021*
C230.48377 (8)0.35967 (12)0.90890 (8)0.0207 (2)
H230.52230.44790.91610.025*
C240.53540 (8)0.22716 (12)0.91305 (8)0.0202 (2)
H240.60990.22390.92600.024*
C250.47790 (7)0.09954 (11)0.89823 (7)0.0172 (2)
H250.51430.00980.89950.021*
C260.36771 (7)0.09835 (10)0.88136 (7)0.01375 (18)
C310.21410 (7)0.07550 (10)0.88061 (7)0.01417 (18)
C320.16781 (8)0.21063 (11)0.85663 (8)0.0187 (2)
H320.10110.23100.87300.022*
C330.21824 (9)0.31577 (11)0.80897 (8)0.0219 (2)
H330.18630.40780.79300.026*
C340.31554 (9)0.28566 (11)0.78484 (8)0.0218 (2)
H340.35090.35710.75270.026*
C350.36072 (8)0.15065 (11)0.80807 (8)0.0181 (2)
H350.42670.13050.79000.022*
C360.31255 (7)0.04244 (10)0.85732 (7)0.01404 (18)
N510.04575 (6)0.59431 (9)0.85591 (6)0.01663 (18)
C520.12294 (8)0.69109 (11)0.85240 (7)0.01701 (19)
H520.11090.78890.83520.020*
C530.21986 (8)0.65325 (11)0.87304 (7)0.01609 (19)
C540.23889 (8)0.51174 (11)0.90003 (8)0.0181 (2)
H540.30540.48490.91430.022*
C550.15953 (7)0.41067 (11)0.90574 (8)0.01687 (19)
H550.16910.31310.92510.020*
C560.06433 (7)0.45741 (10)0.88190 (7)0.01390 (18)
N570.30275 (7)0.76288 (10)0.86450 (7)0.02042 (19)
O580.39181 (6)0.72147 (10)0.86834 (7)0.0296 (2)
O590.27849 (7)0.89005 (9)0.85351 (7)0.02897 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0173 (4)0.0141 (4)0.0190 (4)0.0005 (3)0.0079 (3)0.0029 (3)
C30.0147 (4)0.0141 (4)0.0099 (4)0.0007 (3)0.0014 (3)0.0000 (3)
N30.0138 (4)0.0149 (4)0.0119 (4)0.0002 (3)0.0020 (3)0.0001 (3)
C40.0150 (4)0.0153 (4)0.0119 (4)0.0004 (3)0.0014 (3)0.0005 (3)
O40.0173 (3)0.0184 (3)0.0263 (4)0.0001 (3)0.0073 (3)0.0053 (3)
N50.0124 (4)0.0150 (4)0.0187 (4)0.0001 (3)0.0039 (3)0.0016 (3)
C210.0137 (4)0.0162 (4)0.0096 (4)0.0006 (3)0.0015 (3)0.0010 (3)
C220.0191 (5)0.0161 (4)0.0173 (5)0.0019 (3)0.0049 (4)0.0011 (4)
C230.0189 (5)0.0223 (5)0.0217 (5)0.0066 (4)0.0055 (4)0.0032 (4)
C240.0138 (4)0.0281 (5)0.0186 (5)0.0021 (4)0.0024 (4)0.0007 (4)
C250.0154 (4)0.0212 (5)0.0152 (4)0.0021 (4)0.0030 (3)0.0035 (4)
C260.0156 (4)0.0159 (4)0.0097 (4)0.0004 (3)0.0021 (3)0.0023 (3)
C310.0161 (4)0.0135 (4)0.0130 (4)0.0018 (3)0.0028 (3)0.0028 (3)
C320.0199 (5)0.0153 (4)0.0211 (5)0.0014 (4)0.0041 (4)0.0028 (4)
C330.0280 (5)0.0139 (4)0.0239 (5)0.0009 (4)0.0054 (4)0.0021 (4)
C340.0294 (5)0.0156 (5)0.0222 (5)0.0044 (4)0.0093 (4)0.0017 (4)
C350.0197 (4)0.0170 (4)0.0184 (5)0.0039 (4)0.0057 (4)0.0035 (4)
C360.0155 (4)0.0134 (4)0.0128 (4)0.0015 (3)0.0014 (3)0.0037 (3)
N510.0172 (4)0.0150 (4)0.0171 (4)0.0001 (3)0.0017 (3)0.0015 (3)
C520.0201 (4)0.0158 (4)0.0139 (4)0.0010 (4)0.0001 (3)0.0002 (3)
C530.0168 (4)0.0192 (5)0.0109 (4)0.0048 (3)0.0012 (3)0.0018 (3)
C540.0146 (4)0.0223 (5)0.0173 (5)0.0006 (4)0.0024 (3)0.0004 (4)
C550.0151 (4)0.0174 (4)0.0180 (5)0.0011 (3)0.0028 (4)0.0010 (4)
C560.0142 (4)0.0148 (4)0.0118 (4)0.0006 (3)0.0001 (3)0.0000 (3)
N570.0221 (4)0.0247 (4)0.0131 (4)0.0081 (3)0.0003 (3)0.0017 (3)
O580.0187 (4)0.0389 (5)0.0316 (5)0.0099 (3)0.0057 (3)0.0046 (4)
O590.0345 (5)0.0193 (4)0.0306 (5)0.0084 (3)0.0002 (3)0.0015 (3)
Geometric parameters (Å, º) top
N2—C31.3591 (12)C31—C361.4031 (13)
N2—C311.4213 (12)C32—C331.3891 (14)
N2—H20.892 (11)C32—H320.9500
C3—N31.2858 (12)C33—C341.3878 (15)
C3—C41.5276 (13)C33—H330.9500
N3—C211.4186 (12)C34—C351.3853 (15)
C4—O41.2211 (11)C34—H340.9500
C4—N51.3575 (12)C35—C361.4048 (13)
N5—C561.3958 (12)C35—H350.9500
N5—H50.879 (11)N51—C521.3348 (13)
C21—C221.3987 (13)N51—C561.3419 (12)
C21—C261.4122 (13)C52—C531.3812 (14)
C22—C231.3864 (14)C52—H520.9500
C22—H220.9500C53—C541.3870 (14)
C23—C241.3883 (15)C53—N571.4639 (13)
C23—H230.9500C54—C551.3794 (13)
C24—C251.3864 (14)C54—H540.9500
C24—H240.9500C55—C561.3996 (13)
C25—C261.4050 (13)C55—H550.9500
C25—H250.9500N57—O581.2265 (12)
C26—C361.4872 (13)N57—O591.2288 (13)
C31—C321.3933 (13)
C3—N2—C31123.51 (8)C33—C32—C31120.63 (9)
C3—N2—H2112.5 (8)C33—C32—H32119.7
C31—N2—H2116.2 (8)C31—C32—H32119.7
N3—C3—N2130.55 (9)C34—C33—C32119.62 (10)
N3—C3—C4116.30 (8)C34—C33—H33120.2
N2—C3—C4113.09 (8)C32—C33—H33120.2
C3—N3—C21124.20 (8)C35—C34—C33119.47 (9)
O4—C4—N5126.12 (9)C35—C34—H34120.3
O4—C4—C3121.37 (8)C33—C34—H34120.3
N5—C4—C3112.50 (8)C34—C35—C36122.42 (9)
C4—N5—C56129.34 (8)C34—C35—H35118.8
C4—N5—H5111.8 (8)C36—C35—H35118.8
C56—N5—H5118.9 (8)C31—C36—C35116.95 (9)
C22—C21—C26119.56 (8)C31—C36—C26124.20 (8)
C22—C21—N3112.79 (8)C35—C36—C26118.85 (8)
C26—C21—N3127.65 (8)C52—N51—C56117.84 (8)
C23—C22—C21121.75 (9)N51—C52—C53121.94 (9)
C23—C22—H22119.1N51—C52—H52119.0
C21—C22—H22119.1C53—C52—H52119.0
C22—C23—C24119.05 (9)C52—C53—C54120.14 (9)
C22—C23—H23120.5C52—C53—N57119.53 (9)
C24—C23—H23120.5C54—C53—N57120.33 (9)
C25—C24—C23119.80 (9)C55—C54—C53118.79 (9)
C25—C24—H24120.1C55—C54—H54120.6
C23—C24—H24120.1C53—C54—H54120.6
C24—C25—C26122.26 (9)C54—C55—C56117.43 (9)
C24—C25—H25118.9C54—C55—H55121.3
C26—C25—H25118.9C56—C55—H55121.3
C25—C26—C21117.41 (9)N51—C56—N5112.52 (8)
C25—C26—C36118.41 (8)N51—C56—C55123.85 (9)
C21—C26—C36124.09 (8)N5—C56—C55123.63 (9)
C32—C31—C36120.89 (9)O58—N57—O59124.44 (9)
C32—C31—N2116.34 (8)O58—N57—C53117.77 (9)
C36—C31—N2122.77 (9)O59—N57—C53117.79 (9)
C31—N2—C3—N340.22 (16)C32—C33—C34—C350.43 (16)
C31—N2—C3—C4142.83 (9)C33—C34—C35—C361.23 (16)
N2—C3—N3—C219.51 (16)C32—C31—C36—C350.77 (14)
C4—C3—N3—C21167.36 (8)N2—C31—C36—C35179.14 (9)
N3—C3—C4—O4177.99 (9)C32—C31—C36—C26179.29 (9)
N2—C3—C4—O40.58 (13)N2—C31—C36—C260.80 (14)
N3—C3—C4—N51.05 (12)C34—C35—C36—C311.38 (14)
N2—C3—C4—N5178.47 (8)C34—C35—C36—C26178.68 (9)
O4—C4—N5—C560.22 (17)C25—C26—C36—C31151.43 (9)
C3—C4—N5—C56179.21 (9)C21—C26—C36—C3132.08 (14)
C3—N3—C21—C22153.01 (9)C25—C26—C36—C3528.63 (13)
C3—N3—C21—C2626.82 (15)C21—C26—C36—C35147.86 (9)
C26—C21—C22—C233.56 (15)C56—N51—C52—C530.98 (14)
N3—C21—C22—C23176.28 (9)N51—C52—C53—C541.09 (15)
C21—C22—C23—C240.09 (15)N51—C52—C53—N57177.84 (9)
C22—C23—C24—C252.66 (15)C52—C53—C54—C550.01 (15)
C23—C24—C25—C261.61 (15)N57—C53—C54—C55178.94 (9)
C24—C25—C26—C211.98 (14)C53—C54—C55—C561.11 (14)
C24—C25—C26—C36174.74 (9)C52—N51—C56—N5179.63 (8)
C22—C21—C26—C254.48 (13)C52—N51—C56—C550.22 (15)
N3—C21—C26—C25175.34 (9)C4—N5—C56—N51177.97 (9)
C22—C21—C26—C36172.04 (9)C4—N5—C56—C551.44 (16)
N3—C21—C26—C368.14 (15)C54—C55—C56—N511.27 (15)
C3—N2—C31—C32134.33 (10)C54—C55—C56—N5179.39 (9)
C3—N2—C31—C3645.58 (14)C52—C53—N57—O58169.30 (9)
C36—C31—C32—C330.04 (15)C54—C53—N57—O589.64 (14)
N2—C31—C32—C33179.87 (10)C52—C53—N57—O5910.38 (14)
C31—C32—C33—C340.14 (16)C54—C53—N57—O59170.68 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O40.89 (1)2.24 (1)2.7041 (11)112 (1)
N2—H2···O4i0.89 (1)2.26 (1)3.0725 (11)152 (1)
N5—H5···N30.88 (1)2.11 (1)2.6191 (11)116 (1)
C55—H55···O40.952.332.9266 (12)120
C32—H32···N51ii0.952.473.3000 (13)146
Symmetry codes: (i) x, y, z+2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC19H13N5O3
Mr359.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)12.9702 (2), 9.2104 (1), 13.4145 (2)
β (°) 100.692 (1)
V3)1574.68 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerOxford Diffraction SuperNova Dual Cu at zero Atlas
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.969, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
127481, 4577, 3784
Rint0.052
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.110, 1.06
No. of reflections4577
No. of parameters250
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.21

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1994), Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008), PARST (Nardelli, 1995) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O40.89 (1)2.24 (1)2.7041 (11)112 (1)
N2—H2···O4i0.89 (1)2.26 (1)3.0725 (11)152 (1)
N5—H5···N30.88 (1)2.11 (1)2.6191 (11)116 (1)
C55—H55···O40.952.332.9266 (12)120
C32—H32···N51ii0.952.473.3000 (13)146
Symmetry codes: (i) x, y, z+2; (ii) x, y1, z.
 

Acknowledgements

TS gratefully acknowledges the support from a Project operated within the Foundation for Polish Science MPD Programme co-financed by the EU European Regional Development Fund.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHodorowicz, M., Stadnicka, K., Trzewik, B. & Zaleska, B. (2007). Acta Cryst. E63, o4115.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrzewik, B., Cież, D., Hodorowicz, M. & Stadnicka, K. (2008). Synthesis, pp. 2977–2985.  CrossRef Google Scholar
First citationTrzewik, B., Seidler, T., Brocławik, E. & Stadnicka, K. (2010). New J. Chem. 34, 2220–2228.  CrossRef CAS Google Scholar
First citationZaleska, B., Karelus, M., Trzewik, B. & Serda, P. (2007). J. Chem. Res. pp. 195–199.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds