organic compounds
N-(5-Nitropyridin-2-yl)-5H-dibenzo[d,f][1,3]diazepine-6-carboxamide
aFaculty of Chemistry, Jagiellonian University, R. Ingardena 3, 30-060 Kraków, Poland
*Correspondence e-mail: seidler@chemia.uj.edu.pl
The title compound, C19H13N5O3, can be obtained from the corresponding α-amido-α-aminonitrone in a reaction with biphenyl-2,2′-diamine. The amido–amidine core has distinctive geometrical parameters including: an outstandingly long Csp2—Csp2 single bond of 1.5276 (13) Å and an amidine N—C—N angle of 130.55 (9)°. Intramolecular N—H⋯O, N—H⋯N and C—H⋯O hydrogen bonds occur. In the crystal, molecules form layers parallel to (001) via weak intermolecular C—H⋯N interactions. The layers are linked via N—H⋯O hydrogen bonds and π–π interactions along [001] [benzene–pyridine centroid–centroid distance = 3.672 (2) Å].
Related literature
For the synthesis of the title compound, see: Trzewik et al. (2008). For the see: Trzewik et al. (2010). For similar structures, see: Zaleska et al. (2007); Hodorowicz et al. (2007). For hydrogen bond graph-set analysis, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97, PARST (Nardelli, 1995) and WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536811018629/vm2095sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811018629/vm2095Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536811018629/vm2095Isup3.cml
The title compound was synthesized using the procedure already described in literature (Trzewik et al., 2008). Single crystals suitable for X-ray diffraction were grown by slow evaporation from the mixture of methanol and acetonitrile (1:2) solution at ambient conditions.
All hydrogen atoms of N—H groups were found in difference Fourier maps and refined in a riding model assuming N—H = 0.88 (2) Å and Uiso = 1.2Ueq of the parent atom. Aromatic hydrogen atoms were found in difference Fourier maps and refined from geometrical positions assuming C—H = 0.95 Å and using riding model with Uiso = 1.2Ueq.
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PARST (Nardelli, 1995) and WinGX (Farrugia, 1999).C19H13N5O3 | F(000) = 744 |
Mr = 359.34 | Dx = 1.516 Mg m−3 |
Monoclinic, P21/c | Melting point = 477–478 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 12.9702 (2) Å | Cell parameters from 34515 reflections |
b = 9.2104 (1) Å | θ = 3.0–44.5° |
c = 13.4145 (2) Å | µ = 0.11 mm−1 |
β = 100.692 (1)° | T = 110 K |
V = 1574.68 (3) Å3 | Block, orange |
Z = 4 | 0.30 × 0.20 × 0.15 mm |
Oxford Diffraction SuperNova Dual Cu at zero Atlas diffractometer | 4577 independent reflections |
Radiation source: Oxford Diffraction SuperNova (Mo) X-ray Source | 3784 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.052 |
Detector resolution: 10.3756 pixels mm-1 | θmax = 30.0°, θmin = 3.0° |
ω scans | h = −18→17 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | k = 0→12 |
Tmin = 0.969, Tmax = 0.984 | l = 0→18 |
127481 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.110 | w = 1/[σ2(Fo2) + (0.0729P)2 + 0.1623P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
4577 reflections | Δρmax = 0.39 e Å−3 |
250 parameters | Δρmin = −0.21 e Å−3 |
2 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008) |
0 constraints | Extinction coefficient: 0 |
Primary atom site location: structure-invariant direct methods |
C19H13N5O3 | V = 1574.68 (3) Å3 |
Mr = 359.34 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.9702 (2) Å | µ = 0.11 mm−1 |
b = 9.2104 (1) Å | T = 110 K |
c = 13.4145 (2) Å | 0.30 × 0.20 × 0.15 mm |
β = 100.692 (1)° |
Oxford Diffraction SuperNova Dual Cu at zero Atlas diffractometer | 4577 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | 3784 reflections with I > 2σ(I) |
Tmin = 0.969, Tmax = 0.984 | Rint = 0.052 |
127481 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 2 restraints |
wR(F2) = 0.110 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.06 | Δρmax = 0.39 e Å−3 |
4577 reflections | Δρmin = −0.21 e Å−3 |
250 parameters |
Experimental. CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.66. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm (Oxford Diffraction, 2009). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N2 | 0.15616 (7) | 0.02467 (9) | 0.92909 (6) | 0.01621 (17) | |
H2 | 0.1014 (9) | −0.0115 (14) | 0.9524 (9) | 0.019* | |
C3 | 0.14265 (7) | 0.16642 (10) | 0.90162 (7) | 0.01300 (18) | |
N3 | 0.20711 (6) | 0.25840 (9) | 0.87513 (6) | 0.01359 (16) | |
C4 | 0.03385 (7) | 0.22423 (10) | 0.90872 (7) | 0.01420 (18) | |
O4 | −0.03207 (5) | 0.14658 (8) | 0.93589 (6) | 0.02028 (17) | |
N5 | 0.02224 (6) | 0.36682 (9) | 0.88352 (6) | 0.01523 (17) | |
H5 | 0.0796 (9) | 0.4033 (13) | 0.8674 (9) | 0.018* | |
C21 | 0.31624 (7) | 0.23319 (10) | 0.88312 (7) | 0.01323 (18) | |
C22 | 0.37511 (8) | 0.36134 (11) | 0.89410 (7) | 0.0173 (2) | |
H22 | 0.3397 | 0.4520 | 0.8913 | 0.021* | |
C23 | 0.48377 (8) | 0.35967 (12) | 0.90890 (8) | 0.0207 (2) | |
H23 | 0.5223 | 0.4479 | 0.9161 | 0.025* | |
C24 | 0.53540 (8) | 0.22716 (12) | 0.91305 (8) | 0.0202 (2) | |
H24 | 0.6099 | 0.2239 | 0.9260 | 0.024* | |
C25 | 0.47790 (7) | 0.09954 (11) | 0.89823 (7) | 0.0172 (2) | |
H25 | 0.5143 | 0.0098 | 0.8995 | 0.021* | |
C26 | 0.36771 (7) | 0.09835 (10) | 0.88136 (7) | 0.01375 (18) | |
C31 | 0.21410 (7) | −0.07550 (10) | 0.88061 (7) | 0.01417 (18) | |
C32 | 0.16781 (8) | −0.21063 (11) | 0.85663 (8) | 0.0187 (2) | |
H32 | 0.1011 | −0.2310 | 0.8730 | 0.022* | |
C33 | 0.21824 (9) | −0.31577 (11) | 0.80897 (8) | 0.0219 (2) | |
H33 | 0.1863 | −0.4078 | 0.7930 | 0.026* | |
C34 | 0.31554 (9) | −0.28566 (11) | 0.78484 (8) | 0.0218 (2) | |
H34 | 0.3509 | −0.3571 | 0.7527 | 0.026* | |
C35 | 0.36072 (8) | −0.15065 (11) | 0.80807 (8) | 0.0181 (2) | |
H35 | 0.4267 | −0.1305 | 0.7900 | 0.022* | |
C36 | 0.31255 (7) | −0.04244 (10) | 0.85732 (7) | 0.01404 (18) | |
N51 | −0.04575 (6) | 0.59431 (9) | 0.85591 (6) | 0.01663 (18) | |
C52 | −0.12294 (8) | 0.69109 (11) | 0.85240 (7) | 0.01701 (19) | |
H52 | −0.1109 | 0.7889 | 0.8352 | 0.020* | |
C53 | −0.21986 (8) | 0.65325 (11) | 0.87304 (7) | 0.01609 (19) | |
C54 | −0.23889 (8) | 0.51174 (11) | 0.90003 (8) | 0.0181 (2) | |
H54 | −0.3054 | 0.4849 | 0.9143 | 0.022* | |
C55 | −0.15953 (7) | 0.41067 (11) | 0.90574 (8) | 0.01687 (19) | |
H55 | −0.1691 | 0.3131 | 0.9251 | 0.020* | |
C56 | −0.06433 (7) | 0.45741 (10) | 0.88190 (7) | 0.01390 (18) | |
N57 | −0.30275 (7) | 0.76288 (10) | 0.86450 (7) | 0.02042 (19) | |
O58 | −0.39181 (6) | 0.72147 (10) | 0.86834 (7) | 0.0296 (2) | |
O59 | −0.27849 (7) | 0.89005 (9) | 0.85351 (7) | 0.02897 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N2 | 0.0173 (4) | 0.0141 (4) | 0.0190 (4) | 0.0005 (3) | 0.0079 (3) | 0.0029 (3) |
C3 | 0.0147 (4) | 0.0141 (4) | 0.0099 (4) | 0.0007 (3) | 0.0014 (3) | 0.0000 (3) |
N3 | 0.0138 (4) | 0.0149 (4) | 0.0119 (4) | −0.0002 (3) | 0.0020 (3) | −0.0001 (3) |
C4 | 0.0150 (4) | 0.0153 (4) | 0.0119 (4) | 0.0004 (3) | 0.0014 (3) | 0.0005 (3) |
O4 | 0.0173 (3) | 0.0184 (3) | 0.0263 (4) | −0.0001 (3) | 0.0073 (3) | 0.0053 (3) |
N5 | 0.0124 (4) | 0.0150 (4) | 0.0187 (4) | −0.0001 (3) | 0.0039 (3) | 0.0016 (3) |
C21 | 0.0137 (4) | 0.0162 (4) | 0.0096 (4) | −0.0006 (3) | 0.0015 (3) | 0.0010 (3) |
C22 | 0.0191 (5) | 0.0161 (4) | 0.0173 (5) | −0.0019 (3) | 0.0049 (4) | −0.0011 (4) |
C23 | 0.0189 (5) | 0.0223 (5) | 0.0217 (5) | −0.0066 (4) | 0.0055 (4) | −0.0032 (4) |
C24 | 0.0138 (4) | 0.0281 (5) | 0.0186 (5) | −0.0021 (4) | 0.0024 (4) | 0.0007 (4) |
C25 | 0.0154 (4) | 0.0212 (5) | 0.0152 (4) | 0.0021 (4) | 0.0030 (3) | 0.0035 (4) |
C26 | 0.0156 (4) | 0.0159 (4) | 0.0097 (4) | 0.0004 (3) | 0.0021 (3) | 0.0023 (3) |
C31 | 0.0161 (4) | 0.0135 (4) | 0.0130 (4) | 0.0018 (3) | 0.0028 (3) | 0.0028 (3) |
C32 | 0.0199 (5) | 0.0153 (4) | 0.0211 (5) | −0.0014 (4) | 0.0041 (4) | 0.0028 (4) |
C33 | 0.0280 (5) | 0.0139 (4) | 0.0239 (5) | −0.0009 (4) | 0.0054 (4) | 0.0021 (4) |
C34 | 0.0294 (5) | 0.0156 (5) | 0.0222 (5) | 0.0044 (4) | 0.0093 (4) | 0.0017 (4) |
C35 | 0.0197 (4) | 0.0170 (4) | 0.0184 (5) | 0.0039 (4) | 0.0057 (4) | 0.0035 (4) |
C36 | 0.0155 (4) | 0.0134 (4) | 0.0128 (4) | 0.0015 (3) | 0.0014 (3) | 0.0037 (3) |
N51 | 0.0172 (4) | 0.0150 (4) | 0.0171 (4) | 0.0001 (3) | 0.0017 (3) | 0.0015 (3) |
C52 | 0.0201 (4) | 0.0158 (4) | 0.0139 (4) | 0.0010 (4) | −0.0001 (3) | 0.0002 (3) |
C53 | 0.0168 (4) | 0.0192 (5) | 0.0109 (4) | 0.0048 (3) | −0.0012 (3) | −0.0018 (3) |
C54 | 0.0146 (4) | 0.0223 (5) | 0.0173 (5) | 0.0006 (4) | 0.0024 (3) | −0.0004 (4) |
C55 | 0.0151 (4) | 0.0174 (4) | 0.0180 (5) | −0.0011 (3) | 0.0028 (4) | 0.0010 (4) |
C56 | 0.0142 (4) | 0.0148 (4) | 0.0118 (4) | 0.0006 (3) | 0.0001 (3) | 0.0000 (3) |
N57 | 0.0221 (4) | 0.0247 (4) | 0.0131 (4) | 0.0081 (3) | −0.0003 (3) | −0.0017 (3) |
O58 | 0.0187 (4) | 0.0389 (5) | 0.0316 (5) | 0.0099 (3) | 0.0057 (3) | 0.0046 (4) |
O59 | 0.0345 (5) | 0.0193 (4) | 0.0306 (5) | 0.0084 (3) | −0.0002 (3) | −0.0015 (3) |
N2—C3 | 1.3591 (12) | C31—C36 | 1.4031 (13) |
N2—C31 | 1.4213 (12) | C32—C33 | 1.3891 (14) |
N2—H2 | 0.892 (11) | C32—H32 | 0.9500 |
C3—N3 | 1.2858 (12) | C33—C34 | 1.3878 (15) |
C3—C4 | 1.5276 (13) | C33—H33 | 0.9500 |
N3—C21 | 1.4186 (12) | C34—C35 | 1.3853 (15) |
C4—O4 | 1.2211 (11) | C34—H34 | 0.9500 |
C4—N5 | 1.3575 (12) | C35—C36 | 1.4048 (13) |
N5—C56 | 1.3958 (12) | C35—H35 | 0.9500 |
N5—H5 | 0.879 (11) | N51—C52 | 1.3348 (13) |
C21—C22 | 1.3987 (13) | N51—C56 | 1.3419 (12) |
C21—C26 | 1.4122 (13) | C52—C53 | 1.3812 (14) |
C22—C23 | 1.3864 (14) | C52—H52 | 0.9500 |
C22—H22 | 0.9500 | C53—C54 | 1.3870 (14) |
C23—C24 | 1.3883 (15) | C53—N57 | 1.4639 (13) |
C23—H23 | 0.9500 | C54—C55 | 1.3794 (13) |
C24—C25 | 1.3864 (14) | C54—H54 | 0.9500 |
C24—H24 | 0.9500 | C55—C56 | 1.3996 (13) |
C25—C26 | 1.4050 (13) | C55—H55 | 0.9500 |
C25—H25 | 0.9500 | N57—O58 | 1.2265 (12) |
C26—C36 | 1.4872 (13) | N57—O59 | 1.2288 (13) |
C31—C32 | 1.3933 (13) | ||
C3—N2—C31 | 123.51 (8) | C33—C32—C31 | 120.63 (9) |
C3—N2—H2 | 112.5 (8) | C33—C32—H32 | 119.7 |
C31—N2—H2 | 116.2 (8) | C31—C32—H32 | 119.7 |
N3—C3—N2 | 130.55 (9) | C34—C33—C32 | 119.62 (10) |
N3—C3—C4 | 116.30 (8) | C34—C33—H33 | 120.2 |
N2—C3—C4 | 113.09 (8) | C32—C33—H33 | 120.2 |
C3—N3—C21 | 124.20 (8) | C35—C34—C33 | 119.47 (9) |
O4—C4—N5 | 126.12 (9) | C35—C34—H34 | 120.3 |
O4—C4—C3 | 121.37 (8) | C33—C34—H34 | 120.3 |
N5—C4—C3 | 112.50 (8) | C34—C35—C36 | 122.42 (9) |
C4—N5—C56 | 129.34 (8) | C34—C35—H35 | 118.8 |
C4—N5—H5 | 111.8 (8) | C36—C35—H35 | 118.8 |
C56—N5—H5 | 118.9 (8) | C31—C36—C35 | 116.95 (9) |
C22—C21—C26 | 119.56 (8) | C31—C36—C26 | 124.20 (8) |
C22—C21—N3 | 112.79 (8) | C35—C36—C26 | 118.85 (8) |
C26—C21—N3 | 127.65 (8) | C52—N51—C56 | 117.84 (8) |
C23—C22—C21 | 121.75 (9) | N51—C52—C53 | 121.94 (9) |
C23—C22—H22 | 119.1 | N51—C52—H52 | 119.0 |
C21—C22—H22 | 119.1 | C53—C52—H52 | 119.0 |
C22—C23—C24 | 119.05 (9) | C52—C53—C54 | 120.14 (9) |
C22—C23—H23 | 120.5 | C52—C53—N57 | 119.53 (9) |
C24—C23—H23 | 120.5 | C54—C53—N57 | 120.33 (9) |
C25—C24—C23 | 119.80 (9) | C55—C54—C53 | 118.79 (9) |
C25—C24—H24 | 120.1 | C55—C54—H54 | 120.6 |
C23—C24—H24 | 120.1 | C53—C54—H54 | 120.6 |
C24—C25—C26 | 122.26 (9) | C54—C55—C56 | 117.43 (9) |
C24—C25—H25 | 118.9 | C54—C55—H55 | 121.3 |
C26—C25—H25 | 118.9 | C56—C55—H55 | 121.3 |
C25—C26—C21 | 117.41 (9) | N51—C56—N5 | 112.52 (8) |
C25—C26—C36 | 118.41 (8) | N51—C56—C55 | 123.85 (9) |
C21—C26—C36 | 124.09 (8) | N5—C56—C55 | 123.63 (9) |
C32—C31—C36 | 120.89 (9) | O58—N57—O59 | 124.44 (9) |
C32—C31—N2 | 116.34 (8) | O58—N57—C53 | 117.77 (9) |
C36—C31—N2 | 122.77 (9) | O59—N57—C53 | 117.79 (9) |
C31—N2—C3—N3 | −40.22 (16) | C32—C33—C34—C35 | −0.43 (16) |
C31—N2—C3—C4 | 142.83 (9) | C33—C34—C35—C36 | 1.23 (16) |
N2—C3—N3—C21 | −9.51 (16) | C32—C31—C36—C35 | 0.77 (14) |
C4—C3—N3—C21 | 167.36 (8) | N2—C31—C36—C35 | −179.14 (9) |
N3—C3—C4—O4 | −177.99 (9) | C32—C31—C36—C26 | −179.29 (9) |
N2—C3—C4—O4 | −0.58 (13) | N2—C31—C36—C26 | 0.80 (14) |
N3—C3—C4—N5 | 1.05 (12) | C34—C35—C36—C31 | −1.38 (14) |
N2—C3—C4—N5 | 178.47 (8) | C34—C35—C36—C26 | 178.68 (9) |
O4—C4—N5—C56 | −0.22 (17) | C25—C26—C36—C31 | 151.43 (9) |
C3—C4—N5—C56 | −179.21 (9) | C21—C26—C36—C31 | −32.08 (14) |
C3—N3—C21—C22 | −153.01 (9) | C25—C26—C36—C35 | −28.63 (13) |
C3—N3—C21—C26 | 26.82 (15) | C21—C26—C36—C35 | 147.86 (9) |
C26—C21—C22—C23 | −3.56 (15) | C56—N51—C52—C53 | −0.98 (14) |
N3—C21—C22—C23 | 176.28 (9) | N51—C52—C53—C54 | 1.09 (15) |
C21—C22—C23—C24 | −0.09 (15) | N51—C52—C53—N57 | −177.84 (9) |
C22—C23—C24—C25 | 2.66 (15) | C52—C53—C54—C55 | 0.01 (15) |
C23—C24—C25—C26 | −1.61 (15) | N57—C53—C54—C55 | 178.94 (9) |
C24—C25—C26—C21 | −1.98 (14) | C53—C54—C55—C56 | −1.11 (14) |
C24—C25—C26—C36 | 174.74 (9) | C52—N51—C56—N5 | −179.63 (8) |
C22—C21—C26—C25 | 4.48 (13) | C52—N51—C56—C55 | −0.22 (15) |
N3—C21—C26—C25 | −175.34 (9) | C4—N5—C56—N51 | 177.97 (9) |
C22—C21—C26—C36 | −172.04 (9) | C4—N5—C56—C55 | −1.44 (16) |
N3—C21—C26—C36 | 8.14 (15) | C54—C55—C56—N51 | 1.27 (15) |
C3—N2—C31—C32 | −134.33 (10) | C54—C55—C56—N5 | −179.39 (9) |
C3—N2—C31—C36 | 45.58 (14) | C52—C53—N57—O58 | 169.30 (9) |
C36—C31—C32—C33 | −0.04 (15) | C54—C53—N57—O58 | −9.64 (14) |
N2—C31—C32—C33 | 179.87 (10) | C52—C53—N57—O59 | −10.38 (14) |
C31—C32—C33—C34 | −0.14 (16) | C54—C53—N57—O59 | 170.68 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O4 | 0.89 (1) | 2.24 (1) | 2.7041 (11) | 112 (1) |
N2—H2···O4i | 0.89 (1) | 2.26 (1) | 3.0725 (11) | 152 (1) |
N5—H5···N3 | 0.88 (1) | 2.11 (1) | 2.6191 (11) | 116 (1) |
C55—H55···O4 | 0.95 | 2.33 | 2.9266 (12) | 120 |
C32—H32···N51ii | 0.95 | 2.47 | 3.3000 (13) | 146 |
Symmetry codes: (i) −x, −y, −z+2; (ii) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C19H13N5O3 |
Mr | 359.34 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 110 |
a, b, c (Å) | 12.9702 (2), 9.2104 (1), 13.4145 (2) |
β (°) | 100.692 (1) |
V (Å3) | 1574.68 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.30 × 0.20 × 0.15 |
Data collection | |
Diffractometer | Oxford Diffraction SuperNova Dual Cu at zero Atlas diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.969, 0.984 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 127481, 4577, 3784 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.110, 1.06 |
No. of reflections | 4577 |
No. of parameters | 250 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.39, −0.21 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1994), Mercury (Macrae et al., 2006) and ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008), PARST (Nardelli, 1995) and WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O4 | 0.89 (1) | 2.24 (1) | 2.7041 (11) | 112 (1) |
N2—H2···O4i | 0.89 (1) | 2.26 (1) | 3.0725 (11) | 152 (1) |
N5—H5···N3 | 0.88 (1) | 2.11 (1) | 2.6191 (11) | 116 (1) |
C55—H55···O4 | 0.95 | 2.33 | 2.9266 (12) | 120 |
C32—H32···N51ii | 0.95 | 2.47 | 3.3000 (13) | 146 |
Symmetry codes: (i) −x, −y, −z+2; (ii) x, y−1, z. |
Acknowledgements
TS gratefully acknowledges the support from a Project operated within the Foundation for Polish Science MPD Programme co-financed by the EU European Regional Development Fund.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Hodorowicz, M., Stadnicka, K., Trzewik, B. & Zaleska, B. (2007). Acta Cryst. E63, o4115. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Trzewik, B., Cież, D., Hodorowicz, M. & Stadnicka, K. (2008). Synthesis, pp. 2977–2985. CrossRef Google Scholar
Trzewik, B., Seidler, T., Brocławik, E. & Stadnicka, K. (2010). New J. Chem. 34, 2220–2228. CrossRef CAS Google Scholar
Zaleska, B., Karelus, M., Trzewik, B. & Serda, P. (2007). J. Chem. Res. pp. 195–199. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The current report is a continuation of an earlier joint theoretical and X-ray study upon the versatile reactivity of α-amido-α-aminonitrones, having several reactivity centers of different types and yielding various products in reactions with electrophilic and nucleophilic reagents (Trzewik et al., 2008). Among them 5H-dibenzo[d,f][1,3]diazepines, the synthesis and structures of which were described elsewhere (Trzewik et al., 2008, 2010), are unique from the viewpoint of their geometrical features.
The overall shape of the title molecule is shown in Figure 1. The two benzene rings within the diazepine moiety are twisted by torsion angle C25—C26—C36—C35 = -28.63 (13)o. The r.m.s. deviation for the best plane through atoms C21-C26 is significantly greater than that for C31-C36 (0.0166 and 0.0040 Å, respectively) due to steric hindrance between H25 and H35 (H25···H35 distance 2.12 Å).
The puckering parameters of the seven-membered ring (atoms in C3, N2, C31, C36, C26, C21, N3 sequence): q2 = 0.5324 (9), q3 = 0.0832 (9), QT = 0.5389 (9), ϕ2 = 87.6 (1), ϕ3 = 12.4 (7), θ2 = 81.1 (1)°, indicate a twisted-boat conformation with a pseudo-twofold axis (C2) through the C3 atom and the centre of C36—C26 bond with the deviation of 0.0369 (4) Å, whereas a pseudo-mirror plane (Cs) through N2 atom and centre of C21— C26 is described by the deviation of 0.0491 (5) Å (PARST: Nardelli, 1995).
The rest of the molecule is almost perfectly planar (r.m.s. deviation of fitted atoms equals 0.0181 Å). The fragment of the molecule, relevant from both crystallographic and chemical perspectives, is the amido-amidine core [—N5(—H5)—C4(=O4)—C3(=N3—)—N2(—H2)—]. Within the core distinctive geometrical features of the molecule can be seen: a long C3(sp2)—C4(sp2) bond of 1.528 (1) Å and N2—C3—N3 angle of 130.55 (9)°. We expect that the planarity of the core moiety possibly results from intramolecular interactions: N5—H5···N3, N2—H2···O4 and C55—H55···O4 (Table 1). In order to verify the existence of such interactions the analysis of topological properties of electron density distribution is in progress and will be published elsewhere.
The packing of the molecules is organized into layers parallel to (001). Within the layer the molecules are joint by hydrogen bonds of C–H···N type and weak interactions (Figure 2, Table 1). The layers are joined together by π—π interactions with Cg1 (C31–C36)—Cg2 (N51-C56) [-x, y + 1/2, -z + 3/2] = 3.672 Å (Figure 3); and hydrogen bonds of N—H···O type. The N—H···O hydrogen bond together with its centrosymmetric counterpart form a ring motif with descriptor R22(10) according to graph-set theory (Bernstein et al., 1995). The ring motif is marked in Figure 4.