organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-5-chloro­meth­yl-1,3-thia­zole

aDepartment of Pharmacy Engineering, College of Chemical and Biological Engineering, Yancheng Institute of Technology, Yancheng 224051, People's Republic of China, and bDepartment of Chemical Engineering, Yancheng College of Textile Technology, Yancheng 224051, People's Republic of China
*Correspondence e-mail: zll830218@126.com

(Received 17 May 2011; accepted 19 May 2011; online 25 May 2011)

In the title compound, C4H3Cl2NS, the chloro­methyl C and 2-position Cl atoms lie close to the mean plane of the thia­zole ring [deviations = 0.0568 (2) and 0.0092 (1) Å, respectively]. No classical hydrogen bonds are found in the crystal structure.

Related literature

The title compound is an inter­mediate in the manufacture of agrochemicals, see: Kozo et al. (1986[Kozo, S., Shinichi, T., Shinzo, K. & Koichi, M. (1986). EP Patent No. 0192060.]). For the synthesis of the title compound, see: Beck & Heitzer (1988[Beck, G. & Heitzer, H. (1988). US Patent No. 4748243.]); For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C4H3Cl2NS

  • Mr = 168.03

  • Monoclinic, P 21 /c

  • a = 4.2430 (8) Å

  • b = 17.151 (3) Å

  • c = 9.1640 (18) Å

  • β = 96.82 (3)°

  • V = 662.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.718, Tmax = 0.891

  • 2697 measured reflections

  • 1211 independent reflections

  • 932 reflections with I > 2σ(I)

  • Rint = 0.060

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.151

  • S = 1.00

  • 1211 reflections

  • 74 parameters

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, 2-chloro-5-(chloromethyl)thiazole is an important intermediate for manufacturing agrochemicals (Kozo et al., 1986).

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles are within normal ranges (Allen et al., 1987).

The thiazole ring is planar (max. deviation of 0.000 (5) Å for C3). Atoms C4 and Cl1 lie close to this mean plane, whereas atom Cl2 is 1.4090 (1) Å out of the thiazole plane. The torsion angle S—C2—C4—Cl2 is -66.66 (1) °. The shortest distance between the centroids of the thiazole rings in the packing is 5.554 (1) Å.

Related literature top

The title compound is an intermediate in the manufacturo of agrochemicals, see: Kozo et al. (1986). For the synthesis of the title compound, see: Beck & Heitzer (1988); For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound, (I) was prepared by the method of chlorination-cyclization reaction reported in literature (Beck & Heitzer, 1988). The crystals were obtained by dissolving (I) (0.2 g, 1.2 mmol) in ethanol (25 ml) and evaporating the solvent slowly at room temperature for about 5 d.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
2-Chloro-5-chloromethyl-1,3-thiazole top
Crystal data top
C4H3Cl2NSF(000) = 336
Mr = 168.03Dx = 1.686 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 4.2430 (8) Åθ = 10–13°
b = 17.151 (3) ŵ = 1.18 mm1
c = 9.1640 (18) ÅT = 293 K
β = 96.82 (3)°Block, colourless
V = 662.2 (2) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
932 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.060
Graphite monochromatorθmax = 25.4°, θmin = 2.4°
ω/2θ scansh = 05
Absorption correction: ψ scan
(North et al., 1968)
k = 2020
Tmin = 0.718, Tmax = 0.891l = 1110
2697 measured reflections3 standard reflections every 200 reflections
1211 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.098P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1211 reflectionsΔρmax = 0.30 e Å3
74 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXS97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.030 (8)
Crystal data top
C4H3Cl2NSV = 662.2 (2) Å3
Mr = 168.03Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.2430 (8) ŵ = 1.18 mm1
b = 17.151 (3) ÅT = 293 K
c = 9.1640 (18) Å0.30 × 0.20 × 0.10 mm
β = 96.82 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
932 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.060
Tmin = 0.718, Tmax = 0.8913 standard reflections every 200 reflections
2697 measured reflections intensity decay: 1%
1211 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.00Δρmax = 0.30 e Å3
1211 reflectionsΔρmin = 0.28 e Å3
74 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.3422 (2)0.57491 (5)0.76517 (10)0.0589 (4)
N0.5235 (10)0.71113 (19)0.8427 (3)0.0725 (10)
Cl10.7424 (3)0.60986 (7)1.04471 (11)0.0811 (5)
C10.5381 (9)0.6400 (2)0.8830 (3)0.0530 (9)
Cl20.2025 (2)0.58243 (7)0.38099 (10)0.0671 (4)
C20.2262 (8)0.6502 (2)0.6483 (3)0.0484 (8)
C30.3450 (12)0.7162 (2)0.7087 (4)0.0684 (11)
H3A0.30780.76390.66150.082*
C40.0159 (10)0.6382 (2)0.5089 (4)0.0637 (10)
H4A0.04430.68860.46600.076*
H4B0.17610.61190.52970.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0750 (7)0.0467 (5)0.0523 (6)0.0053 (4)0.0033 (4)0.0014 (4)
N0.109 (3)0.0552 (18)0.0516 (18)0.016 (2)0.0015 (18)0.0070 (14)
Cl10.0967 (9)0.0963 (9)0.0464 (6)0.0075 (6)0.0078 (5)0.0011 (5)
C10.065 (2)0.055 (2)0.0386 (17)0.0016 (17)0.0064 (15)0.0013 (14)
Cl20.0682 (7)0.0810 (7)0.0494 (6)0.0024 (5)0.0041 (4)0.0146 (4)
C20.0480 (19)0.0554 (19)0.0427 (17)0.0070 (15)0.0090 (14)0.0017 (14)
C30.102 (3)0.0468 (19)0.055 (2)0.003 (2)0.005 (2)0.0037 (17)
C40.057 (2)0.076 (2)0.057 (2)0.0128 (19)0.0042 (18)0.0003 (19)
Geometric parameters (Å, º) top
S—C11.700 (4)C2—C31.333 (5)
S—C21.712 (3)C2—C41.482 (5)
N—C11.275 (5)C3—H3A0.9300
N—C31.367 (5)C4—H4A0.9700
Cl1—C11.705 (3)C4—H4B0.9700
Cl2—C41.772 (4)
C1—S—C289.16 (17)C2—C3—H3A121.3
C1—N—C3108.9 (3)N—C3—H3A121.3
N—C1—S116.2 (3)C2—C4—Cl2112.0 (3)
N—C1—Cl1122.9 (3)C2—C4—H4A109.2
S—C1—Cl1120.9 (2)Cl2—C4—H4A109.2
C3—C2—C4129.4 (3)C2—C4—H4B109.2
C3—C2—S108.3 (3)Cl2—C4—H4B109.2
C4—C2—S122.3 (3)H4A—C4—H4B107.9
C2—C3—N117.5 (3)
C3—N—C1—S0.0 (5)C4—C2—C3—N177.2 (4)
C3—N—C1—Cl1179.6 (3)S—C2—C3—N0.0 (5)
C2—S—C1—N0.0 (4)C1—N—C3—C20.0 (6)
C2—S—C1—Cl1179.6 (2)C3—C2—C4—Cl2116.5 (4)
C1—S—C2—C30.0 (3)S—C2—C4—Cl266.6 (4)
C1—S—C2—C4177.4 (3)

Experimental details

Crystal data
Chemical formulaC4H3Cl2NS
Mr168.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)4.2430 (8), 17.151 (3), 9.1640 (18)
β (°) 96.82 (3)
V3)662.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.718, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
2697, 1211, 932
Rint0.060
(sin θ/λ)max1)0.604
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.151, 1.00
No. of reflections1211
No. of parameters74
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.28

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Center of Test and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBeck, G. & Heitzer, H. (1988). US Patent No. 4748243.  Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKozo, S., Shinichi, T., Shinzo, K. & Koichi, M. (1986). EP Patent No. 0192060.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds